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Simplified Newton-Type 
Adaptive Estimation Algorithms 

Panagiotis P. Mavridis and George V. Moustakides, Member, IEEE 

Abstract- A new adaptive estimation algorithm is presented. 
It is the result of a combination of the LMS and the fast 
Newton transversal filters (FNTF) class. The main characteristic 
of the proposed algorithm is its improved convergence rate as 
compared to LMS, for cases where it is known that LMS behaves 
poorly. This improved characteristic is achieved in expense of a 
slight increase in the computational complexity while the overall 
algorithmic structure is very simple (LMS type). The proposed 
algorithm seems also to compare relatively well against €US and 
FNTF. 

I. INTRODUCTION 
HE LMS algorithm is the most widely used, in practice, 
adaptive estimation algorithm [18]. Its success is due to 

its simplicity, its low complexity (2N where N is the number 
of taps to be adjusted) and its robustness. The only character- 
istic drawback of this algorithm is its low convergence rate, 
especially when the number of taps N andor the eigenvalue 
spread of the input data covariance matrix is large [18]. On 
the other hand, RLS and its family of fast and stabilized 
versions [11, 141, [6], [7], [9], [12], [16] is characterized by 
a fast convergence rate but requires a significantly higher 
computational complexity [ O ( N 2 )  for RLS and (7-10)N for 
its fast versions]. Although the complexity of the fast versions 
is linear with the number of taps N there nevertheless exist 
applications for which this complexity is restrictive even with 
today’s technology. 

The gap between the two algorithms (LMS and RLS), 
regarding performance and complexity, was filled by the 
introduction of the fast Newton transversal filters (FNTF) 
algorithmic class [13], [17]. The FNTF algorithm, instead of 
modeling the data as white noise (LMS), or as an AR process 
of order N (fast versions of RLS), models the input data as an 
AR process of order M .  This results in the use of predictors 
that are of size M instead of size N (with 0 5 M 5 N ) .  As M 
takes values between the two ends (0 and N )  the algorithm can 
achieve performances and complexities that are intermediate 
of the corresponding performances and complexities of LMS 
and RLS. Specifically, FNTF by utilizing the fast versions 
of RLS to solve prediction problems of order M ,  requires 
2N + (5-8)M operations per time step. The usefulness of 
FNTF is maximized when the input data are indeed (or very 
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close to) an AR process of order M .  For such a case the 
performance of FNTF is similar to the performance of RLS, 
but with a reduced complexity. Applications where FNTF 
yields a high gain in complexity without significant sacrifice 
in performance are Echo Cancellation in Mobile Telephony 
( N  = 100-200, 111 = 10-20) [14], or Echo Cancellation in 
Audioconferencing ( N  2 1000, M = 10-20). This is because 
the input data (speech) can be adequately modeled by an 
AR process of order 10-20, while the size N of the filter 
is significantly larger. 

The advantage of LMS over the fast RLS versions and 
FNTF, that makes it tractable for most practical problems, 
is basically its extremely simple structure. During the last 
years many variants of LMS have been proposed as the 
Leakage, the Sign Error, the Sign Regressor, and the Sign-Sign 
LMS [15, p. 841. All these variants have common aim to 
achieve comparable or better, if possible, performance than the 
LMS but by requiring fewer computations per time step. For 
instance in the Sign Error algorithm, instead of the prediction 
error, its sign is used thus avoiding N multiplications per 
time step. Similarly in the Sign Regressor the sign of the 
regression vector, instead of the original vector, is used thus 
avoiding again N multiplications. A comparison study of these 
algorithms can be found in [5], [15] for the i.i.d. input data 
case. 

In this work we present a class of algorithms related to 
LMS and FNTF. Our aim is to define algorithms by incorpo- 
rating those elements from FNTF that accelerate convergence, 
maintaining on the same time the algorithmic structure as 
simple as possible (similar to LMS). It is thus clear that we 
do not intend to minimize the computations per time step, 
but rather to accelerate the convergence. This is achieved 
in expense of a slight increase in computation. To be more 
precise, the complexity of the proposed algorithm is 2N + 3M 
multiplications and 2N + 4M additions per time step. The 
important thing is that the extra operations, order M ,  are due 
to parts of the total algorithm that are LMS like, thus resulting 
in a very simple overall algorithmic structure. The proposed 
algorithm can converge significantly faster than LMS in cases 
of large eigenvalue spread of the input sequence. It is known 
that for these cases LMS behaves very poorly. The proposed 
algorithm compares also well with lUS and FNTF while at the 
same time seems not to have robustness problems due to finite 
precision as is the case for the fast versions of RLS (FAEST, 
FTF), and FNTF. 

The rest of the paper is outlined as follows. In Section 11, the 
new algorithm is presented. Section 111 contains a theoretical 
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analysis of the proposed algorithm. Based on the theory of 
Section 111, a "fair" comparison of the proposed algorithm 
with LMS, RLS and FNTF is presented in Section IV. Finally 
Section V has the concluding remarks. 

11. MAIN RESULTS 

Before going to the introduction of the algorithmic class 
let us define our notation. With lower case letters we denote 
scalars, with upper case vectors and with bolded upper case 
matrices, finally superscript ''T" denotes transpose. Let us now 
assume that we are given sequentially two sequences {d (n) }  
and { ~ ( n ) } ,  where the first signal is the desired response and 
the second is the input signal. The Newton Algorithm is then a 
very general adaptive algorithm for identifying an FIR model 
W N ( ~ )  using the two sequences [lo, p. 471. This algorithm 
has the following form 

where X N ( ~ )  = [ ~ ( n ) ,  1 .. , ~ ( n  - N + l)]', Q N ( n )  is a 
matrix that can be properly selected, CN (n) the corresponding 
gain vector and p the (constant) step size of the algorithm. 

As we said before the algorithm in (1) is very general. It is 
easy to see that most known algorithms are special cases of this 
algorithm corresponding to a specific selection of the matrix 
Q N  and the step size p. For example, if Q N ( n )  = I N  with I N  
the identity matrix the resulting algorithm is the LMS. If p = 1 
and QN(n)  = RG1(n) with R N ( ~ )  the sample covariance 
matrix of the sequence ~ ( n )  then the resulting algorithm is 
the RLS. In a similar way we can identify other recursive 
algorithms. 

It is now clear that in order to define a new algorithm 
it is enough to define a new matrix Q N  and an efficient 
computation scheme for the gain vector CN. Let us first 
consider the RLS, that is Q N ( n )  = RN1(n). From [8, p. 5771 
we know that we can write 

(3) 

where Aj, Bj and af, "3" are the least squares optimum 
forward and backward predictors of order j and their cor- 
responding minimum prediction error powers. 

In FNTF [13], by assuming that the input sequence is an 
AR process of order M a different matrix Q N  is proposed. 
This matrix satisfies relations similar to (2) and (3), only now 
all optimum predictors of order larger than M are equal to 
the optimum predictor of order M .  The corresponding matrix 

Q N  = RGfM can thus be written as follows: 

r n. 1 

(5)  ' [-B;(Th) 1 O N - J - ~ ] .  T 

Both selections ( Q N  = RN and Q N  = R N , M )  are known to 
yield algorithms with a high convergence rate. 

In this paper our intention is to find a means for accelerating 
the convergence of LMS while preserving at the same time 
its very simple structure. A possible way to reach our goal 
is by properly modifying the matrix Q N  = I N  of the LMS 
algorithm. We will base our modification on (4), (5 )  on which 
we will perform a series of simplifications in order to obtain 
the desired final matrix. 

Since usually M << N ,  in both (4) and (5)  the first 
sum contains most information regarding the structure of 
the inverse of the covariance matrix. As we can see, this 
sum has a very characteristic property, namely it contains 
predictors that are of the same order but shifted in time. This 
is actually the key point utilized by FNTF for achieving its 
reduced complexity. Here, since we are interested in simplified 
algorithms, we are going to use the first sum only after 
making some approximations. Notice that the prediction error 
powers (aa  and aL) are the sums of the squares of the 
corresponding prediction errors (exponentially weighted) [8]. 
When the exponential factor is close to unity it is clear 
that the two powers will change very slowly. Thus our first 
approximation consists in considering all these quantities equal 
to some constant k .  We can thus define the following matrix 

' [OY D T 4 + l ( n - j )  o g - M - j - I ]  (6) 

where the vector D ~ + l ( n )  can be either the forward or the 
backward predictor (including the unities). Notice that the 
matrix D N ( ~ )  just defined is not of full rank because it is the 
sum of N - M rank one matrices. There are two directions 
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one can follow to solve this problem. A first direction would 
be to find a means to approximate the second sum in (4), 
( 5 )  which, combined with the matrix D N ,  will guarantee a 
full rank matrix. A second and significantly simpler direction 
is to add the matrix I N  to D N .  We followed this last idea. 
Finally instead of using the matrix DN (n)  to define the matrix 
Q N ( n )  we use D N ( ~  - 1). This corresponds in using the 
dual Kalman gain in the original RLS and FNTF algorithms. 
This shift in time was necessary because in the computation 
of the gain CN it will result in using prior prediction errors 
instead of posterior [as is the case with DN(n)]. Therefore 
we propose the following matrix QN(n) in order to define a 
new algorithm: 

N - M - 1  r 0; 1 

The matrix Q N  in (7) can also be regarded as a modification 
to the corresponding matrix of LMS. Notice that when IC = 0 
or N = M this matrix reduces to the one used by LMS. 

Having defined QN (n)  we must propose an efficient scheme 
for computing the gain C N ( ~ )  of (1). By multiplying QN(n) 
by X N ( ~ )  we obtain 

C N  (n)  = XN (n)  
N - M - 1  

+ k  e & ( n - j )  
j = O  

where D M + ~ ,  e& is either the forward or the backward 
predictor of order M and its corresponding prior prediction 
error. Because of the shift invariance in both terms of (8) we 
can efficiently compute CN (n) as in [ 131 using a step upstep 
down process. Specifically we have 

(9) 

where n M  = n - N + M and “*” denotes a “don’t care” 
element. 

Comments: Notice that we can apply (9) for computing 
the gain regardless of the method we use to estimate the 
predictors. Since in most cases M << N we can use LMS 
for these estimates. Because of the small size of the prediction 
problem, LMS will quickly converge (compared to the whole 
algorithm), yielding good estimates for the predictors. This in 
turn will result in the gain CN pointing to the right direction, 
thus accelerating the convergence of the filtering part. 

The proposed algorithm is summarized in Table I. In this 
table, (9) is presented as Version 1. Notice that the total com- 
plexity is 2N + 3M multiplications and 2N + 4M additions if 
we store information that will be used at time n M .  Otherwise, 

n and another for n M .  For this case the complexity becomes 
2N +6M multiplications and additions. In Section IV, we will 
see how we can further simplify the algorithm and obtain a 
final complexity of 2N + 3M multiplications and additions 
without the need of storing any information and without 
sacrificing any performance (Version 2). Notice also that the 
extra, order M ,  operations come from an LMS algorithm; thus, 
the total algorithm has a very simple computational structure. 

Regarding the LMS used for the estimation of the predictors, 
as we can see in Table I, we use a step size pf (or p b )  which 
is different from the step size p used in the filtering part. This 
is natural since the size of the prediction problem is different 
from the filtering problem (usually much smaller). We can thus 
use a larger step size for the prediction problem yielding a 
faster convergence and at the same time a satisfactory steady- 
state behavior. 

111. THEORETICAL ANALYSIS OF THE PROPOSED ALGORITHM 
In this section we will derive the necessary analytic results 

that will help us perform a “fair” comparison of the proposed 
algorithm with LMS, RLS, and FNTF. For this reason we 
are going to follow the method introduced in [3], [5] which 
consists in selecting the parameters of the algorithms so that 
the algorithms have the same steady-state performance. The 
algorithm that converges faster is regarded as the best. Specifi- 
cally for the proposed algorithm and LMS we will theoretically 
analyze their convergence rate by studying the behavior of 
their mean trajectories (ODE method). This analysis will be 
valid for the “small” step size case. 

As steady-state performance measure the covariance of the 
estimation error is usually proposed [5]. For this matrix there 
are analytic expressions based on an asymptotic stochastic 
approximation theory (small p case). Even though this measure 
seems the most appropriate for estimation algorithms it has the 
basic difficulty of being a matrix. Specifically, it is not possible 
to force all algorithms to have the same asymptotic covariance, 
necessary requirement to perform a fair comparison, just by 
selecting the parameters of the algorithms. An alternative 
performance measure widely used in the literature is the 
steady-state excess mean square error (EMSE) and this is 
the one we are going to use in this case. The EMSE is 
a scalar quantity that enters naturally into the estimation 
problem and has a practical significance. The only problem 
with this selection is that the formula we our going to use for 
estimating its value will be derived based on the Independence 
Assumption (IA) in contrast to the asymptotic covariance 
where this assumption is not needed. 

To this end, let ~ ( n )  denote the filtering error, then we can 
divide it into two parts as follows 

€(n)  = d ( n )  - bf”$(n - 1)XN(n) 
= [ d ( n )  - WFXN(n)] 

- [Ws(n - 1) - WT]XN(n) (10) 

where WO is the optimum Wiener filter. The first term is the 
minimum filtering error we can achieve (if we have available 
the statistics of the problem) while the second term is the 

we must run two LMS in parallel, one for the time instant excess error. Let us call the minimum filtering error 
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TABLE I 
LISTING OF THE PROPOSED ALGORITHM 

Adaptation of Forward or Backward Predictor using LMS: 

eL(n)  = z (n  - M )  - ~ ; ( n  - 1 ) ~ n n ( n )  

B M ( ~ )  = B M ( ~  - 1) + , u * & ( n ) X ~ ( n )  ~ ~ ( n )  = ~ ~ ( n  - 1) t p f e b ( n ) X M ( n  - 1)  

eh(.) = z ( n )  - AZf(n - l)X,(n - 1) 

Computation of the Gain: 

Version 1: 

Version 2: 

variance (the minimum mean square error) and &.((n) the 
EMSE at time n. To compare now the algorithms we will fix 
their parameters in order to have the same a~,(co) and then, 
either analytically or through simulations, we will observe their 
relative convergence behavior. It is thus clear that we need to 
find an expression for the EMSE. 

The analysis we are going to use is based on the IA and is 
valid for "small" step size. Even though the IA is obviously 
erroneous, it seems that the estimates obtained for the EMSE 
are relatively accurate when p is small. This fact was also 
observed in [ll]. In other words, as far as the EMSE is 
concerned, the IA must be asymptotically (p  + 0) correct. 
We can now summarize the following result concerning the 
asymptotic value of the EMSE. 

Theorem I: Under the IA, the steady-state EMSE of the 
proposed algorithm satisfies the following property 

P 2  
2 &(CO) = - gmin [+v + ~ C K & ( N  - M ) ]  + o(p)  (11) 

where 02 is the variance of the input signal z(n),  a& is the 
optimum prediction error power of the predictor D M + ~  (which 
is either the forward or the backward predictor of order M 
including the unities), p is the step size, k the parameter of the 

proposed algorithm and o(p)  denotes a quantity that satisfies 

w 
As we had mentioned before, we would like to set the 

parameters of the algorithm in order for a& (CO) to have some 
prescribed value. For this reason we will select accordingly the 
step size p .  Disregarding the term o( p )  in (1 1) and solving for 
p we have the following equation for the step size: 

1imp-o b ( P ) / P l  = 0. 
Proof: The proof is given in the Appendix. 

1-2 
bumis 

a p  + ka&(N - M )  P =  

where 

is known as the misadjustment. Notice that we can obtain the 
corresponding estimate for the step size of LMS from (12) by 
setting k = 0, this yields 

(14) 

Summarizing, in order to make our comparisons we will fix the 
misadjustment and then select the step sizes of the proposed 
algorithm and LMS through (12) and (14), respectively. 
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A. Estimate of the Convergence Rate of the Mean Trajectory 

In this subsection we will attempt a theoretical analysis of 
the proposed algorithm aiming also in defining its dependence 
on the parameter k .  We will achieve this by studying the 
speed of convergence of the mean trajectory using the Ordinary 
Differential Equation (ODE) method [2, pp. 4M21, [5],  [lo]. 

To this end let us consider a general recursive algorithm of 
the form: 

O(n) = O(n - 1) - p H ( Q ( n  - l), Z(n) )  (15) 

where O(n) is the state of the algorithm and Z ( n )  is the new 
input data vector at time n. Let us now define 

(16) 

where Eo{.} denotes expectation only with respect to the 
input data Z ( n )  thus considering 6’ as deterministic. The mean 
trajectory is then defined by the following ODE: 

- i(t) = -h(B(t)) (17) 

where the correspondence between continuous and discrete 
time is 

t ,  = p n .  (18) 

Although, in general, we have g(t,) # E{O(n)} the name 
“mean trajectory” for the trajectory of the system in (17) is 
justified by the fact that e(&) is very close to the real mean 
trajectory E { 6’ (n)  } and that the approximation becomes better 
as p becomes smaller [lo]. 

Let us now consider the mean trajectory of the proposed 
algorithm where for the prediction part we use the forward 
predictor (we can apply similar steps for the backward predic- 
tor case). Notice that the state of the algorithm involves the 
combination of the predictor  AM(^) and the filter W N ( ~ ) .  
Thus the mean trajectory satisfies 

- 
 AM(^) = - r f ~ M [ z M ( t )  - A,] 

W N ( t )  = - [ I N  + D N ( t ) ] R N [ w N ( t )  - WO] 

N-M-1 r 0’ 1 

. 10; 1 -ZG(t) O;-&&3-1 ] (19) 

where R3 is the covariance matrix, of order j, of the input 
signal z(n) ,  (rf = ,uf/p, and A,, WO are the optimum Wiener 
predictor and filter, respectively. The corresponding mean 
trajectory for LMS can be obtained by setting k = 0 in (19), 
which yields 

Our intention now is to find the speed of convergence of the 
mean trajectory w, ( t,) toward the Wiener solution WO. This 
is an easy task for LMS because the ODE in (20) is linear and 
time invariant. The situation is more difficult for the proposed 
algorithm because the ODE in (19) is nonlinear. For (19) we 

will make the following simplification. Specifically, since we 
are interested in cases where M << N ,  we can select pf 
(and thus r f )  so as to have a fast convergence for x ~ ( t , )  
toward the Wiener predictor A,. This will also result in a fast 
convergence of DN(~,) to its steady-state value Do defined as 

N-M-1 0, 

. [o: 1 --AT O g - ~ - , - l ] .  (21) 

D o = k  c [ 2, 
3=0 

O N -  M - ~  - 1 

Replacing D N ( ~ )  by Do in (19) yields the following linear 
time invariant ODE 

- 
W N ( t )  = - ( I N  + D O ) R N [ R V ( t )  - W O ] .  (22) 

Writing the ODE in terms of the mean error vector a,(t) = 
W N ( ~ )  - WO we obtain 

- 

U,(t) = -(IN + D,)RNUN((t). (23)  

We will thus study the convergence rate of the mean error 
vector toward zero. Since for systems of the krm of (23) the 
convergence is exponential, we define the convergence rate as 
the limit 

Using now (18) we have 

t 
The next theorem yields the desired convergence rate. 

the following relation: 
7keorem 2: The convergence rate defined in (24) satisfies 

where for A a matrix with real eigenvalues, Amln{A}, denotes 
the smallest eigenvalue. 

Using Theorem 2 we can also obtain the corresponding rate 
Pro08 The proof is given in the Appendix. 

for LMS by setting k = 0, this yields 

Notice that by comparing CR with C R L M ~  it is possible to 
compare the two algorithms theoretically. Clearly the algo- 
rithm with the larger convergence rate can be considered as 
better. Unfortunately it was not possible to draw any general 
conclusions by using (26) and (27). This was due to the fact 
that A m i n { ( I ~  + D,)RN}  could not be set under a more 
tractable form. Finally notice that (26) describes also the 
dependence of the algorithm on the parameter k .  We will use 
this formula in the next section in order to observe the behavior 
of the algorithm for different values of k and find a means for 
selecting this parameter properly. 
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B. Numerical Behavior of the Proposed Algorithm 
A very desirable characteristic for fast estimation algorithms 

is their robustness to finite precision effects. It is known that 
most fast algorithms as FAEST, FTF, and FNTF present insta- 
bility under finite precision. This nonrobustness is particularly 
present in the prediction part of these algorithms and is due to 
the complicated interrelation between the predictors and the 
corresponding Kalman gain. 

The LMS algorithm, besides its simplicity, is also known 
for its robustness. Since we use this algorithm in the prediction 
part of the proposed algorithmic scheme we immediately have 
robustness in the prediction part, that is, in the part where 
FAEST, F'TF, FNTF are known to fail. 

It is possible, using stochastic approximation techniques, 
to theoretically analyze the algorithm from the point of view 
of robustness (and show that it is robust). Unfortunately the 
analysis is quite lengthy and thus we prefer not to include it 
in the present work. We like only to stress that the analysis is 
possible because the computation of the gain C N ( ~ )  is open 
loop, that is, from (9) we can see that the gain is adapted 
using the predictors but is not consequently used to adapt these 
predictors for the next time instant (as is the case in FAEST, 
FTF, and FNTF). Finally, in all simulation we performed we 
never encountered instability due to finite precision. 

Iv .  SIMULATION RESULTS 

Before proceeding to the simulations let us first make a 
few more comments. As we said in Section I11 the complexity 
of the proposed algorithm is 2N + 3 M  multiplications and 
2N + 4 M  additions if we store the information that will be 
needed at time n ~ .  Otherwise two LMS are required to run in 
parallel, one for time n and another for time n M ,  increasing 
the complexity to 2N + 6 M  multiplications and additions. 

Let us observe (9) which introduces the extra order M 
complexity. We can see that the last term which refers to the 
time instant n M  affects only the last M elements of the gain 
vector CN. What is more important, because of the down shift 
defined by (9), this effect is confined in these last M elements 
and is not transmitted to any other higher position. This means 
that the last term of (9) interferes only in the estimates of the 
last M taps of the filter WN. Regarding these last M taps 
there are two facts that drastically limit their contribution in 
the overall process. First, usually we have M << N ,  second the 
last taps in most practical applications have very small values. 
In other words if the part of the gain vector that affects the 
M last filter taps is not the best possible this is not so severe 
for most practical problems. We can thus discard the last term 
completely. This will yield the following possible adaptations 
for CN (n): 

Equation (28) is presented in Table I as Version 2. As we 
will see both versions of the algorithm have almost identical 
performance. 

0.3 , I 

I .  

-03: ,b ;o A0 i o  ;o $0 ;o i o  do 
Number of Samples 

Fig. 1. Unknown FIR system with length N = 100. 

0 

To test the algorithm we generated an AR process by passing 
white Gaussian noise, through an all-pole system of order 
10 with poles at 0.98 e*J0.02n, 0.96 e*j0.21?r, 0.8 e*JO g6?r, 

0.75 e*J0.45n, and 0.70 e*J0.44n. The signal x(n) was gen- 
erated by normalizing the AR sequence to be of unit variance. 
The input sequence ~ ( n )  was consequently passed through an 
FIR filter of length N = 100 whose impulse response can 
be seen in Fig. 1. To the output of the filter a 20-dB white 
Gaussian noise was added and this resulted in the desired 
response signal d( n)  . 

For the simulations we used predictors of order M = 5 and 
in the LMS, for the prediction part, a step size pf = p b  = 
0.0035 was selected. The optimum prediction error power, 
needed for the computation of the step size p, can be computed 
as follows. First we obtain the autocorrelation sequence (using 
for example the backward Levinson [8, pp. 204-2071), then 
the Wiener solution A, can be computed yielding also the 
prediction error power a& = 0.0019. 

In order to see the dependence of the proposed algorithm 
on the parameter k we plot the convergence rate of the 
algorithm as a function of k .  We normalize the values of 
CR so as for k = 0 (LMS) the convergence rate is equal 
to unity. The result can be seen in Fig. 2. We observe that the 
convergence rate, very abruptly, reaches a maximum value and 
then decreases very slowly. This indicates that the performance 
of the algorithm is robust with respect to the value of k .  This 
fact was also observed in the simulations. We can also see 
from Fig. 2 that for a large region of k values the proposed 
algorithm is four to six times faster than LMS. 

A practical selection for the parameter k yielding most of 
the time satisfactory results is 

estimate of input power 
I C -  . (29) estimate of prediction error power 

For our simulations, we used k = 100 but we obtained similar 
results with values of k = 200, 300, and 400. The step sizes 
of the proposed algorithm and LMS were selected using (12) 
and (14) so as to have a misadjustment 0 2 % ~  = 15dB resulting 
in p = 5.36 x and /ALMS = 6.32 x lo-*. 
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3 -  

0 50 100 150 200 250 300 350 400 450 500 
k 

Fig. 2 
parameter IC 

Convergence rate of the proposed algorithm as a function of the 

In Fig. 3 we compare the proposed algorithm with RLS, 
FNTF and LMS. For the simulations we first let all algorithms 
to converge and then we made an abrupt change of the real 
filter model (from WO to -WO). We plot the misadjustment of 
the proposed algorithm (solid), the R J 3  (dashed), the FNTF 
(half tone), and the LMS (dotted). Notice that the proposed 
algorithm converged after 20 000 iterations while LMS needed 
more than 100000 iterations, being in agreement with the 
theoretical results of Fig. 2. On the other hand the algorithm 
compares well with RLS and FNTF having at the same time 
a significantly simpler structure and no robustness problems. 
Finally in Fig. 4 we plot the misadjustment of the two versions 
of the proposed algorithm (presented in Table I). We can see 
that their difference in performance is minor. This was typical 
in all our experiments. 

V. CONCLUSION 
We have presented a new adaptive estimation algorithm. 

The proposed algorithm is characterized by a very simple 
computational structure similar to the one of LMS but with 
a significantly higher convergence rate in cases where LMS is 
known to behave poorly (large eigenvalue spread). The pro- 
posed algorithm compares also favorably with other estimation 
algorithms known to have a fast convergence rate as RLS and 
FNTF and does not present instability problems due to finite 
precision as is the case for the fast versions of RLS (FAEST, 
FTF) and FNTF. 

APPENDIX 

Before going to the proof of the two theorems let us 
first make a definition and prove a number of lemmas. The 
following definition refers to the ordering of two symmetric 
matrices. Thus for any two symmetric matrices A, B with the 
same dimensions we will say that A 2 B when the difference 
A - B is a nonnegative definite matrix. 

Lemma 1: Let A and B be two symmetric and positive 
definite matrices and bmin, bmaX the smallest and largest 
eigenvalues of B, then 
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Fig. 3. 
(half tone), and LMS (dotted). 

Performance of the proposed algorithm (solid), RLS (dashed), FNTF 

i) b m i n I  5 B 5 b m a x c  
ii) bmin tr { A }  5 tr {AB}  5 b,, tr { A } ;  

where tr{X} denotes the trace of the matrix X. 
Proof: For i) we are going to prove only the left-hand 

side inequality (in the same way we can prove the other). 
According to the definition we must prove that the difference 
B - b,,J is nonnegative definite. Since B is symmetric it can 
be decomposed as B = PDPT where P is orthonormal and 
D is diagonal with elements the eigenvalues of B (which are 
real). Let X be any vector and define Y = P T X ,  then from 
the orthonormality of P we have XTX = YTk’ and thus 

XT(B - b,;,I)X = X T B X  - b,,,XTX 
=YTDY - bm,,YTY 

= Y ? ( ~ I  -bmin)+.. .+y;(bk -bmin)  

20 (30) 
where y, are the elements of Y and b, are the elements of 
D .  The last inequality is true since by definition b,,, is the 
smallest among all eigenvalues b,. 

To prove ii), notice that since for any two matrices Y ,  2 
with appropriate dimensions we have 

tr { Y Z }  = tr { Z Y }  , 

tr {AB}  = tr { A ~ / ~ B A ~ / ~ } .  

(3 1) 

(32) 

we conclude that 

From i), by multiplying from right to left with A1/2 we 
conclude that 

b,,,A 5 A1/2BA1/2 
5 bmaxA. (33) 

Taking traces and using (32) yields the desired relation. 
ositive definite 

matrices then the matrices AB and B1/2AB1P2 have the same 
eigenvalues, which are real and positive, also both matrices 
are diagonalizable. 

Lemma 2: If A, B are two symmetric 
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Fig. 4. Performance of the two versions of the proposed algorithm when the 
forward predictor is used. 

Proo$ Notice that the matrix B1/2AB1/2 is symmetric 
and positive definite. Thus it is diagonalizable with real and 
positive eigenvalues. If B1/2AB1/2 = PDP-l where D 
diagonal then we have that AB = (B-1/2P)D(B-1/2P)-1 
which means that AB is also diagonalizable to the same 

Lemma 3: Let Y be a random vector, Yo a constant vector 
and p << 1. If 

diagonal D. This concludes the proof. 

E{(Y - YO)(Y - Y o ) T }  = O(P) (34) 

then 

E{YYT}  = YoY: + O ( p )  (35) 

where by O ( x )  we denote a quantity that satisfies IlO(x)II 5 
cx with c constant independent of x. 

Proof: Since for any random vector Z we have that the 
matrix E{ (2 - E { Z } ) ( Z  - E { Z } ) T }  is nonnegative definite 
(the covariance matrix of 2) we conclude that 

E{(Z - E { Z } ) ( Z  - E{Z} )T}  =E{ZZT}  - E{Z}E{ZT}  
20 (36) 

or equivalently, that E { Z Z T }  2 E{Z}E{ZT}. We thus 
conclude that 

E{(Y - Yo)}E{ (Y - yo)'} = O(P) (37) 

(38) 

and consequently 

E{(Y - Yo)}  = 0(p1I2)  

Since we can always write 

YYT = Y0YT + Yo(Y - Y,)T + (Y - Yo)YF 
+ (Y - Yo)(Y - Yo)T (39) 

taking expectation, using (38) and the hypothesis of the lemma 

Proof of Theorem 1: We are interested in obtaining an ex- 
pression for the EMSE. From (lo), if we define U N ( ~ )  = 
Wrv(n) - WO then we can write 

(40) &(n) = E{[UN(n  - 1)TXN(n)12}. 

&(n) = E{UZ(n - l ) R N U N ( n  - 1)) 

Using the IA we conclude 

= t r  { E { U N ( ~  - l)U,'(n - ~ ) } R N } .  (41) 

Notice from (41) that in order to find the EMSE we need to 
find the covariance matrix of the error vector UN(.). From 
now on, for simplicity, let us drop the subscript "N." If we call 

K(n)  = E { U ( n ) U T ( n ) }  (42) 

the covariance matrix of U ( n ) ,  then using (1) we have 

U(n) = [I - p Q ( n ) X ( n ) X T ( n ) ] U ( n  - 1) 

+ ~ ~ o ( n ) Q ( n ) X ( n )  (43) 

where €, (T I )  is the estimation error produced by the optimum 
Wiener filter. In order to find the covariance matrix K(n)  we 
will follow a methodology and hypotheses similar to [8, pp. 
315-3301. Assuming independence between U ( n ) ,  X ( n )  and 
&( n)  (independence assumption) and following similar steps 
we can show that 

K(n + 1) = K(n)  - p[Q(n)RK(n) + K(n)RQ(n)] 

+ P2 tr {RK(n)IQ(n)RQ(n) 
+ P2Q(4RK(4RQ(4 
+ P2dinQ(n)RQ(n)  (44) 

where Q(n) = E{Q(n)}  is a symmetric matrix. If we let 
n It 00, multiply from the left by Q-l(cy)) and consequently 
take traces, we obtain 

2 tr { R K )  - ,U tr { R K }  tr {RQ> - p tr {RKRQ} 
= p c:in tr {RQ).  (45) 

Notice that for simplicity we have also dropped the time 
index from the formulas. The only difficult term in (45) is 
tr{RKRQ}. This term with the help of Lemma 1 can be 
written as 

tr {RKRQ} = c tr {RKR} 
= c t r  {R1/2KR1/2R}  
= c' tr { R ~ / ~ K R ~ / ~ }  
= c ' t I { R K }  (46) 

where c, c' can be bounded from above and below by con- 
stants. Substituting (46) in (45) and solving for tr{RK} we 
obtain 

tr { R K }  = ~ gLinb{RQ} 
2 - pc" 

(47) P 2  
2 

= - omin tr {RQ} + o(p) 

where c" = c' + tr {RQ} which can also be bounded from 
both sides by constants. We thus conclude 

we prove the desired approximation. 
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D ~ + l ( n ’ -  j - 1) 
O N - M - J - I  

What remains to be specified is the expectation E{Q(oo)}. 
Let us recall the form of the matrix &(n) 

N - M - 1  r 0, 1 

Notice that the expectation of Q(n) involves expectation of 
quantities of the form D ( n  - 3)DT(n  - j ) .  The vectors 
D ( n )  are predictors (forward or backward) and since they are 
computed through a regular LMS, we h o w  [IS, p. 1101 that 
the covariance of the error D ( n )  - Do, as n --f 03, is O(p) ,  
with Do the corresponding optimum Wiener predictor. Using 
Lemma 3 we conclude that 

E { D ( C O ) D ~ ( C O ) }  = D,D,T + o( ,u~/~) .  (50) 

With the help of (31), (49), and (50) we have that 

tr {RE[Q(m)ll- = tr {RI- 
N-M-I  

J=0 

. R [ 2, ] + O ( P ’ / ~ ) .  (51) 

Since R is Toeplitz all N - M terms in the above sum are 
equal. Also, since Do is the optimum Wiener predictor, each 
term is equal to the optimum prediction error power. Thus 

tr (RE[Q(oo)]} = No: + ko&(N - nil) + O(p1 l2 ) .  (52) 

Substituting this expression in (48) proves the theorem. 
Proof of Theorem2: Notice that the matrices ( IN  + 

Do) ,  RN involved in (23) satisfy the assumptions of Lemma 
2, this means that the matrix ( I N  + D,)RN is diagonalizable 
and has real and positive eigenvalues. 

It is known that the convergence of l \ U ~ ( t ) ) )  toward zero 
is governed by the smallest eigenvalue Pmln = Amin{ (IN + 
D,)RN} .  More precisely since ( I N  + D,)RN is diagonaliz- 
able with real positive eigenvalues then there exist constants 
c1, c2 such that, for t large enough, we have 

O N - M - ~ - I  

cl e--Pmlnt 5 IluN(t)ll 

5 c2e--Pm1nt. (53) 

Taking the logarithm in (53), dividing by t and taking the limit 
for t i 00, we have that the convergence rate is equal to 

C R  = PPmin.  (54) 

Substituting the estimate of p defined in (12), we can easily 
obtain the desired relation. W 
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