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Study of the Transient Phase
of the Forgetting Factor RLS

George V. Moustakides

Abstract—We investigate the convergence properties of the
forgetting factor RLS algorithm in a stationary data environment.
Using the settling time as our performance measure, we show that
the algorithm exhibits a variable performance that depends on
the particular combination of the initialization and noise level.
Specifically when the observation noise level is low (high SNR)
RLS, when initialized with a matrix of small norm, it has an
exceptionally fast convergence. Convergence speed decreases as
we increase the norm of the initialization matrix. In a medium
SNR environment, the optimum convergence speed of the algo-
rithm is reduced as compared with the previous case; however,
RLS becomes more insensitive to initialization. Finally, in a low
SNR environment, we show that it is preferable to initialize the
algorithm with a matrix of large norm.

I. INTRODUCTION

T HE RECURSIVE least squares (RLS) algorithm is one of
the most well-known algorithms used in adaptive filtering

and system identification. Its popularity is mainly due to its
exceptionally fast convergence speed, which is considered to
be optimal in practice and as a measure for comparison (and
desired goal) for other algorithms.

Due to its nonlinear nature, the exact theoretical analysis
of RLS turns out to be rather complicated. This analytic
complexity is particularly apparent in the case of the forgetting
factor RLS, which is the most commonly used version of the
algorithm. There exists an extensive literature addressing the
problem of convergence of RLS under a stationary environ-
ment and its performance at steady state [1], [3], [5], [6], [17].
Recent publications, on the other hand, tend to focus mainly
on the tracking properties of the algorithm [7], [9], [13]–[15],
[20].

Although the performance of RLS, in a stationary envi-
ronment and during the transient phase, is considered well
studied and well understood, there exist certain observations,
coming from practice, that cannot be adequately explained
with the existing theory. We refer specifically to the variable
performance of the algorithm as a function of the initialization
of the (exponentially weighted) sample covariance matrix,
which is recursively updated in the algorithm. RLS is known
to exhibit a significantly faster convergence when initialized
with a “small” positive definite matrix (usually of the form of
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) than when initialized with a “large” one [10, p. 570], [21,
p. 476]. The existing analysis cannot distinguish or explain
in any sense this variable performance; therefore, there is
room for further investigation that concentrates specifically
on the initialization. A first effort toward this direction is
the statistical analysis of the algorithm for soft and exact
initialization [11], [12] but applies only to times (where

is the size of the estimation vector).
In this paper, we make a thorough study of the relation

between the algorithmic performance and the initialization.
Specifically, by analyzing the power of the estimation error
vector, we show that the convergence properties of the al-
gorithm not only depend on the initialization but also on the
observation noise level. Furthermore, by using the settling time
as our performance measure, we prove that the well known
(from practice) rule of initialization with a “small” matrix is
preferable for cases of high and medium SNR, whereas for
low SNR, a “large” matrix must be selected for best results.

The paper is organized as follows. Section II contains
the definition of the problem and certain background results.
Section III contains our study of the estimation error power
and estimates of the settling time. In Section IV, we summarize
our results. Simulations are presented in Section V, and finally,
Section VI contains the conclusion.

II. BACKGROUND

Let us consider the linear system

(1)

where

measurable scalar observation sequence;
measurable vector input data sequence;
additive observation noise;
unknown deterministic time invariant vector.

RLS is the well known algorithm that recursively estimates
with the set of equations

(2)

where

forgetting factor with ;
estimate of the vector at time ;
exponentially weighted sample covariance matrix
of the input sequence.
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In fact, RLS computes recursively [10, p. 569],
thus avoiding the direct inversion of the matrix at every
time . However, since we are only concerned with conver-
gence, we are going to assume infinite precision; thus, (2) is
equivalent to the usual RLS in the sense that both algorithms
yield the same estimates.

Let us now obtain a form of the algorithm that is more
suitable for our analysis. By introducing the estimation error
vector and using (1), we have

(3)

Finally, defining , we obtain

(4)

Based on this set of equations, we are going to examine the
convergence properties of the estimation error vector.

A. Initialization of the RLS Algorithm

As was mentioned before, our main objective is to find
the relation between convergence speed and initialization.
Consequently, let us first identify the points of the algorithm
that require initialization. From (2), we can see that and

are the only two quantities that must be initialized. The
vector is commonly selected to be zero, whereas the
matrix is selected to have the form , with
the identity matrix and a positive scalar. Regarding the
selection of the parameter, there exist diverse suggestions
in the literature. For example, in [10, p. 570] and [21, p.
476], based on observation from practice, a “small” value is
proposed. On the other hand, in theoretical studies [6], [7],
[9], the assumption of a “large” value is more common. It
turns out that the convergence properties of the algorithm
differ significantly, depending on the value ofbeing “small”
or “large.” Furthermore, the same value ofapplied to the
same set of data can produce an entirely different performance,
depending on the value of we use. This suggests that the
notion of the size of this quantity (“small” or “large”) cannot
be defined in absolute terms but must be related, in some
sense, to the parameter. It is exactly this relation we wish
to define next.

Let us first introduce some definitions. If is a matrix
function and a nonnegative scalar function ofwith
taking values in some set , we then say that

• when there exist constants , indepen-
dent of , such that for all

;
• when there exists constant, independent

of , such that for all ;

and where the norm of a matrix is defined as
trace .

In our analysis, we will mainly concentrate on cases where
with . We can then distinguish a variable as

“small” or “large” by comparing it with . From the analysis
that follows, it turns out that we need to distinguish three
sizes for our variables. Specifically, if a variable satisfies

, then will be characterized as being
“small” if , “medium” if , and “large”
if . Moreover, notice that for small enough, we
have when .

Let us now apply the above definition to the initialization
of RLS. Consider first the vector . As we said, the most
common selection for this quantity is , corresponding
to , which is a value of the order of a constant,
i.e., a vector. More generally, we are going to assume

with an arbitrary deterministic vector. For
the initialization of , on the other hand, we will consider

with an arbitrary deterministic positive
definite matrix. According to our definition, corresponds
to a “small” initial value, to a “medium,” and

to a “large” one.
Combining the two initialization parts, we have that the

complete form of RLS is

(5)

with and are a matrix and vector,
respectively.

Let us now state our assumptions and present some intro-
ductory results.

B. Assumptions

A very important point in the study of RLS consists in in-
troducing suitable conditions for the data sequence that
can guarantee some form of boundedness of the inverse matrix

(persistency of excitation). Next, we are going to present
two such conditions—each one guaranteeing persistency of the
data—and comment on their specific advantages.

To this end, let us consider the matrix of interest in some
detail. From (5), we have that we can write

(6)

where we define

(7)

Notice that the matrix is the part of influenced by
the data sequence, and therefore, it is the part that needs to be
controlled. If, for , which are two symmetric matrices,
we denote with the case where the difference is
nonnegative definite, we then make the following assumption.
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Assumption A1:There exist time and constant satis-
fying and positive constants such that for
every and every , we have

. The meaning of this condition is that for any realization
of the data and for large enough, the matrix can be
bounded from above and from below uniformly in timeand
in . This form of persistency is common in the literature for
the analysis of RLS [1], [16]. Its main advantage is that it
extremely simplifies most proofs; on the other hand, we can
see that it is not very realistic since the bounds apply to every
realization of the data.

A more reasonable assumption was introduced in [17] and
extensively analyzed in [20]. If denotes the smallest
eigenvalue of a positive definite matrix, denotes the
sample covariance matrix

(8)

and denotes expectation, we then have the following
alternative assumption.

Assumption A1: The data sequence is stationary, and
there exists time and positive constants such that

and . Assumption
A1 , as compared with A1, sets constraints on but only
for a specific time instant ( ) and a specific value of
( ). Furthermore, the constraints involve only moments of
certain quantities and not the actual realizations of the random
matrix , as is the case with A1. In [20], one can find
sufficient conditions, set directly on the data sequence ,
that can guarantee the validity of A1.

Both assumptions assure validity of our results. Unfortu-
nately, the proof of our main theorem under Assumption A1
is very lengthy as compared with the simple proof obtained
with Assumption A1; on the other hand, it is definitely more
elegant and more interesting. A last observation that needs to
be made is that in both assumptions, the data sequence
is regarded as being of the order of a constant. It should be
noted that this is always possible by proper normalization.

Our second and final assumption refers to the additive noise
sequence .

Assumption A2:The additive noise is stationary,
white, zero mean, and independent of the data process
with a variance equal to . We assume additive
white noise only for simplicity. Similar results can be obtained
by considering stationary colored noise independent from the
data. Notice that in A2, the noise is not regarded as being of
the order of a constant, as was the case for the input data,
since we related its power to. This is because we intend to
analyze the performance of RLS under different SNR levels.
According to our definition of size, corresponds to high,

to medium, and to low SNR.

C. Introductory Results

In the next section, our main goal will be to analyze the
convergence properties of the power of the error vector.
Here, we are going to develop the necessary expressions for
the power that will make this analysis possible.

Using (5) and the fact that the additive noise is independent
of the data sequence, we can decompose the error power into
two parts, namely

(9)

where

(10)

trace

(11)

Part is due to the fact that our initial estimate is away
from the true value , whereas part is the result of the
additive noise. The next theorem introduces suitable estimates
for both quantities.

Theorem 1: Let Assumptions A1 (A1) and A2 be valid,
and let be the time defined in A1 (A1); then, there exists
positive constant with such that for any
and any , we have

(12)

(13)

Proof: The proof under Assumption A1 is very simple,
and it is presented in the Appendix. In the Appendix, we also
present the main steps of the proof under Assumption A1; the
complete proof can be found in [19].

Theorem 1 is the starting point for a detailed study of the
two parts of the estimation error power.

III. M AIN RESULTS

Before proceeding with the analysis of the convergence
properties of the error power, let us first introduce our measure
of performance. Notice that when any adaptive algorithm is
used in practice, it is regarded as having converged when its
estimation error power becomes “small.” Moreover, the faster
the error power becomes “small,” the better the algorithm is
considered.

According to our definition of size, a quantity is “small”
when it is of the order of with . Consequently, as
measure of speed of convergence, we propose thesettling time

required by the power to reach the level under the
constraint, of course, that it will remain below this level for
all subsequent time instants. We would like now to stress that
we are only interested in estimating the order of magnitude of
the settling time as a function of and not its exact value.
The last statement allows for an indirect estimate ofby first
estimating the settling times , of the two parts of
the power and then defining as . This
is, of course, possible because, as we said, we are interested
only in the order of magnitude of .

The next two subsections will be devoted to the develop-
ment of the necessary estimates for and for all possible
combinations of initialization and SNR levels.
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(a)

(b)

Fig. 1. Typical form of the two parts of the estimation error power. (a) PartUn. (b) PartVn.

A. Study of Part of the Estimation Error Power

In Fig. 1(a), we plot the estimate for obtained in (12) of
Theorem 1 for different values of the parameter. Notice that
because of the term in the numerator of this estimate,
we have that for , it tends exponentially fast to
zero [this is also indicated by the asymptotically straight lines
in Fig. 1(a)]. Furthermore, by examining the monotonicity
properties of the estimate, we conclude that it is strictly
decreasing for any value of the parameter. This suggests
that its largest value is achieved for , and since this
value is bounded by unity, we have that can at most be of
the order of a constant, i.e., . We now examine the
three initialization cases separately.

Case and : According to our defi-
nition, this case corresponds to a “small” initial value. For

, we have that (where
for simplicity, from now on, we denote by the forgetting
factor ). This means that

(14)

and thus, we conclude that for . In other
words, becomes “small” in, at most, number of steps;
therefore, for , we have .

Case and : For “medium”
initialization values, the situation is different. As we said,

is decreasing in ; thus, to find , it is sufficient to
find the time when becomes of the order of (since it
will remain under this level afterwards). In other words, for
positive constants (without loss of generality, we select

), we like to have

(15)

Solving for yields the inequalities

(16)

Notice now that
, and consequently, we can widen the bounds

in (16) as

(17)

For , if we take logarithms in the above
relation and use the approximation , which
is valid for small , we obtain .

Case and : This corresponds to a
“large” initialization. For any , notice that

, and thus, we can write
. Applying these inequalities in (16), we can widen the two

bounds as

(18)

and by taking logarithms and using the same approximation
as before, we conclude that .

Case and : We consider this case only for
completeness because our estimate is also valid for the unit
forgetting factor. Notice that the only possibility for having
nontrivial initial values is when we select . From (12),
we conclude that

(19)
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In other words, for , the convergence is no longer
exponential but of the form of .

B. Study of Part of the Estimation Error Power

In Fig. 1(b), we have the typical form of the estimate of
, given by (13), for different values of the initialization

parameter . We recall that part is mainly due to the
additive noise and, as we can see from Fig. 1(b), its limiting
value is different from zero. Indeed, from (13), we have that

tends exponentially fast (when ) to a limit that is
of the form of . It is possible to have a better estimate
of this limiting value using the results in [2, p. 107], [4], [5],
or the analysis in [7] and [9]. Specifically, for small, one
can show that can be efficiently approximated by

trace , where .
The analysis of is more involved as compared with

the previous case for two main reasons. First is the variable
behavior of as a function of the parameter[see Fig. 1(b)].
The second reason is that is related to the observation
noise variance , which is parametrized to account for the
different SNR levels. We recall that in A2, we defined the noise
power to be modeling with the high, with

the medium, and with the low SNR case.
Under the above form of noise power, the limiting value

of becomes . If (low SNR), the limit-
ing value of is not “small”; therefore, according to our
definition, this case does not converge (in the sense that the
error power cannot become and remain “small”). This clearly
suggests that we need only estimate the settling timefor
high and medium SNR, whereas for low SNR, we assign to

the value infinity. Let us again consider each initialization
case separately.

Case and : From (13), we have
that there exist positive constant such that

(20)

Notice now that for and , we have
. Applying this to

(20), we can enlarge the bounds as

(21)

or equivalently (since ) that

(22)

Relation (22) suggests that for “small” initialization, is
decreasing in and practically independent of. To find the
settling time , we must distinguish the different SNR levels.

Consider first (high SNR). Since , from
(22), we have that . In other words, , after at
most number of steps, becomes uniformly “small.” Thus,
for , we have .

For (medium SNR), we need to estimate
the first time becomes of the order of . Following a

similar approach as in the case of , we can show that for
, we have .

Case and : By setting
, we can study the monotonicity properties of and since

, we can show that , increasing at first, attains
a maximum value and then decreases monotonically
to its steady state [see Fig. 1(b), ]. We must now
distinguish two cases. If the maximum value is
“small,” i.e., , then is uniformly “small,” and we have
convergence in number of steps. Thus, for ,
we have . If the maximum is not “small,” i.e.,

, then we have to identify the time instant (after the
occurrence of the maximum), where reaches the level ,
and this will be the settling time . To estimate , if we
define , we obtain inequalities involving second-
order polynomials in . By solving these inequalities, we can
show that for , we have .

Case and : For this case, we can
show that is monotonically increasing [see Fig. 1(b)]. Since
for high and medium SNR we have that the steady state value
of is “small,” this suggests that will also be “small”
for all time instants. In other words, for , we
have .

Case and : As we did for , we consider
here the case of unit forgetting factor for . From (13) in
Theorem 1, we obtain

(23)

In other words, the part of the estimation error power due to
the additive noise tends to zero as . Comparing this value
with the corresponding obtained for , we conclude that for
the unit forgetting factor, the estimation error power tends to
zero as and is mainly due to the additive noise and not the
initial conditions. This is in agreement with [10, pp. 576–578].

IV. DISCUSSION OF THERESULTS

In this section, we are going to summarize our results;
furthermore, based on our analysis, we will be able to explain
several characteristics of the algorithm known from practice.
Finally, for every noise level, we are going to propose the
initialization that yields the best possible convergence speed.

Table I contains the estimates of the settling times
of the two parts of the estimation error power. For each settling
time, we also present the range of values offor which the es-
timate is valid. The last column contains the total settling time

required by the error power to reach the
level . Notice that we consider only high and medium SNR
since for low SNR, the settling time is infinite, resulting
also in an infinite total settling time . To be able to compare
the settling times for the different initialization cases, we need
to introduce the following definition.

Definition: An initialization will be preferable to an
initialization if there exists such that the first
initialization has a smaller settling time for all .

In other words, we are interested in values ofthat are
close to zero corresponding to the largest possible “small”
values for the level .
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TABLE I
SETTLING TIMES FOR Un; Vn AND THE TOTAL ESTIMATION ERROR POWER FORDIFFERENT COMBINATIONS OF SNR AND INITIALIZATION VALUES

Using the above definition and focusing on the last column
of Table I, we can summarize our results for the three SNR
levels as follows.

High SNR ( ): From Table I, we have that with
“small” initialization ( ), RLS converges almost instantly
and is basically insensitive to the exact initialization value.
For “medium” initialization, the settling time increases with
increasing initialization. Finally, with “large” initialization,
RLS exhibits the worst possible settling time because we
can show that for .
Consequently, in a high SNR environment, initializing with
a “small” value is definitely the most preferable initialization
since it results in an extremely fast convergence.

Medium SNR ( : For this noise level, the op-
timum speed of the algorithm is significantly reduced as
compared with the previous case. We notice from Table I
that we no longer have any convergence in number of
steps. On the other hand, RLS becomes more insensitive to
the initialization. Notice that for all , corresponding to
the “small” and part of the “medium” initialization values, the
performance of RLS is almost indistinguishable. The settling
time starts to increase significantly only when the initialization
becomes large enough ( ). That this is in fact the
case can be seen by comparing the settling times for values
of in the intersection of the corresponding intervals. For
these values of , we have , which yields

. Finally, for medium SNR, we can
again show that the largest settling time is obtained with
“large” initialization ( ).

Low SNR ( : Although, for this case, the settling
time is infinite, we can still make some important remarks
concerning the performance of RLS. From the analysis of
the previous section, we have seen that partof the error
power can at most be of the order of a constant. On the
other hand, part has a steady-state value that is .
According to our definition (when ), this corresponds
to a “large” value, and therefore, it is significantly larger than

. This suggests that the leading part of the error power
is . In Section IV-B, we have seen that is decreasing
in for “small” initialization, unimodal for “medium,” and
increasing for “large” initialization [see Fig. 1(b)]. Since all

cases converge to the same steady-state value, we conclude
that for low SNR, initialization with a “large” matrix is clearly
preferable.

As a general remark we have that for the most practically
interesting SNR levels (high and medium), RLS achieves its
best performance with “small” initialization. Moreover, the
optimal performance is insensitive to the exact “small” value
used. This characteristics was also observed in practice [21,
p. 476].

Comments:We have seen that for high SNR, if RLS is
initialized with a small matrix, it converges almost instantly.
Although this property might seem “intuitively obvious,” we
must stress that this is not at all the case. Consider for instance
the LMS algorithm and assume that there is no additive
noise (infinite SNR). Even under this ideal condition, the
convergence speed of LMS is exponential and of the form
of . It is easy to verify that with this form of
convergence, the settling time of LMS is of the order of

; in other words, it is comparable to the worst
possible settling time of RLS. Exponential convergence is
common to several known families of adaptive algorithms [8],
suggesting that for all these cases, the corresponding settling
time is again of the order of .

With this last remark in mind, we can definitely say that
the convergence speed of RLS, for high SNR and “small”
initialization, is exceptional. In addition, however, its conver-
gence speed for “small” or “medium” initialization and high or
medium SNR does not follow the common practice of other
algorithms. This is because the corresponding settling time
is of the form of , where , which is, in
order of magnitude, significantly smaller than the settling time

required by other known adaptive algorithms.
In our opinion, this very important property stems from the

fact that RLS is one of the few algorithms that can estimate
exactly in a constant number of steps when there is no
noise. We can see that this is true by considering the estimate

for . If we make the initialization matrix tend
to zero ( ), then for any nonzero forgetting factor,
we obtain [provided the matrix is
nonsingular]. To our knowledge, the only other algorithm
that has this property is the instrumental variables adaptive
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algorithm [22] that satisfies a recursion similar to (2) but uses
in the regression vector, instead of , the instruments . It
is thus expected that the instrumental variables algorithm will
have convergence properties similar to RLS.

Based on our analysis, we can also make a remark about the
tracking capability of the algorithm. RLS, once in steady state,
cannot track abrupt changes in as efficiently as during the
initial transient phase. Indeed, if RLS is in steady state and
there is a sudden change in the vector, then the continued
application of the algorithm corresponds to an initialization
with a “large” initial value (with time 0 being the instant of
change). This is so because, during steady state, the matrix
is of the order of corresponding to a “large” value.
From our analysis, we know that this form of initialization
produces the worst settling time (for medium and high SNR).
Consequently, when we have an abrupt change in the vector

, it is preferable to restart the algorithm, initializing
with a “small” value, than continuing to apply RLS.

The initialization we used in our paper corresponds to the
soft constraint initialization scheme [10], [12], which consists
of adding in the normal least squares criterion the term

. The resulting problem always has a unique
solution given by the recursion in (2), whereas the normal least
squares has an infinite number of solutions for . Our
analysis also applies to the case of exact initialization [11].
This scheme consists in finding the minimum norm solution
of the least squares problem for time . One can show
that the minimum norm solution is a limiting case of the soft
initialization corresponding to and . In other
words, exact initialization corresponds to soft initialization
with a (very) “small” initial value and, therefore, has the
properties of this initialization case.

A last comment we must make is that in [7] and [9], we
can find more efficient estimates of the error power than the
ones introduced here. The key point in deriving these estimates
is the property that two matrices ( ), corresponding to
our , have norms of the order of
a constant. It can be shown that this requirement is met only
when (actually the analysis in [7] and [9] corresponds
to ), which, as we have seen, is the least important
from a practical point of view, as far as transient phase is
concerned.

V. SIMULATIONS

In this section, we perform several simulations to verify the
validity of our theoretical analysis. We consider an FIR system
of length , where the vector is composed of ten
random numbers in the interval . The data process
satisfies , where is a random
ARMA sequence generated by passing white Gaussian noise
through an IIR system with transfer function

(24)

To the output process , we add a zero mean white
Gaussian noise to generate the sequence .

For the initialization of RLS, we consider four values for the
parameter , namely, . The initialization

matrix is selected to be with the variance of ;
moreover, we select and a forgetting factor equal to
0.995. We apply RLS to 100 independent sets of data and for
each time step , we average the resulting squared norm of
the estimation error vector to form an estimate of the error
power at time .

Fig. 2 depicts the performance of RLS for SNR values 40,
10, and 20 dB (corresponding to high, medium, and low
SNR). We notice the exact agreement between simulations
and our theoretical analysis. In particular, in Fig. 2(a) (high
SNR), we observe that for , we also have a very fast
convergence that the settling time increases with decreasing

. In Fig. 2(b) (medium SNR), the performances for
are almost indistinguishable, whereas has

a significantly larger settling time. In Fig. 2(c) (low SNR), we
can see that has an overall better performance, as
was predicted by our analysis.

Finally, in Fig. 3, we can see the performance of RLS
before and after an abrupt change in the vector. As
was explained in Section IV, the convergence speed of the
algorithm is significantly reduced if the algorithm is in steady
state as compared with the corresponding speed during the
initial transient phase. We observe that the simulations support
our remark.

VI. CONCLUSION

We presented a theoretical analysis of the convergence
properties of the RLS algorithm. Specifically, we examined the
dependence of the convergence speed to the initialization of
the sample covariance matrix and the observation noise level.
We proved that RLS, in a high SNR environment, converges
in a finite number of steps if its sample covariance matrix
is initialized with a matrix of “small” norm. The speed of
convergence is decreased as the norm of the initialization
matrix is increased. In a medium SNR environment, the
optimal speed of the algorithm is reduced significantly as
compared with the optimal speed of the previous case, but the
algorithm becomes more insensitive to initialization. Finally,
in a low SNR environment, it is preferable to initialize the
algorithm with a matrix of “large” norm since this yields the
best overall performance. Our analysis has also indicated that
for high and medium SNR levels, the convergence properties
of RLS for “small” or “medium” initialization are exceptional
as compared with the corresponding properties of other com-
monly used adaptive algorithms. In fact, RLS can have an
order of magnitude better convergence speed than most such
algorithms.

APPENDIX

Proof of Theorem 1 under Assumption A1:We will only
show the expression for . Following similar steps, we
can show the corresponding expression for. For the
positive matrix , we have .
Combining (6) and Assumption A1, we conclude that, for
small enough , if we select and
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(a)

(b)

(c)

Fig. 2. Performance of RLS for different initializations. (a) SNR= 40 dB. (b) SNR= 10 dB. (c) SNR= �20 dB.

Fig. 3. Difference in performance of RLS during initial transient phase and after an abrupt change in the vectorW?.

, then

(25)
Applying this expression in (10) yields the desired bounds. In
fact, it is easy to see that we have a much stronger result. The
proposed bounds bound any realization of the squared norm
of the error and not only its expectation (which is the error
power).

Proof of Theorem 1 under Assumption : We will only
highlight the main steps of the proof.

Step 1: We first show that

(26)

In other words, if the sample covariance matrix has
a finite th-order moment for the inverse of its smallest
eigenvalue, then the same property will be true for the matrix

uniformly in time and for any forgetting factor away
from zero.

The proof of this statement follows the same lines of the
corresponding proof in [20] with only some minor modifi-
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cation to include the case of unit forgetting (something that
was not possible with the proof in [20]); for more details, see
[19]. With this step, we have boundedness of the second-order
moments of the inverse of for and any
forgetting factor away from zero.

Step 2: We show that

(27)

This can be easily shown using Minkowski’s inequality.
Because of Assumption A1, we have that the second-order
moment of the smallest and largest eigenvalue of is
bounded uniformly in time and in .

Step 3: Since for any symmetric positive definite matrix
we have , we can conclude from
(6) that

(28)

where are, respectively, the smallest and the largest
eigenvalue of . Applying these inequalities in (10), we find
the following bounds for .

(29)

Step 4: Using Jensen’s inequality, we can show that the
expectation in the lower bound of can be bounded from
below by the expression required by Theorem 1.

Step 5: Using the property that for nonnegative quantities
, we have

(30)

and thus

(31)

We can show that the expectation in the upper bound of
divided by the desired expression can be bounded from above
by a constant. This concludes the proof.
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