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Study of the Transient Phase
of the Forgetting Factor RLS

George V. Moustakides

Abstract—\We investigate the convergence properties of the 6I) than when initialized with a “large” one [10, p. 570], [21,
forgetting factor RLS algorithm in a stationary data environment.  p 476]. The existing analysis cannot distinguish or explain
Using the settling time as our performance measure, we show that in any sense this variable performance; therefore, there is

the algorithm exhibits a variable performance that depends on for further i tioation that trat ificall
the particular combination of the initialization and noise level. room for further investigation that concentrates specitically

Specifica”y when the observation noise level is low (h|gh SNR) on the initialization. A first effort toward this direction is
RLS, when initialized with a matrix of small norm, it has an the statistical analysis of the algorithm for soft and exact

exceptionally fast convergence. Convergence speed decreases 3fitialization [11], [12] but applies only to times < N (where
we increase the norm of the initialization matrix. In a medium N is the size of the estimation vector).

SNR environment, the optimum convergence speed of the algo- In thi K th h studv of th lati
rithm is reduced as compared with the previous case; however, n this paper, we make a thorough study o € relaton

RLS becomes more insensitive to initialization. Finally, in a low between the algorithmic performance and the initialization.
SNR environment, we show that it is preferable to initialize the Specifically, by analyzing the power of the estimation error

algorithm with a matrix of large norm. vector, we show that the convergence properties of the al-
gorithm not only depend on the initialization but also on the
|. INTRODUCTION observation noise level. Furthermore, by using the settling time

. . s our performance measure, we prove that the well known
HE RECURSIVE least squares (RLS) algorithm is one aFrom practice) rule of initialization with a “small” matrix is

d thetmost_(;/vell_—flfnot\./vn all?orlthmsl, uied- n adg;l)tl\ae f'ltfr'r.]t referable for cases of high and medium SNR, whereas for
a)r: S>t/is r?rrlll |fent| IC?“IIOI:. nS popu a(r; ywlﬁi T]ai'n y nuied cr) Id w SNR, a “large” matrix must be selected for best results.
exceptionally fast convergence speed, ch 1S considere he paper is organized as follows. Section Il contains

ge (_)pt(ljmal '? ?ract[{(r:]e anld a?ﬂ? measure for comparison (E}H definition of the problem and certain background results.
esired goal) for other algorithms. Section 11l contains our study of the estimation error power

Due to its nonlinear nature, the exact theoretical analyse{ﬁd estimates of the settling time. In Section IV, we summarize

of RLS .tur.ns ou.t to be rather cpmphcated. This analy_tlgur results. Simulations are presented in Section V, and finally,
complexity is particularly apparent in the case of the forgettmgection VI contains the conclusion

factor RLS, which is the most commonly used version of the

algorithm. There exists an extensive literature addressing the
problem of convergence of RLS under a stationary environ-

ment and its performance at steady state [1], [3], [5], [6], [17]. Let us consider the linear system

Recent publications, on the other hand, tend to focus mainly ot

on the tracking properties of the algorithm [7], [9], [13]-[15], Un = X Wi+ wn nz0 (1)

[20]. where
Although the performance of RLS, in a stationary envi- . .
ronmentgand duFr)in the transient phase, is conside)ied Well{y"} measurable scalar pbservanon sequence;
9 P ' X, } measurable vector input data sequence;

studied and well understood, there exist certain observations{w } additive observation noise:

coming from practice, that cannot be adequately explalnedW* unknown deterministic time invariant vector.

with the existing theory. We refer specifically to the variable . . . .
performance of the algorithm as a function of the initializatioE}VRLS. Is the well known "?"go”thm that recursively estimates
. with the set of equations

of the (exponentially weighted) sample covariance matrix, *
which is recursively updated in the algorithm. RLS is known R,=(1-pR,_; +X,X!
to exhibit a significantly faster convergence when initialized n =1yn — XL W,_,

with a “small” positive definite matrix (usually of the form of e

Il. BACKGROUND

Wn = Wn—l + 6nR;1Xn (2)
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In fact, RLS computes recursivell?,, = R, 1 10, p. 569], “small” or “large” by comparing it withy.. From the analysis
thus avoiding the direct inversion of the matd¥, at every that follows, it turns out that we need to distinguish three
time n. However, since we are only concerned with convesizes for our variables. Specifically, if a variallg:) satisfies
gence, we are going to assume infinite precision; thus, (2)d§:) = ©(n®), then a(n) will be characterized as being
equivalent to the usual RLS in the sense that both algorithrisnall” if « > 0, “medium” if 0 > « > -1, and “large”
yield the same estimates. if —1 > «. Moreover, notice that for small enough we
Let us now obtain a form of the algorithm that is mordave ©(u*) < ©(p?) whena > 3.
suitable for our analysis. By introducing the estimation error Let us now apply the above definition to the initialization

vector A, = W,, — W, and using (1), we have of RLS. Consider first the vectdi/y. As we said, the most
_ . common selection for this quantity &y = 0, corresponding
R, =(1- “)13"—1 + XX, to Ag = —W,, which is a value of the order of a constant,
€n =wp — XAy i.e., a©(1) vector. More generally, we are going to assume
Ap =0 1 + e RPX,. (3) Ay = A with A =6(1) an arbitrary deterministic vector. For
) o _ the initialization of R,,, on the other hand, we will consider
Finally, defining&,, = R,A,, we obtain Ry = pu*R with R = ©(1) an arbitrary deterministic positive
R.=(1-pRu_1+ X, X!, definite matrix. According to our definitiom, > 0 corresponds

to a “small” initial value,0 > « > —1 to a “medium,” and
En _(1__1 PEn—1 +un Xy —1 > « to a “large” one.
An =R, & (4)  Combining the two initialization parts, we have that the

Based on this set of equations, we are going to examine &%’nplete form of RLS is

convergence properties of the estimation error vegtgr

R,=(1-pR, 1 +X,X/, n>1 Ro=u"R
A. Initialization of the RLS Algorithm En =1 = p)&n—1 +wpn Xy, n>1,E =p*€
As was mentioned before, our main objective is to find An IREI&L ©)

the relation between convergence speed and initialization.

Consequently, let us first identify the points of the algorithmith £ = RA and R, £ are a©(1) matrix and vector,
that require initialization. From (2), we can see th} and respectively.

R, are the only two quantities that must be initialized. The Let us now state our assumptions and present some intro-
vector Wy is commonly selected to be zero, whereas thfuctory results.

matrix Ry is selected to have the formR, = 61, with I

the identity matrix andé a positive scalar. Regarding theB_ Assumptions

selection of the parametér, there exist diverse suggestions
in the literature. For example, in [10, p. 570] and [21, p. A very important point in the study of RLS consists in in-
476], based on observation from practice, a “small” value {§oducing suitable conditions for the data sequef& } that
proposed. On the other hand, in theoretical studies [6], man guarantee some form of boundedness of the inverse matrix
[9], the assumption of a “large” value is more common. ' (persistency of excitation). Next, we are going to present
turns out that the convergence properties of the algoritHi#fO such conditions—each one guaranteeing persistency of the
differ significantly, depending on the value &being “small” data—and comment on their specific advantages.

or “|arge_” Furthermore’ the same value &)fapp“ed to the To this end, let us consider the matrix of interest in some
same set of data can produce an entirely different performan@gtail. From (5), we have that we can write

depending on the value gf we use. This suggests that the B

notion pf thg size of this quantity (“small” or “large”) cgnnot R, = (1 - p)"R+ 1-(1—p) Q.(1—p) (6

be defined in absolute terms but must be related, in some

sense, to the parametgr It is exactly this relation we wish

to define next. where we define
Let us first introduce some definitions. H(z) is a matrix
function andf(z) a nonnegative scalar function efwith z zn:V"—jX'Xt»
taking values in some set., we then say that — I
« F(z) = ©(f) when there exist constants, c,, indepen- Q,(v)="—F—. ()
dent of z, such thatc; f(z) < ||F(2)|| < c2 f(2) for all Z,,n—j
z € A j=1
* F(z) = O(f) when there exists constaat independent
of z, such thatl|F'(z)|| < ¢ f(z) for all z € A_; Notice that the matrixQ, (») is the part ofR,, influenced by
and where the norm of a matri¥’ is defined as||F'|| = the data sequence, and therefore, it is the part that needs to be
(trace{F"'F})'/2. controlled. If, for A, B, which are two symmetric matrices,

In our analysis, we will mainly concentrate on cases whevee denote withB < A the case where the differende— B is
1 € [0, po] with o < 1. We can then distinguish a variable amonnegative definite, we then make the following assumption.
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Assumption Al:There exist timen, and constanty, satis- Using (5) and the fact that the additive noise is independent
fying 0 < vy < 1 and positive constants;, ¢; such that for of the data sequence, we can decompose the error power into
everyn > ng and everyr € [ 1], we havee, I < @, (v) < two parts, namely
coI. The meaning of this condition is that for any realization .
of the data and for large enough the matrix@, (») can be B{AAn} = Un +Va ©)
bounded from above and from below uniformly in timeand
in v. This form of persistency is common in the literature for
the analysis of RLS [1], [16]. Its main advantage is that it U, =u?*(1 — p)*"E'E{R; %} (10)
extremely simplifies most proofs; on the other hand, we can n
see that it is not very realistic since the bounds apply to everyy, — ;2 ptracel R;;! Z (1- N)Q("_j)XjX; R!

j=1

ere

realization of the data.

A more reasonable assumption was introduced in [17] and (11)
extensively analyzed in [20]. k,;,{A} denotes the smallest
eigenvalue of a positive definite matrik, Q,,(1) denotes the Partl, is due to the fact that our initial estimakg, is away

sample covariance matrix from the true valudV,, whereas part/,, is the result of the
n additive noise. The next theorem introduces suitable estimates
Q. (1) = 1 Z X; X]t, (8) for both quantities.
nia Theorem 1: Let Assumptions Al (A9 and A2 be valid,

) _and letng be the time defined in Al (A); then, there exists
and E{-} denotes expectation, we then have the f°"°W'”Eositive constantio with 0 < 110 < 1 such that for any, > 7

alternative assumption. and anyy € [0, po], we have
Assumption A1 The data sequendeX,, } is stationary, and ’

there exists timeny and positive constants;, c, such that _@< p2et(1 — ) ) (12)
E{QZAQ,, (D} < 1 and E{|| X1][*} < co. Assumption PO\ (= ) A1 - (1 - )2

Al’, as compared with Al, sets constraints@y(») but only y 1—(1—p)"

for a specific time instant«( = no) and a specific value of Va I%@<N e 1= 11— (1= M)"P)' (13)

(v = 1). Furthermore, the constraints involve only moments of
certain quantities and not the actual realizations of the random Proof: The proof under Assumption Al is very simple,
matrix @, (v), as is the case with Al. In [20], one can fincand it is presented in the Appendix. In the Appendix, we also
sufficient conditions, set directly on the data sequepkg}, Present the main steps of the proof under Assumptioh thi
that can guarantee the validity of Al complete proof can be found in [19]. u

Both assumptions assure validity of our results. Unfortu- Theorem 1 is the starting point for a detailed study of the
nately, the proof of our main theorem under Assumptiori AIwo partsU,, V,, of the estimation error power.
is very lengthy as compared with the simple proof obtained
with Assumption Al; on the other hand, it is definitely more . MAIN RESULTS
elegant and more interesting. A last observation that needs t
be made is that in both assumptions, the data sequigkicé
is regarded as being of the order of a constant. It should
noted that this is always possible by proper normalization.

Our second and final assumption refers to the additive no
sequence{w, }.

Assumption A2:The additive noise{w,} is stationary,
white, zero mean, and independent of the data pro{&ss
with a variance equal te2 = o2?u”. We assume additive
white noise only for simplicity. Similar results can be obtaineg
by considering stationary colored noise independent from t
data. Notice that in A2, the noise is not regarded as being

the order of a cqnstant, as was the case for the- input dae{ﬂ’subsequent time instants. We would like now to stress that

since we related its power f. This is bec:?luse we intend ©ye are only interested in estimating the order of magnitude of

analyze_ the perform_anpe of R.LS under different SNR _Ievelr%e settling timen A as a function of. and not its exact value.

According to our deflmtlon of sizy > 0 corresponds to high, The last statement allows for an indirect estimate gfby first

02 p>—1tomedium, and-1 2> p to low SNR. estimating the settling times;, ny of the two partd/,,, V,, of

the power and then definingy asna = max {ng, ny }. This

is, of course, possible because, as we said, we are interested
In the next section, our main goal will be to analyze thenly in the order of magnitude afx.

convergence properties of the power of the error vegtgr The next two subsections will be devoted to the develop-

Here, we are going to develop the necessary expressionsrfant of the necessary estimatesfigr andny- for all possible

the power that will make this analysis possible. combinations of initialization and SNR levels.

Before proceeding with the analysis of the convergence
roperties of the error power, let us first introduce our measure
performance. Notice that when any adaptive algorithm is
used in practice, it is regarded as having converged when its
BStimation error power becomes “small.” Moreover, the faster
the error power becomes “small,” the better the algorithm is
considered.
According to our definition of size, a quantity is “small”
hen it is of the order of.* with ¢ > 0. Consequently, as
easure of speed of convergence, we proposedtikng time
< required by the power to reach the leyel under the
nstraint, of course, that it will remain below this level for

C. Introductory Results
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Fig. 1. Typical form of the two parts of the estimation error power. (a) Part (b) PartV,.

A. Study of Part/,, of the Estimation Error Power Solving for v yields the inequalities
In Fig. 1(a), we plot the estimate fdf,, obtained in (12) of e ps/ 2 (etD)
Theorem 1 for different valqes of the paramecterN.otice_that L — e /2 + ¢y pe/2—(atD)
because of the terifi —)?" in the numerator of this estimate, e/2—(a+1)
we have that for0 < p < 1, it tends exponentially fast to <P <L cf//“; Ry (16)
zero [this is also indicated by the asymptotically straight lines 1= eap/= + cap

in Fig. 1(a)]. Furthermore, by examining the monotonicity|gtice now thatl — c4cpc/2=0=1 < 1—ep/? deps/2—o—1 <
properties of the estimate, we conclude that it is strictly | /2=~ and consequently, we can widen the bounds
decreasing for any value of the parameterThis suggests j, (16) as

that its largest value is achieved far = 1, and since this

value is bounded by unity, we have that can at most be of _1;12 <Yt L T ! . @17
the order of a constant, i.e/,, = O(1). We now examine the 1 +¢1 pti=< 14+ 22 jat+i-g2
three initialization cases separately. €2

Casea > 0and0 <y < po < 1 According to our defi- For 0 < ¢ < 2(a + 1), if we take logarithms in the above
nition, this case corresponds to a “small” initial value. Fofelation and use the approximatitug (1+x) = ©(x), which
n > 1, we have that — v" = p(1+4--- +v"71) > pu (where s valid for smallz, we obtainng = ©(u*~</2).
for simplicity, from now on, we denote by the forgetting Case—1 > aand0 < p < pp < 1: This corresponds to a

factor 1 — p). This means that “large” initialization. For anye > 0, notice thatu/?~(*+1) «

petLym potin 1<%, and thus, we can write—c < 1—cp/ 2 4-cp/?=(@+) <
petlyn 41—y < 1 Sp (14) 1. Applying these inequalities in (16), we can widen the two
bounds as
and thus, we conclude thaf, < cu?* for n > ng. In other ¢
words, U,, becomes “small” in, at mosk, number of steps; cop/?mrD) <o < 2 /2 (et (18)
1-— Co
therefore, fore < 2, we haveny = ©(1).

Case0 > a > —1and0< u < pup < 1: For “medium” and by taking logarithms and using the same approximation
initialization values, the situation is different. As we saidas before, we conclude that, = ©(log (1 1)/1).
U, is decreasing im; thus, to findny, it is sufficient to ~ Casea =0 andu =0: We consider this case only for
find the time whenl/,, becomes of the order qf¢ (since it Ccompleteness because our estimate is also valid for the unit
will remain under this level afterwards). In other words, foforgetting factor. Notice that the only possibility for having
positive constants;, ¢, (without loss of generality, we selectnontrivial initial values is when we seleot = 0. From (12),
0< e <c < 1), we like to have we conclude that

2(a+1),,2ny 1
¢ H v ¢ U, = @(—). 19
cpt < (ua-l-ll/nu +1- VnU)Q < oo (15) n2 ( )
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In other words, fory, = 0, the convergence is no longersimilar approach as in the case @f,, we can show that for

exponential but of the form of /n2.

B. Study of Part/,, of the Estimation Error Power

In Fig. 1(b), we have the typical form of the estimate of <H
V.., given by (13), for different values of the initialization

parametera. We recall that partV,, is mainly due to the

additive noise and, as we can see from Fig. 1(b), its limitin
value is different from zero. Indeed, from (13), we have tha

V,. tends exponentially fast (when> ;. > 0) to a limit that is

of the form ofo2,©(). It is possible to have a better estimat
of this limiting value using the results in [2, p. 107], [4], [5],”

or the analysis in [7] and [9]. Specifically, for smal| one

can show thatim,, .., V,, can be efficiently approximated by

po? trace{ Ry}, whereRxy = E{X, X!}.
The analysis ofV,, is more involved as compared wit

the previous case for two main reasons. First is the variatﬁ@ow that ford < ¢ <1+ p,

behavior ofV,, as a function of the parameterfsee Fig. 1(b)].

The second reason is th&f, is related to the observation
noise variances2,, which is parametrized to account for th
different SNR levels. We recall that in A2, we defined the noi

power to bes? = o2;” modeling withp > 0 the high, with
0 > p > —1 the medium, and witk-1 > p the low SNR case.

Under the above form of noise power, the limiting valu

of V,, becomesO(p#1). If —1 > p (low SNR), the limit-

ing value of V,, is not “small”; therefore, according to our
definition, this case does not converge (in the sense that the
error power cannot become and remain “small”). This clearly

suggests that we need only estimate the settling timefor

high and medium SNR, whereas for low SNR, we assign
ny the value infinity. Let us again consider each initializatioul

case separately.
Casea > 0and0 < 4 < pg < 1: From (13), we have
that there exist positive constant, ¢ such that
11—
potlyn 41— pn)2
11—

(uetiym +1—pn)2°

c1ol (

< Va < CQO—VLQUN

(20)

Notice now that forx > 0 andrn > 1, we haved < pot+ip" <
pett < p < p(l4 -4+ =1 — v Applying this to
(20), we can enlarge the bounds as

2 M I

L— <V, < A — 21
A% 41 -vm) — Vo S €20y (1-vm) (21)
or equivalently (sincer?, = o2u”) that
p+1
Vn:a,i’U@( ad ):@(“ ) (22)
1—m 1—vm

Relation (22) suggests that for “small” initializatiofy;, is
decreasing im and practically independent af. To find the

e haveny

0 < e < (1+p), we haveny = O(ur—).

Case0 > a > —land0 < p < po < 1: By setting =
V™, we can study the monotonicity propertiesigf and since
o+l < 1, we can show that,,, increasing at first, attains
a maximum value(p#~) and then decreases monotonically
to its steady state [see Fig. 1(k), = —0.5]. We must now

I_%stinguish two cases. If the maximum val@(p ~<) is

mall,” i.e., p > «, thenV,, is uniformly “small,” and we have
convergence img number of steps. Thus, for< ¢ < p — «,
©(1). If the maximum is not “small,” i.e.,
< «, then we have to identify the time instant (after the
occurrence of the maximum), whelg, reaches the levels,
and this will be the settling timey . To estimateny, if we
definez = 1 — »™, we obtain inequalities involving second-

horder polynomials inc. By solving these inequalities, we can

we haveny = O(uf~°).
Case—12> aand0 <y < po < 1. For this case, we can
show thatV;, is monotonically increasing [see Fig. 1(b)]. Since

E'for high and medium SNR we have that the steady state value

V,. is “small,” this suggests thak,, will also be “small”
for all time instants. In other words, fdr < ¢ < 1 + p, we
haveny = 6(1).

Casea =0andyu =0: As we did for U,, we consider

%ere the case of unit forgetting factor fof,. From (13) in

Theorem 1, we obtain

)

In other words, the part of the estimation error power due to
[Re additive noise tends to zero B Comparing this value
ith the corresponding obtained féf,, we conclude that for
the unit forgetting factor, the estimation error power tends to
zero asl/n and is mainly due to the additive noise and not the
initial conditions. This is in agreement with [10, pp. 576-578].

(23)

IV. DISCUSSION OF THERESULTS

In this section, we are going to summarize our results;
furthermore, based on our analysis, we will be able to explain
several characteristics of the algorithm known from practice.
Finally, for every noise level, we are going to propose the
initialization that yields the best possible convergence speed.

Table | contains the estimates of the settling times ny
of the two parts of the estimation error power. For each settling
time, we also present the range of values @r which the es-
timate is valid. The last column contains the total settling time
na = max{ny, ny } required by the error power to reach the
level 1. Notice that we consider only high and medium SNR
since for low SNR, the settling timey- is infinite, resulting
also in an infinite total settling time. To be able to compare
the settling times for the different initialization cases, we need

settling timeny-, we must distinguish the different SNR levelsto introduce the following definition.

Consider firstp > 0 (high SNR). Sincel — v™ > p, from
(22), we have that,, < ¢p”. In other words,V,,, after at

Definition: An initialization «; will be preferable to an
initialization «» if there existsey > 0 such that the first

mostno number of steps, becomes uniformly “small.” Thusinitialization has a smaller settling time for alle (0, ¢o).

for 0 < € < p, we haveny = 6(1).

In other words, we are interested in valuescofhat are

For 0 > p > —1 (medium SNR), we need to estimateclose to zero corresponding to the largest possible “small”

the first timeV,, becomes of the order gf¢. Following a

values for the level.©.
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SETTLING TIMES FOR U,,, V5, AND THE TOTAL ESTIMATION ERRORTPAovaEE FIOR DIFFERENT COMBINATIONS OF SNR AND INITIALIZATION VALUES
« ny || ny ” na = max{ny,nv}
High SNR (p > 0)
a>0 o(1) 0<e<2a o) 0<e<p (1) 0 < € < min{2a, p}
0>a>-1{0w*?) 0<e<2(1+a)|OQ1) O<e<p—all@E*?) 0<e<min{2(l+a)p—a}
1>a O(EL")) p<e . O1) 0<e<l+p|O L)) 0<e<14p

Medium SNR (0 > p > —1)

a>0 o(1) 0<e< 2 O 0<e<l+p i@ 0 < € < min{2a,1 + p}

0>a>p [[O@*/?) 0<e<2(l4a)||OW ) 0<e<l+p|Ou) 0 < e < min{2(1 + a),1+ p}

p>a>-1{0w*/?) 0<e<2(1+a)|6Q) 0<e<p—allO@E*?) 0<e<min{2(l+a),p—a}
1>a O(EET)) g < e O(1) 0<e<l+p||0( L)) 0<e<lty

Using the above definition and focusing on the last colungases converge to the same steady-state value, we conclude
of Table I, we can summarize our results for the three SNRat for low SNR, initialization with a “large” matrix is clearly
levels as follows. preferable.

High SNR p > 0): From Table I, we have that with As a general remark we have that for the most practically
“small” initialization (o > 0), RLS converges almost instantlyinteresting SNR levels (high and medium), RLS achieves its
and is basically insensitive to the exact initialization valudest performance with “small” initialization. Moreover, the
For “medium” initialization, the settling time increases withoptimal performance is insensitive to the exact “small” value
increasing initialization. Finally, with “large” initialization, used. This characteristics was also observed in practice [21,
RLS exhibits the worst possible settling time because vpe 476].
can show tha® (log (=) /p) > ©(p=%) for 0 < 8 < 1. Comments:We have seen that for high SNR, if RLS is
Consequently, in a high SNR environment, initializing withnitialized with a small matrix, it converges almost instantly.
a “small” value is definitely the most preferable initializatiorAlthough this property might seem “intuitively obvious,” we
since it results in an extremely fast convergence. must stress that this is not at all the case. Consider for instance

Medium SNR{ > p > —1: For this noise level, the op-the LMS algorithm and assume that there is no additive
timum speed of the algorithm is significantly reduced amoise (infinite SNR). Even under this ideal condition, the
compared with the previous case. We notice from Tablecbnvergence speed of LMS is exponential and of the form
that we no longer have any convergencedifil) number of of (1 — ue)™. It is easy to verify that with this form of
steps. On the other hand, RLS becomes more insensitivectmvergence, the settling time of LMS is of the order of
the initialization. Notice that for alt > p, corresponding to © (log (1=1)/u); in other words, it is comparable to the worst
the “small” and part of the “medium” initialization values, thepossible settling time of RLS. Exponential convergence is
performance of RLS is almost indistinguishable. The settlimgpmmon to several known families of adaptive algorithms [8],
time starts to increase significantly only when the initializatiosuggesting that for all these cases, the corresponding settling
becomes large enoughp (> «). That this is in fact the time is again of the order o® (log (1 ~1)/p).
case can be seen by comparing the settling times for value®Vith this last remark in mind, we can definitely say that
of e in the intersection of the corresponding intervals. Fahe convergence speed of RLS, for high SNR and “small”
these values ot, we havea — ¢/2 < p — ¢, which yields initialization, is exceptional. In addition, however, its conver-
O(u*=/?) > O(pr~). Finally, for medium SNR, we can gence speed for “small” or “medium” initialization and high or
again show that the largest settling time is obtained withedium SNR does not follow the common practice of other
“large” initialization (-1 > «). algorithms. This is because the corresponding settling time

Low SNR £1 > p: Although, for this case, the settlingis of the form of ©(;;=#), wherel > 8 > 0, which is, in
time is infinite, we can still make some important remarksrder of magnitude, significantly smaller than the settling time
concerning the performance of RLS. From the analysis 6f(log (x~1)/u) required by other known adaptive algorithms.
the previous section, we have seen that pgrtof the error In our opinion, this very important property stems from the
power can at most be of the order of a constant. On tifect that RLS is one of the few algorithms that can estimate
other hand, part;,, has a steady-state value thatd$;.'*7). exactly W, in a constant number of steps when there is no
According to our definition (wher-1 > p), this corresponds noise. We can see that this is true by considering the estimate
to a “large” value, and therefore, it is significantly larger thabV,, for n > N. If we make the initialization matrix tend
U,,. This suggests that the leading part of the error powtr zero (¢t — o), then for any nonzero forgetting factor,
is V,,. In Section IV-B, we have seen thdt, is decreasing we obtain W,, = W, [provided the matrix@,(1 — p) is
in n for “small” initialization, unimodal for “medium,” and nonsingular]. To our knowledge, the only other algorithm
increasing for “large” initialization [see Fig. 1(b)]. Since allthat has this property is the instrumental variables adaptive
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algorithm [22] that satisfies a recursion similar to (2) but usesatrix R is selected to be2I with o2 the variance ofr,,;
in the regression vector, instead &f,, the instrumentsZ,,. It moreover, we seledtV, = 0 and a forgetting factor equal to
is thus expected that the instrumental variables algorithm will995. We apply RLS to 100 independent sets of data and for
have convergence properties similar to RLS. each time step:, we average the resulting squared norm of
Based on our analysis, we can also make a remark about tine estimation error vector to form an estimate of the error
tracking capability of the algorithm. RLS, once in steady statppwer at timen.
cannot track abrupt changesi, as efficiently as during the Fig. 2 depicts the performance of RLS for SNR values 40,
initial transient phase. Indeed, if RLS is in steady state ai, and—-20 dB (corresponding to high, medium, and low
there is a sudden change in the vedfidy, then the continued SNR). We notice the exact agreement between simulations
application of the algorithm corresponds to an initializatioand our theoretical analysis. In particular, in Fig. 2(a) (high
with a “large” initial value (with time O being the instant of SNR), we observe that far = 1, we also have a very fast
change). This is so because, during steady state, the nigfrix convergence that the settling time increases with decreasing
is of the order of©(x~!) corresponding to a “large” value. «. In Fig. 2(b) (medium SNR), the performances for=
From our analysis, we know that this form of initializationl, 0, —0.5 are almost indistinguishable, whereas= —1 has
produces the worst settling time (for medium and high SNRA.significantly larger settling time. In Fig. 2(c) (low SNR), we

Consequently, when we have an abrupt change in the veatan see thatv = —1 has an overall better performance, as
W.,, it is preferable to restart the algorithm, initializilg, was predicted by our analysis.
with a “small” value, than continuing to apply RLS. Finally, in Fig. 3, we can see the performance of RLS

The initialization we used in our paper corresponds to thmefore and after an abrupt change in the vedidr. As
soft constraint initialization scheme [10], [12], which consist&/as explained in Section 1V, the convergence speed of the
of adding in the normal least squares criterion the tétrs-  algorithm is significantly reduced if the algorithm is in steady
w)"p*WERW,,. The resulting problem always has a uniquetate as compared with the corresponding speed during the
solution given by the recursion in (2), whereas the normal leasttial transient phase. We observe that the simulations support
squares has an infinite number of solutions fok. V. Our our remark.
analysis also applies to the case of exact initialization [11].
This scheme consists in finding the minimum norm solution
of the least squares problem for time< N. One can show VI. CONCLUSION
that the minimum norm solution is a limiting case of the soft
initialization corresponding t®R = I and o« — oo. In other
words, exact initialization corresponds to soft initializati
with a (very) “small” initial value and, therefore, has th
properties of this initialization case.

A last comment we must make is that in [7] and [9], w

We presented a theoretical analysis of the convergence
Or;?roperties of the RLS algorithm. Specifically, we examined the
edependence of the convergence speed to the initialization of
the sample covariance matrix and the observation noise level.
éNe proved that RLS, in a high SNR environment, converges

can find more efficient estimates of the error power than tt ?‘_{.'”I'Fe (r;umtt;]er of s:e_ps ]'f “'ts si"mple cmﬁnance rgat?x
ones introduced here. The key point in deriving these estimatagn'tialized with a matrix of “small" norm. -1he speed o

is the property that two matrices’, Py, corresponding to convergence is decreased as the norm of the initialization
b VAl . . . . -

our /flR;l, /fl(E{Rn})_l. have norms of the order Ofma_trlx is increased. In a rnedm_m SNR env_lronment, the

2t|mal speed of the algorithm is reduced significantly as

a constant. It can be shown that this requirement is met ol d with th imal d of th . but th
when—1 > « (actually the analysis in [7] and [9] correspond§ mpared with the optimal speed of the preévious case, but the

to o = —1), which, as we have seen, is the least importaﬁ{gorithm becomes more insensitive to initialization. Finally,
from a pra(,:tical pé)int of view. as far, as transient phase I% a low SNR environment, it is preferable to initialize the
' algorithm with a matrix of “large” norm since this yields the

concerned. . g
best overall performance. Our analysis has also indicated that

for high and medium SNR levels, the convergence properties
) ) ) _ ~of RLS for “small” or “medium” initialization are exceptional
In this section, we perform several simulations to verify thgs compared with the corresponding properties of other com-

of length V' = 10, where the vecto#V, is composed of ten grder of magnitude better convergence speed than most such
random numbers in the interviat 1, 1]. The data procesis\,.}  algorithms.

satisfiesX,, = [zn2p—_1 " Tp—o]', Where{z,} is a random
ARMA sequence generated by passing white Gaussian noise
through an IIR system with transfer function

142271 43272 - i
— — —- (24) Proof of Theorem 1 under Assumption Ave will only
(111314271 +0.64272)(1 +0.9274) show the expression fot/,. Following similar steps, we
To the output proces$V'X,, we add a zero mean whitecan show the corresponding expression fdr. For the
Gaussian nois¢w, } to generate the sequen¢g, }. positive matrix R, we have \nin(R)I < R < Apax(R)1.
For the initialization of RLS, we consider four values for th€ombining (6) and Assumption Al, we conclude that, for
parametery, namely,a = 1, 0, —0.5, —1. The initialization small enoughy, if we selectd = min{c;, Amin(R)} and

V. SIMULATIONS

APPENDIX

H(z) =
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Fig. 3. Difference in performance of RLS during initial transient phase and after an abrupt change in théWector

¢’ = max{ca, Amax(R)}, then Step 1: We first show that
i an 1=0" il o n L1=1" s 2¢ s
clp v + I < R, <c¢ wove+ L I sup E{)\min[Qn(V)]} < m E{)‘mm[Qk(l)]}I (26)
n>k
(25) -

Applying this expression in (10) yields the desired bounds. In other words, if the sample covariance maté} (1) has
fact, it is easy to see that we have a much stronger result. Thdinite sth-order moment for the inverse of its smallest
proposed bounds bound any realization of the squared noeigenvalue, then the same property will be true for the matrix
of the error and not only its expectation (which is the err@@, (+) uniformly in time and for any forgetting factor away
power). from zero.

Proof of Theorem 1 under Assumptigii’: We will only The proof of this statement follows the same lines of the
highlight the main steps of the proof. corresponding proof in [20] with only some minor modifi-
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LT <omaxd 2, 2 (30)
b1 + b2 b1’ bo
and thus
2 2 2
a1 + as < ai az
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ai 2 a9 2
S(b—l> +<b—2> . (32)

We can show that the expectation in the upper bound/,of
divided by the desired expression can be bounded from abc
by a constant. This concludes the proof. [ |




