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SUMMARY

We introduce a novel methodology for analysing well known classes of adaptive algorithms. Combining
recent developments concerning geometric ergodicity of stationary Markov processes and long existing
results from the theory of Perturbations of Linear Operators we first study the behaviour and convergence
properties of a class of products of random matrices, this is turn allows for the analysis of the first and second
order statistics of adaptive algorithms without the need of any restrictive conditions imposed on the data (as
essential boundedness). Efficient estimates of the convergence rate of adaptive algorithms during the initial
transient phase are also presented. These estimates do not rely on the unrealistic Independence Assumption
as it is commonly the case in existing literature. ( 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive algorithms are used in many application areas such as filtering, control, communica-
tions, biomedical signals processing, etc. Their widespread use in mainly due to their ability to
adapt in unknown and changing environments. This practically important characteristics has led
to the development of a considerable number of adaptive algorithms each with its own merits and
drawbacks.



The literature dealing with the analysis of adaptive algorithms is substancial and the corres-
ponding approaches can be divided into two main categories, namely the Deterministic and the
Stochastic. As far as the Stochastic approach is concerned most important results are based on the
Stochastic Approximation theory which was introduced by Ljung with the ODE method1 and
consequently refined in a number of publications.2~10 These publications primarily focus on the
steady state behaviour and asymptotic stability of adaptive algorithms. Recently however there
has been a considerable effort to extent the existing theory to also cover transient phenomena for
specific algorithms or commonly used algorithmic classes.11~17

In order to be more specific let us introduce the problem of interest and the class of algorithms
we like to study. Consider the following regression model:
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n
the desired output, w
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the additive noise and ¼
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varying vector that we like to estimate at every time step n. For simplicity we are going to
consider only the scalar case, therefore y
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are vectors of length N.

A rich class of algorithms used to estimate ¼
n

can be defined by the following general
recursion:
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where ¼K
n
is the estimate of ¼

n
at time n, Z

n
is a vector of length N known as gain or regression

vector and k is a positive scalar known as step size. By proper selection of the vector Z
n
one can

obtain most well known adaptive algorithms used in practice. Examples are the LMS, Nor-
malized LMS, Signed Regressor LMS, RLS, Kalman filter based algorithms, Newton type
algorithms, etc.

A common characteristic encountered in all algorithms covered by the model in (2) is that their
analysis can be reduced to the analysis of a certain product of random matrices. Existing results
attempt to describe the behaviour of the statistics of such products and establish some form of
exponential convergence. However, these publications base their analysis on very stringent
conditions resulting in the exclusion of common combinations of algorithms and data types.
Characteristic example is Condition i. in Theorem 3.2 in Reference 12 which is not valid even for
LMS and Gaussian i.i.d. data. In fact, a publication appeared very recently,15 by the same
authors, focusing exclusively on LMS and introducing conditions that allow for Gaussian data.
Unfortunately even this new set of conditions is not satisfied by common data types. Specifically if
the input data are i.i.d. and polynomial transformations of Gaussian random variables then
Condition (6) in Reference 15 fails. This of course suggests that even for the simple case of LMS
the conditions imposed in Reference 15 continue to be restrictive. It should be noted however that
for the special cases of RLS and Kalman Filter algorithms these stringent conditions can be
significantly relaxed.11,13,14 Furthermore in Reference 15, Remark 3, it is mentioned that for
general algorithms it is possible to relax these stringent conditions when one is limited to the
stationary case.

In this paper we primarily focus on products of random matrices appearing in the analysis of
the adaptive algorithms defined by (2). More specifically we propose a novel approach for
studying the behaviour of these products that leads to efficient estimates of their performance.
Our methodology is based on a proper combination of the theory of Markov processes18
(specifically results concerning geometric ergodicity) and the theory of Perturbations of Linear
Operators in Banach spaces.19 The results we develop constitute our main tool for analyzing the
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first and second order statistics of the estimate ¼K
n
of the adaptive algorithms in (2). It is worth

noting that our analysis also yields efficient estimates for the convergence rate of the adaptive
algorithms during the initial transient phase without making use of any unrealistic assumptions
(as the Independence Assumption). Furthermore, as far as LMS is concerned, our results are
applicable to data that can be ANY polynomial (and even exponential) transformation of
Gaussian random variables.

2. ANALYSIS OF PRODUCTS OF RANDOM MATRICES

As was stated in the Introduction, our primary concern in the study of the behaviour of products
of a specific class of random matrices. The matrices we like to consider will be comprised of
elements that are memoryless non-linear transformations of a vector Markov process Mm

n
N. Thus

let us assume that a stationary discrete time Markov process Mm
n
N exists evolving of some state

space X equipped with a p-field B (X). The products that appear in the analysis of algorithms of
the form of (2) and are consequently to our interest are
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with T
l
(m), l"1,2 , r, matrix functions of m of dimensions K]K, I

K
the identity matrix of the

same dimensions and k'0 a scalar variable that is to be assumed ‘small’ (i.e. k@1) and
corresponding to the step size k of (2).

2.1. Assumptions and definitions

Let us first introduce our assumptions elaborating also on their meaning and generality. As we
have seen, a key characteristic of the random matrices is the existence of the Markov vector
process Mm

n
N which controls them. To stationary Markov processes we usually assign two types of

expectation, first is the steady state expectation which we denote by EM ) N and second the
conditional expectation given that state m

0
"m which we denote by EmM ) N. We then have the

following assumptions:

A1. The Markov process Mm
n
N is stationary and geometrically ergodic in the following sense. We

can find a scalar measurable function »(m)*1 (drift function) such that (a) the steady state
expectation EM»(m

n
)N is finite and (b) for all measurable functions g (m) with Dg(m) D)»(m)

there exist constants o3[0, 1) and R both independent of g(m) such that

sup
Dg D)»
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m

DEmMg(m
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)N!EMg (m
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)N D

»(m)
)Ron (4)

A2. The matrices T
l
(m) entering in (3) satisfy

EmMET
l
(m

1
)E»(m

1
)N)c» (m), l"1,2 , r (5)

where c(R is a constant, »(m) is a drift function as in A1 and the norm of a matrix C is
defined as ECE2"traceMC5CN (Frobenius norm).
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The first assumption, with the help of the drift function »(m), introduces a form of (geometric)
ergodicity for the Markov process Mm

n
N. Condition (4) is of principal significance to our analysis. It

basically suggests that the conditional expectation of g (m
n
), given that the initial state is m, tends

with an exponential like speed to the steady state expectation. This convergence is not necessarily
uniform with respect to the initial state m (since »(m) can be unbounded) but, on the other hand,
it is uniformly controlled through the drift function » (m) in the sense that DEmMg (m

n
)N

!EMg (m
n
)N D)onR»(m) for all functions satisfying Dg (m) D)» (m).

AssumptionA1 constitutes a generalization to the corresponding notion of geometric ergodic-
ity encountered in finite state Markov chains18 (where this convergence is uniform). It is clear that
the introduction of the drift function »(m), having the specified properties, seems rather arbitrary.
It should be noted however that it is possible to guarantee its existence through a set of more
reasonable assumptions imposed directly on the transition probability of Mm

n
N.18 Unfortunately

such an approach turns out to be very complicated requiring the definition of various unnecess-
ary (to our goal) notions and the introduction of a number of intermediate results before
obtaining the desired condition specified in A1. Therefore we decided to follow this seemingly
arbitrary but considerably simpler approach. Assumptions imposed on conditional probabilities
leading to A1 or other easily verifiable sufficient conditions guaranteeing A1 can be found in
Reference 18. Such sufficient conditions will also be presented in Section 3.

Assumption A2 introduces technical constraints on the matrices entering in the product we
like to study. These constraints are trivially satisfied if the matrices T

l
(m) are essentially bounded.

This is for example the case in certain normalized versions of adaptive algorithms or if the data
are essentially bounded. It should also be noted that the richness of the family of allowable
matrices satisfying (5) strongly depends on the form of the drift function » (m). In Section 3 we are
going to see that these families turn out to be sufficiently rich for most commonly used data
processes.

Let us now introduce a useful space of vector functions along with a class of linear operators
defined in this space. Let from now on »(m)*1 denote a drift function satisfying A1. Consider
the class L=

V
of all measurable vector functions G(m) of length K that satisfy

supm(EG(m)E/»(m))(R. The space L=
V

equipped with the norm

EG(m)E
V
"sup

m

EG (m)E
» (m)

(6)

constitutes a Banach space. In a sense L=
V

contains all vector functions for which we can a priori
guarantee existence of their steady state expectation along with exponential ergodicity for their
elements in the form described by Assumption A1.

Consider now linear operators mapping L=
V

to L=
V

, If M is such an operator then its norm
induced by the corresponding norm in L=

V
can be defined as

EME
V
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EGE
V
)1

EMG(m)E
V

(7)

For any G (m)3L=
V

let us now introduce the expectation
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which constitutes the main subject of this section. If we define the linear operator T (k) as follows

T (k)G(m)"EmGCIK#
r
+
l/1

klT
l
(m

1
)DG(m

1
)H (9)

then using stationarity and the Markov property for conditional expectations we can see that
Q

n
(k, m) can be written as

Q
n
(k, m)"T (k)nG(m) (10)

In other words Q
n
(k, m) is the result of the n-times repeated application of T(k) on the element

G(m) of L=
V
. To write T(k) using the notation in Reference 19 (which we are going to reference

several times in the sequel) let us define the following linear operators:

TG(m)"EmMG (m
1
)N, T (l)G(m)"EmMTl

(m
1
)G(m

1
)N, l"1,2 , r (11)

then T (k) can also be written as

T(k)"T#kT(1)#2#krT(r) (12)

Although the matrices T
l
(m) have finite dimensions, the corresponding operator T(k), defined in

(9), is in general infinite dimensional. This is in fact the main source of difficulty in the analysis.
The next subsection will be devoted to a detailed study of the behaviour of T (k)n by identifying
characteristics that are important to the analysis of adaptive algorithms.

2.2. Decomposition of T(k)n

Finite dimensional operators are known to be decomposable into their eigenprojections and so
are their powers. With the next theorem we will see that, in a sense, this is also possible for the
infinite dimensional operator T (k).

¹heorem 1

Let assumptions A1, A2 be valid then, for small enough k, the operator T(k) can be
decomposed as T(k)"F (k)#H (k) with the characteristic T(k)n"F(k)n#H (k)n. For the
operator H(k) we can find constants c'0 and 1'o6 *0 such that

EH (k)nE
V
)coN n (13)

For the operator F (k) we have that it is finite dimensional and of dimension K and if f
i
(k), P

i
(k),

D
i
(k)"[F(k)!f

i
(k)1]P

i
(k)"[T(k)!f

i
(k)1]P

i
(k), i"1,2 , s, are its eigenvalues and its

corresponding eigenprojections and eigennilpotents, then the following approximations apply:

f
i
(k)"1#kj

i
#ko (1) (14)

P
i
(k)"P

i
P#kO

V
(1) (15)

D
i
(k)k"kkDk

i
P#kko

V
(1) (16)

where if T denotes the constant matrix T"EMT
1
(m

1
)N then j

i
, P

i
, D

i
"(T!j

i
I)P

i
, i"1,2 , s,

denote its eigenvalues and its corresponding eigenprojections and eigennilpotents, P denotes the
operator induced by the steady state expectation (i.e. P"EM ) N), o (1) a scalar quantity that
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satisfies limk?0
o (1)"0, o

V
(1) an operator that satisfies limk?0

Eo
V
(1)E

V
"0 and O

V
(1) an

operator that has uniformly, in k, bounded E ) E
V

norm.

Proof. The proof can be found in Appendix A. K

SinceF(k) is finite dimensional we can further decompose its powerF(k)n using known results
from finite dimensional operator theory. Specifically by selecting / (f)"fn in equations (5.50) and
(5.51) Reference of 19, p. 45 we obtain

F(k)n"
s
+
i/1

f
i
(k)nP

i
(k)#f

i
(k)n~1(n

1
)D

i
(k)#2#f

i
(k)n~mi`1( n

mi~1
)D

i
(k)mi~1 (17)

where m
i
, i"1,2 , s are the multiplicities of the corresponding eigenvalues. Using now Theorem

1 and (17) we can introduce the following theorem that establishes efficient approximations for
T(k)n.

¹heorem 2

Let the assumptions of Theorem 1 be valid and the matrix T"EMT
1
(m

1
)N have eigenvalues

with strictly negative real parts. Define the constant matrix F (k)"I
K
#kT#k2T@ with T@ any

arbitrary constant matrix. Let P"EM ) N denote the operator induced by the steady state
expectation then, for small enough k, we can find constants a'0 and 1'oN *0 such that

T(k)n"F (k)nP#(1!ka)no
V
(1)#oN nO

V
(1) (18)

PT(k)n"F (k)nP#(1!ka)nPo
V
(1)#koN nPO

V
(1) (19)

where O
V
(1) denotes an operator that has, for small enough k, a uniformly bounded norm in

n and k and o
V
(1) an operator that satisfies, uniformly in n, limk?0

Eo
V
(1)E

V
"0.

Proof. The proof can be found in Appendix A. K

Comments. Relations (18), (19) constitute the basis for obtaining estimates for the statistics of
adaptive algorithms as in References 12 and 13. Notice that their main characteristic is that the
repeated application of the operator T(k) on an element G(m)3L=

V
resembles, in a sense, the

behaviour of the constant matrix F (k) applied repeatedly on the constant vector
PG(m)"EMG(m

1
)N. It is clear that (19) is a refinement of (18) for the case where we consider

expectation (instead of conditional expectation) of products of random matrices.
A last result in this section consists in observing that the spectral radius of the operator T (k)

can be well approximated through the eigenvalues of the constant matrix T"EMT
1
(m

1
)N.

Corollary 1

Under the assumptions of Theorem 1 we have that the spectral radius ofT(k) can be written as

lim
n?=

nJET(k)nE
V
"1#k max

i
Re(j

i
)#ko(1) (20)
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where j
i
, i"1,2 , s, are the eigenvalues of the matrix T"EMT

1
(m

1
)N and Re( ) ) denotes the real

part.

Proof. From Theorem 1 we have T(k)n"F (k)n#H(k)n with EH(k)nE
V
)coN n and

0)oN (1. On the other hand, from (14) we have that the eigenvalues of the finite dimensional
operator F(k), for small enough k, can all have magnitude larger than oN , consequently because of
(17) we can write

lim
n?=

nJET(k)nE
V
" lim

n?=
nJEF (k)nE

V
(21)

Since F(k) is finite dimensional its spectral radius is equal to the maximum amplitude of its
eigenvalues, i.e. max

i
M D f

i
(k) DN which, because of (14), is equal to the desired expression. K

3. EXAMPLES

In this section we present characteristic examples of Markov processes and families of matrix
functions T

l
(m) that satisfy our assumptions and therefore can be studied using the theory we

developed in the previous section. Specifically for several well known Markov processes we are
going to explicitly identify drift functions that satisfy Assumption A1 and also families of matrix
functions T

l
(m) that satisfy A2.

3.1. Linear state space model

Consider the Markov process generated by the following mechanism:

m
n
"Cm

n~1
#Dg

n
(22)

where Mg
n
N is a white noise vector process and C, D are constant matrices. This model includes the

case of AR and ARMA processes which are the most common data models used in practice.
To identify a drift function »(m) we apply Theorem 16.0.1 (Reference 18, p. 383). In particular,

using techniques similar to Theorem 16.5.1 (Reference 18, p. 404), we have that if C has all its
eigenvalues strictly inside the unit circle, the pair (C, D) is controllable, and g

n
has an everywhere

positive density then a function » (m)*1 is a drift function (i.e. satisfies Condition A1) if it
satisfies the following inequality

EmM»(m
1
)N)l»(m)#¸1

A
(m) (23)

where 0)l(1 and ¸ are constants and A is a compact set with 1
A
(m) denoting its indicator

function. Inequality (23) is known as geometric drift condition (Reference 18, p. 367).
It turns out that there is no unique solution to (23). To find a specific one, let S be the solution

to the Lyapunov equation S"C5SC#I
K
, then if j

.!9
(S) denotes the maximum eigenvalue of

S we have j
.!9

(S)*1 and S*I
K
*j~1

.!9
(S)S. Define i"1!j~1

.!9
(S) then 0)i(1 and

iS*S!I
K
"C5SC. Using (22) and the fact that (m5Sm)1@2 is a vector norm we have from (22) and

for n"1

(m5
1
Sm

1
)1@2)(m5C5SCm)1@2#(g5

1
D5SDg

1
)1@2)i1@2(m5Sm)1@2#j1@2

.!9
(D5SD)Eg

1
E (24)
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If g
n
has up to pth order bounded moments (R'p*1) then »(m)"1#(m5Sm)p@2 can be shown

to be a drift function. Indeed with the help of Hölder’s inequality applied to (24), with q satisfying
(1/p)#(1/q)"1 and 1'e'0 we have that

(m
1
Sm

1
)p@2)(iq@2#eq@2)p@qA(mSm)p@2#

[j.!9(D5SD)]p@2

ep
Eg

1
EpB (25)

Taking expectation with respect to g
1

and selecting e small enough it is clear that we can find
constants 0(l@(1 and ¸@ such that EmM»(m

1
)N)l@»(m)#¸@. Then for any l with l@(l(1 we

have that the drift condition is satisfied with ¸"¸@/(l!l@) and A"Mm :»(m))¸N.
With the drift function just defined we can ensure ergodicity of the Markov process for

non-linear functions that can be bounded by a polynomial of order p. A significantly more
interesting situation occurs when g

1
has all its moments bounded in the sense that EMedEg

1
EN(R

for some d'0. Here we can define a drift function of the form » (m)"ed@(m5Sm)1@2 with d@'0. The
proof is analogous to the previous case consequently we do not present any further details. The
existence of exponential like drift functions is very desirable because, as we are going to see next, it
enriches significantly the class of allowable matrix functions T

l
(m) that satisfy Assumption A2.

Let us now consider the problem of satisfying Assumption A2. In the case of a polynomial
»(m), if we make no further assumptions, we can assume validity of (5) only for matrix functions
T
l
(m) that are essentially bounded. If on the other hand we use the exponential drift function

then we can easily show that there exists dA'0 such that for any T
l
(m) with

supmET
l
(m)E/(edA (m5Sm)1@2)(R, condition (5) in A2 is satisfied. This last inequality clearly defines

a very rich class of allowable matrices T
l
(m) because it includes matrices whose elements can be

ANY polynomial function of m (or function that can be bounded by polynomial) and also
functions that can grow exponentially as eaEmE for small enough a.

Depending on the way the moments of g
n
grow we can define even more general drift functions.

If for instance we have for some d'0 and p*1 that EMedEg
1
EpN)c(R (as in the Gaussian case

where this condition is valid for 1)p)2), we can define as above drift functions of the form
»(m)"ed@(m5Sm)p@2 and a similar bound for the matrices T

l
(m) so that our two assumptions are valid.

If p'1 then in addition to any polynomial-like function we can also allow functions for the
elements of T

l
(m) that can grow exponentially with EmE as eaEmE without any constraint on the

value of a.
One might argue that the condition EMedEg

1
EpN(R, used above, is similar to the corresponding

conditions defined in References 12 and 15 (i.e. Condition (i), Theorem 3.2 in Reference 13 and
Condition (6) in Reference 15). The latter conditions however, translated into our terminology,
imply the relation EMedET

l
(m

1
)EN(R which is considerably more stringent to satisfy. Characteristic

example constitutes the Gaussian Mg
n
N case where all our previous analysis applies with p"2 to

matrices T
l
(m) with elements that are polynomial and even exponential transformations of

m whereas EMedET
l
(m

1
)EN(R can be true only when ET

l
(m)E is at most quadratic with m.

3.2. Non-linear state space model

The foregoing results can be extended to non-linear state space models of the form

m
n
"Cm

n~1
#'(m

n~1
)#Dg

n
(26)

with Mg
n
N i.i.d. and '(m) such that supm E'(m)E/(1#Em E )(R and limEmE?=

E' (m)E/
(1#EmE )"0 uniformly in EmE . If again g

n
has an everywhere positive distribution and the pair
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(C, D) is controllable then we can define the same drift functions as in the linear case with exactly
the same properties as far as Assumptions A1 and A2 concerned.

3.3. Sublinear state space model

We have seen in the linear (and non-linear) state space model that in order to have a rich family
of matrix functions satisfying condition A2 we need to use exponential like drift function » (m).
The problem with this type of function is the requirement of existence of all moments of g

n
. Such

a condition is rather restrictive if it is for example applied to the case where Mm
n
N is i.i.d. With the

following non-linear model we can overcome this problem. Consider the system

m
n
"'(m

n~1
)#g

n
(27)

where as before g
n
is i.i.d. and has an everywhere positive distribution. Let 0(d(1 be such that

supm E'(m)E/(1#EmEd)(R (sublinear case) and consider »(m)"1#EmEp. We can then show
that »(m) is a drift function if EMEn

n
EpN(R. If we also consider matrix functions T

l
(m) that satisfy

supmE T
l
(m)E/(1#EmEq )(R with q"(1/d!1)p and assume that EMEg

n
Ep@dN(R then, with

the help of Minkowski’s inequality, we can write

EmMET
l
(m

1
)E» (m

1
)N)c

1
EmM1#Em

1
Ep`qN)c

2
(1#E'(m)Ep`q)

)c
3
(1#EmEd(p`q))"c

3
»(m) (28)

for c
1
, c

2
, c

3
proper constants, and thus satisfy (5). In other words, for this case we can

have a polynomial drift function (requiring only boundedness of a finite number of moments of g
n
)

and matrices T
l
(m) whose norm can also be bounded by a polynomial. Notice now that '(m)"0

is definitely sublinear consequently our general analysis when applied to the i.i.d. Mm
n
N case does

not require any extra constraints as compared to an analysis developed specifically for i.i.d.
data.

Comments. We must note that everywhere positivity of the distribution of g
n

is not actually
necessary. In Reference 18 one can find sufficient conditions that can guarantee the existence of
drift functions for more general processes.

The above Markov processes are only a few characteristic examples of processes that can be
treated with the theory developed in Reference 18. Other interesting models are presented in
Reference 18 and, depending on the case, various drift functions » (m) can be constructed. It turns
out that, most of the time, it is easy to show existence of polynomial like drift functions.

4. APPLICATION TO ADAPTIVE ALGORITHMS

Let us now turn to the adaptive algorithms defined by equation (2). In order to be able to apply
the theory we developed in the previous sections we need to impose certain constraints on the
data and the algorithms we like to study.

First we will assume that Assumption A1 continuous to hold. In other words there exists
a stationary Markov process Mm

n
N, not necessarily observable, that controls our data and satisfies

the geometric ergodicity condition (4) with the help of a drift function »(m). Assumption A2, on
the other hand, must be modified as follows.
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A2@. The vectors X
n
, Z

n
are constant non-linear transformations of the Markov process Mm

n
N of

the form X
n
"X(m

n
), Z

n
"Z(m

n
) satisfying

EmMEX (m
1
)E l EZ(m

1
)E l»(m)N)c»(m), l"1, 2 (29)

Finally we need a last assumption referring to the additive noise w
n
and the change mechanism

of the vector ¼
n
.

A3. The vector ¼
n
satisfies the following recursion:

¼
n`1

"¼
n
#cº

n`1
(30)

with c a scalar constant and Mº
n
N a zero mean stationary white noise vector sequence

independent of Mm
n
N and Mw

n
N with covariance matrix Q

U
. The additive noise Mw

n
N is

stationary white independent of Mm
n
N and Mº

n
N with variance p2

w
.

The assumption that the data process MX
n
N is obtained through a constant non-linear trans-

formation of the stationary Markov process Mm
n
N is not very restrictive. As we have seen in

Section 3 this allows for very rich families of data. Furthermore, in practice, stationarity or at
least stationarity within a block of data is a very common assumption.

The most crucial and restrictive assumption is the requirement that Z
n

must be a constant
vector function of m

n
. Since in most well known algorithms Z

n
is a function of the data history

X
n
,2 ,X

1
this might seem as if we practically limit ourselves to algorithms where Z

n
can only be

a function of X
n
(as for example LMS). Fortunately this limitation does not apply. The reason is

that if Mm
n
N is a stationary Markov process so is any finite combination of its states of the form

$
n
"[m5

n
2 m5

n~L
] 5. Consequently, if we assume that X

n
, Z

n
are now functions of $

n
instead of

m
n

this allows Z
n

to have finite memory. Of course this still excludes algorithms that use
exponential windowing on the data (as constant forgetting factor RLS) where Z

n
has infinite

memory but, on the other hand, covers cases where a sliding window is applied (as sliding window
RLS).

Relation (29) in A2@ is technical and corresponds to (5) of A2. The reason that in this
constraint parameter l takes upon the values 1 and 2 is because we are going to study the first and
second order statistics of ¼K

n
. If one intends to study up to the rth order statistics of ¼K

n
then l must

go up to r.
Finally in A3 we specify a random walk model for the change of ¼

n
and also assume the

simplest and most common additive noise model for w
n
.

4.1. Convergence in the mean

In this subsection we are going to examine the convergence in the mean of ¼K
n
towards ¼

n
. If

we denote by *
n
"¼K

n
!¼

n
the estimation error, we can then write

*5
n
"*5

0

n
<
j/1

(I
N
!kX

j
Z5

j
)#

n
+
j/1

(kw
j
Z5

j
!cº 5

j`1
)

n
<

l/j`1

(I
N
!kX

l
Z5

l
) (31)

The reason we introduced the transposed version of *
n

is only technical and in order to be
consistent with our notation in the previous section. Taking expectation in (31) yields

EM*5
n
N"*5

0
EG

n
<
j/1

(I
N
!kX

j
Z5

j
)H (32)
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which is of the form we analysed in Section 3. We can thus show the following theorem
concerning the exponential rate of (mean) convergence.

¹heorem 3

Let Assumptions A1, A2@ and A3 be valid then the exponential rate of convergence of the
expectation of the estimation error *

n
satisfies

lim
n?=

!logMEEM*
n
NEN

n
"k min

i

Re(j
i
)#ko(1) (33)

where j
i
i"1,2 , s, are the eigenvalues of the constant matrix A"EMX

1
Z5

1
N and Re( ) ) denotes

real part.

Proof. The proof is based on Theorem 1 and it is presented in Appendix B. K

With the above result it is easy to analyse the stability properties of the algorithm during the
transient phase. We have the following corollary:

Corollary 2

If all eigenvalues of the matrix A"EMX
1
Z5

1
N have positive real parts then, for small enough k,

the algorithm is stable in the mean. If on the other hand at least one eigenvalue of A has negative
real part then, for small enough k, the algorithm is unstable (in the mean).

What is interesting to note is that if we apply the Independence Assumption (i.e. that ¼K
n

is
independent from the data) during the transient phase this will also yield as rate of convergence
k min

i
ReMj

i
N#ko(1). In other words under this commonly used (but erroneous) assumption we

obtained an expression for the rate that is correct up to a first order approximation with respect
to k. Unfortunately this property does not apply to higher order approximations in k, which are
possible (see Reference 19).

4.2. Second order statistics

In this subsection we will focus on estimates for the second order statistics of *
n
. However,

instead of obtaining estimates for the covariance matrix of *
n
we would like to present a slightly

more general result. Thus let us define the sequence of deterministic matrices MP
n
N using the

following recursion:

P
n`1

"(I
N
!kA)P

n
(I
N
!kA)5#k2p2

w
Q

Z
#c2Q

U
, P

0
"*

0
*5

0
(34)

where Q
Z
"EMZ

1
Z5

1
N, Q

X
"EMX

1
X5

1
N, Q

U
"EMº

1
º5

1
N and A"EMZ

1
X5

1
N. Let also ½

n
"½ (m

n
)

and G
n
"G(m

n
) be constant vector functions of an underlying Markov process. We are interested

in finding efficient estimates for the expression EM(*5
n
½

n
) (G5

n
*

n
)N. Such expressions are often

encountered in signal processing applications, in particular, if ½
n
"G

n
"X

n
then this leads to the

well known Excess Mean Square Error. We have now the following theorem:
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¹heorem 4

Let assumptions A1, A2@ and A3 be valid and the matrix A"EMZ
1
X5

1
N have eigenvalues in

the left complex half plane, if the vector functions ½(m), G(m) satisfy

sup
m

E½(m)E EG (m)E
» (m)

(R (35)

then

DEM(*5
n
½

n
) (G5

n
*

n
)N!traceM%

n
EM½

1
G5

1
N D"o(1)Gk#

c2
k
#(1!ka)nH (36)

where limk?0
o (1)"0, uniformly in n.

Proof. The proof is based on Corollary 1, its main steps are presented in Appendix B. K

If we select ½ (m), G (m) to be all possible combinations of constant vectors that have all their
elements equal to zero except one that is unity then condition (35) is trivially satisfied and we have
the following corollary that establishes P

n
as an efficient estimate of the covariance matrix

EM*
n
*5

n
N.

Corollary 3

Under the assumptions of Theorem 4 we have that

EE(*
n
*5
n
N!P

n
E"o (1)Gk#

c2
k
#(1!ka)nH (37)

This result corresponds for example to Theorem 3.7 of Reference 13 (for the stationary case).
What is also interesting to note by combining Theorem 4 and Corollary 3 is that, to a first order
approximation, we can separate the expectation of *

n
from quantities that depend only on the

information supplied at time n. For example we can write EM(*
n
*5
n
) (½

n
G5

n
)N+EM*

n
*5

n
NEM½

n
G5

n
N.

This property was repeatedly used in the past, for the computation of second order statistics in
adaptive algorithms, by invoking the Independence Assumption (Reference 20, p. 396).

4.3. The LMS algorithm

Let us apply the theory developed in the previous subsections to LMS so as to compare our
results with Reference 15. For LMS we know that Z

n
"X

n
and, according to our modelling, we

also assume that X
n
"X (m

n
) where X (m) is some vector transformation of the underlying Markov

proces Mm
n
N. Let us also for simplicity assume that Mm

n
N is a Gaussian process generated by the

state space model described in Section 3.1. As we have seen, we can then select as drift function the
function »(m)"edm5Sm for some d'0.

In order to apply our results we need to satisfy Assumption A2@ which here takes the form

EmMEX(m
1
)E2l»(m

1
)N)c»(m), l"1, 2 (38)
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This condition guarantees validity for the approximation of the convergence rate in (33) and for
the approximation of the covariance matrix of *

n
in (37). If we also like to apply Theorem 4 to

estimate the excess mean square error we must impose the additional constant

sup
m

EX (m)E2

»(m)
(R (39)

that corresponds to (35) with ½
n
"G

n
"X

n
.

As we have seen in Section 3.1, there exists a d@'0 such that if

sup
m

EX (m)E2l

ed@m5Sm (R, l"1, 2 (40)

then (38) is satisfied. Notice now that if X(m) is either a polynomial vector transformation (or
a vector transformation that can be bounded by polynomial) or even a vector transformation that
grows exponentially in EmE then both conditions (39) and (40) are satisfied. In other words if our
data X

n
are ANY polynomial or even exponential transformation of a Gaussian Markov process

of the form of (22) then all our results can be applied. This should be compared with Reference 15
where the conditions imposed guarantee validity of (37) for Gaussian data whereas if X

n
is any

polynomial transformations of Gaussian random variables then the corresponding conditions fail
and the results are not applicable.

5. CONCLUSION

By properly combining recent results concerning geometric ergodicity of Markov processes and
long existing results concerning perturbations of linear operators we were able to propose a novel
methodology for studying products of random matrices and in particular obtain efficient
estimates for their performance. These estimates were consequently applied to the study of
constant step size adaptive algorithms in order to establish estimates for their first and second
order statistics. The contribution of our approach consists in enlarging considerably the class of
combinations of data types and algorithms that can be studied by significantly relaxing certain
restrictive conditions imposed on the data by existing methodologies. Furthermore, with our
analysis we were also able to propose efficient estimates for the convergence rate of adaptive
algorithms during the transient phase as compared to existing methods (not relying on the
Independence Assumption) that can provide only bounds. Finally, it should be noted that we
focused our analysis to data that are non-linear transformations of stationary Markov processes
only for simplicity. Future publications are expected to generalize these results to non-stationary
mixing processes as well.

APPENDIX A

Before presenting the proofs for Theorems 1 and 2 we require several definitions and preliminary
results. We must stress that we are going to heavily rely on the theory existing in Reference 19
regarding perturbations of linear operators.

In order to prove our theorems we must first characterize the eigenstructure of the linear
operatorT (k) defined in (9). When we consider infinite dimensional linear operators the best way
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to do this is through the use of the resolvant operator (Reference 19, p. 173). For z a complex
number, the resolvant of a linear operator M is defined as RM(z)"(z1!M)~1, that is, the
inverse mapping of z1!M where 1 stands for the identity operator. The set of complex points
z where the resolvant RM(z) is bounded (in the E )E

V
norm) is called the resolvant set whereas its

complement is called the spectrum of the operator (Reference 19, pp. 173—174). The eigenvalues (if
they exist) belong to the spectrum, the opposite is not necessarily true, that is, not every point in
the spectrum is an eigenvalue (however this statement is true in the finite dimensional case
Reference 19, p. 38).

We will now summarize in the form of lemmas two basic results from linear operator theory
that we are going to need for our analysis.

¸emma 1

Let M be a bounded linear operator mapping L=
V

to L=
V

and &(M) denote its spectrum then

lim
n?=

(EMnE
V
)1@n" sup

z|&(M)

Dz D (41)

Proof. The proof can be found in Reference 19, p. 176. K

The limit in (41) is known as the spectral radius of the operator (Reference 19, p. 176).

¸emma 2

Let the bounded linear operator M have spectrum &(M) that can be written as the union of
two parts & (M)"&F(M)X&H(M) and assume that &H(M) can be separated from &F(M) by
a simple closed curve. We can then define two operators F, H with spectrum &F (M), &H(M),
respectively, satisfying

Mn"Fn#Hn (42)

Proof. By combining Reference 19, pp. 172, 178 we have that we can find a projection Q (i.e.
Q2"Q) such that F"MQ and H"M(1!Q). Furthermore, Q commutes with M, that is,
QM"MQ resulting in

QM(1!Q)"(1!Q)MQ"0 (43)

which yields FH"HF"0. Consequently we can easily show (42). K

We can now proceed with the proof of Theorem 1.

Proof of ¹heorem 1. A key point in analysing the behaviour of T(k), defined in (12), is to observe
that this linear operator can be regarded as a perturbed version of T"T (0)"EmM ) N. Conse-
quently, we can relate the eigenstructure of T(k) to the corresponding of T. In order to do so we
first need to examine the eigenstructure of T. Consider the resolvant R(z)"(z1!T)~1 of T. If
P"EM) N denotes the projection defined by the steady state expectation then TP"PT"P
and we can write

R (z)"
P

z!1
#RM (z) (44)
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where RM (z)"(z1!T)~1(1!P). That R(z) can indeed be defined this way can be easily seen by
directly verifying that (z1!T)R (z)"1. Notice now that RM (z) exists (is bounded in the E ) E

V
norm) for at least all z satisfying Dz D'o. This is so because RM (z) can be computed through the
series (z~11#z~2T#z~3T2#2 ) (1!P) which, because of Assumption A1, is convergent
for all Dz D'o in the norm E ) E

V
. Consequently, we observe from (44) that z"1 is an isolated

point of the spectrum & (T) whereas all other points of this spectrum are inside the circle with
radius o. In other words, the spectrum of T is comprised of two separate parts and thus T,
according to Lemma 2, can be decomposed into two operators. It is easy to see that the role of the
projection Q plays here the projection P and we have that F"TP"P and H"T(1!P)
with the property Tn"Fn#Hn"P#Hn. Furthermore, part F"P has spectrum the single
point z"1 whereas H has its spectrum inside the circle with radius o. Because of (41) the term
Hn tends in the E ) E

V
norm exponentially fast to zero at least as on.

Since T maps constant vectors of length K to themselves we conclude that z"1 is an
eigenvalue for T (this can also be deduced from the fact that z"1 is an isolated point of the
spectrum (Reference 19, p. 181). In other words the space RK of constant vectors of constant
vectors of length K, is an eigenspace of T with corresponding eigenvalue equal to unity and with
multiplicity K. It is in fact P"EM ) N the projection that projects into this finite dimensional
eigenspace and therefore P is also an eigenprojection since it corresponds to the unit eigenvalue
(Reference 19, p. 41).

As was stated above, our goal is to relate the eigenstructure of T(k) to the corresponding of
T"T(0)"EmM ) N. Such a relation is particularly easy to establish whenever T(k) constitutes
a holomorphic family (in k) of operators. This important property is assured through Assumption
A2 as we show with the next lemma.

¸emma 3

Let the matrix functions T
l
(m), l"1,2 , r, entering in the definition of the operatorsT(l) in (11)

satisfy Assumption A2 then, for bounded k, the linear operator T(k)"T#kT(1)

#2#krT(r) is bounded and holomorphic of type (A) in k.

Proof. Because of A2 it is easy to prove that T (k) is bounded. According to Reference 19,
p. 375, a familyT(k) of operators is holomorphic of type (A) if (i) the domain of definition ofT (k)
is independent of k and (ii) the vector T(k)G(m) as a function of k is a holomorphic vector for
every G(m) in the domain of definition.

Condition (i) is true since the domain of T(k) is always L=
V
. Furthermore Condition (ii) is also

valid because T(k)G (m) is a polynomial vector function in k with bounded (because of A2) terms
which is differentiable in k, therefore from Reference 19, p. 365, we have that it is holomorphic.

K

Continuing now with the proof of Theorem 1 let us consider, in the complex plane, the
circle Dz D"o. As we have seen this circle separates the spectrum of T. Since T (k), according to
Lemma 3, is holomorphic of type (A) we have from Reference 19, p. 379, Remark 2.9, that, for
small enough k, the spectrum of T(k) is also separated by the same circle. The decomposition
of the spectrum suggests a corresponding decomposition of T(k) into two operators
T(k)"F(k)#H (k) with H(k) corresponding to the part of the spectrum inside the circle and
F(k) to the part of the spectrum outside the circle. This decomposition can be made possible with
the help of a projection P(k) that commutes with T(k) and satisfies F(k)"T(k)P(k) and
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H(k)"T(k)[1!P(k)]. Furthermore, because of (42), we have T(k)n"F(k)n#H(k)n and
because of (41) we can find c and oN with o(o6 (1 such that

EH(k)nE
V
)coN n (45)

meaning that H(k)n tends exponentially fast to zero at a rate that is independent of k (for small
enough k).

What is interesting to note is the fact that although P is an eigenprojection for T (since it
corresponds to its isolated unit eigenvalue) this is not necessarily the case for the operator P(k)
which is the perturbed version ofP. This is so because, as we will soon see, the unit eigenvalue can
lead, under perturbation, to more than one distinct eigenvalue and therefore the projection P(k)
becomes a combination of eigenprojections.

From Reference 19, p. 212, we have that the subspace defined by the operator F(k) (or the
projectionP (k)) has the same dimension as P and is thus finite dimensional with dimension equal
to K. Consequently, its spectrum is comprised only of eigenvalues that are perturbed versions of
the isolated unit eigenvalue of T. To find estimates for the eigenvalues, eigenprojections and
eigennilpotents of F(k), according to Reference 19, p. 379, Remark 2.10, we can apply results
developed for the finite dimensional case.

Notice that we are interested in a group of eigenvalues of T (k) coming from perturbations of
the isolated unit eigenvalue of T (a j-group). Furthermore, for the unit eigenvalue of T we have
that the corresponding eigennilpotent D"(T!1)P"0, consequently this eigenvalue is
semisimple Reference 19, p. 41. From Reference 19, p. 81, we then have the following approxima-
tion for the eigenvalues f

i
(k) of F (k):

f
i
(k)"1#kj

i
#ko (1), i"1,2 , s (46)

where j
i
, i"1,2 , s, are the eigenvalues of the finite dimensional operator PT (1)P with T (1)

defined in (11). Recalling that P"EM ) N and T (1)"EmMT1
(m

1
) ) N it is easy to see that for

T"EMT
1
(m

1
)N we have PT(1)P"TP"PT (by verifying that all operators produce the same

result on any element from L=
V
). Therefore the eigenvalues of PT (1)P coincide with the

eigenvalues of the matrix T and this establishes (14).
Relation (15) is proved in Reference 19, p. 83, equation (2.45). To show (16) notice first that from

Reference 19, p. 39, equation (5.21) we have that the eigenprojections P
i
(k), i"1,2 , s, satisfy

P
i
(k)P

l
(k)"d

i, l
P

i
(k) where d

i, l
is the Kronecker delta and furthermore they decompose the total

projection P (k) in the sense that P (k)"P
1
(k)#2#P

s
(k). Since all P

i
(k) commute with T (k)

(because they are also eigenprojections of T(k)) we can conclude that

[1!P(k)]T(k)P
i
(k)"P

i
(k)T(k)[1!P (k)]"0 (47)

Using now induction in k for (16), relations (15), (46), (47), the fact that for any constant matrix
B we can write BP"PB, after some straightforward computations and careful housekeeping we
can show relation (16). K

Proof of ¹heorem 2. From Theorem 1 we have T(k)n"F (k)n#H(k)n where EH(k)nE
V
)coN n.

This inequality can be also expressed as

H(k)n"oN nO
V
(1) (48)

To show (18) we must prove that F (k)n can be approximated by the remaining two terms in (18).
The proof is based on the fact that the matrix F (k)n can be decomposed in an exactly comparable
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manner as the operatorF (k)n in (17) with eigenvalues, eigenvectors and eigennilpotents satisfying
similar approximations as in Theorem 1 and show that F(k)n!F (k)nP"(1!ka)no

V
(1). This

last relation can be proved by showing that a similar approximation applies to all terms entering
in the decomposition of F(k)n. It should be noted however that this is possible only because we
made the assumption that all eigenvalues have negative real part.

To show (19) it is sufficient to show that PH(k)n"koN PO
V
(1). Because of (43) we have

P(k)H(k)"0 which yields P (k)H(k)n"0. Since, as we said above, P(k)"P
1
(k)#2#P

s
(k)

we conclude, using (14) and the fact that P
1
#2#P

s
"I

K
, thatP (k)"P#kO

V
(1). Using also

(48) we can write

PH (k)n"kO
V
(1)H(k)n"koN nO

V
(1) (49)

Multiplying this last relation from the left by P and using the property P2"P yields the desired
result. K

APPENDIX B

Proof of ¹heorem 3. We are going to apply Theorem 1 in order to show our result. Notice first
that we can write

EM*5
n
N"*5

0
EGEm G

n
<
j/1

(I
N
!kX

j
Z5

j
)HH"*5

0
PT(k)nI

N
(50)

where T(k)"Em (IN!kX
1
Z5

n
N (and the linear mapping of a matrix function is the collection of

mappings of its columns). We can easily see that A2@ implies the validity of A2, therefore we can
apply Theorem 1.

According to Theorem 1 the operator T(k)n can be decomposed as T(k)n"F(k)n#H (k)n.
Part F (k)n is the leading one as compared to H(k)n and we have that it can be further
decomposed as in (17). Let us for simplicity assume that j

1
is the eigenvalue of A"EMX

1
Z5

1
N with

the smallest real part and P
1

the corresponding eigenprojection. Then f
1
(k), because of (14), will

have for small enough k the maximum amplitude among all eigenvalues of F(k). Moreover if we
assume that *5

0
P

1
O0 (i.e. the initial condition excites the eigenvalue with the maximum

amplitude) we conclude that

EM*5
n
N"*5

n
PT(k)nI

N
"f

1
(k)nnrkr#5(1) (51)

for some r with 0)r)m
1

and m
1

the multiplicity of f
1
(k) and #(1) a vector that has a norm

which, for small enough k, is uniformly away from zero and infinity. Taking logarithm and the
limit after dividing by n we obtain

lim
n?=

!log(EE (*
n
NE)

n
"!log( D f

1
(k) D )"!log( D1!kj

1
#ko(1) D)"kRe(j

1
)#ko (1) (52)

And this concludes the proof K

Proof of ¹heorem 4. To prove the theorem notice first that we can write

(*5
n
½

n
) (G5

n
*

n
)"(*5

n
?*5

n
)(½

n
?G

n
) (53)
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where ‘ ? ’ denotes Kronecker product. Using (31) and stationarity we conclude

EM(*5
n
?*5

n
) (½

n
?G

n
)N"(*5

n
?*5

n
)EGC

n
<
j/1

(I
N
!kX

j
Z5

n
)? (I

N
!kX

j
Z5

j
)D(½

n
?G

n
)H

#EG
n
+
j/1

(k2p2
w
Z5

0
?Z5

0
#c2 vectMQ

U
)5

]C
n~j
<
l/1

(I
N
!kX

l
Z5

l
) ? (I

N
!kX

l
Z5

l
)D (½

n~j
?G

n~j
)H (54)

We observe that we can again apply our results to (54) by defining the operator
T(k)"EmMIN!kX

1
Z5

l
) ? (I

N
!kX

1
Z5

1
).N with dimension K being equal to K"N2. Again with

the help of condition A2@ we can show that A2 is satisfied, moreover (35) insures that
½(m)? G(m) belongs to L=

V
, consequently we can use Corollary 1. For the approximation of

T(k)n we can use the matrix F (k)"(I
N
!kA5)? (I

N
!kA5) since it has the form suggested by the

corollary. More specifically we need to use (19) for the first term in the rhs of (54) and (18) for the
second term.

On the other hand we can write

traceMP
n
EM½

1
G5

1
NN"vectMP

n
N5EM½

1
?G

1
N (55)

Using (34), we obtain

vectMP
n
N5"vectMP

n~1
N5(I

N
!kA5)? (I

N
!kA5)#k2p2

w
vectMQ

Z
N5#c2 vectMQ

U
N5 (56)

meaning that

vectMP
n
N5"(*5

0
?*5

0
)F(k)n#

n
+
j/1

(k2p2
w

vectMQ
Z
N#c2 vectMQ

U
N)5F(k)n~j (57)

with the matrix F(k) defined above. Applying now Corollary 1 to (54) in the way we described
earlier we can compare the outcome with (55) after using (57). It is then straightforward to see that
relation (36) is indeed true. K
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