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Locally Optimum Adaptive
Signal Processing Algorithms

George V. Moustakides

Abstract—We propose a new analytic method for comparing
constant gain adaptive signal processing algorithms. Specifically,
estimates of the convergence speed of the algorithms allow for the
definition of a local measure of performance, called the efficacy,
that can be theoretically evaluated. By definition, the efficacy is
consistent with the fair comparison techniques currently used in
signal processing applications. Using the efficacy as a perfor-
mance measure, we prove that the LMS-Newton algorithm is
optimum and is, thus, the fastest algorithm within a very rich
algorithmic class. Furthermore, we prove that the regular LMS
is better than any of its variants that apply the same nonlinear
transformation on the elements of the regression vector (such
as signed regressor, quantized regressor, etc.) for an important
class of input signals. Simulations support all our theoretical
conclusions.

Index Terms—Adaptive estimation, adaptive filters, adaptive
signal processing.

I. INTRODUCTION

A DAPTIVE signal processing algorithms (ASPA’s) are
widely used in many application areas such as filtering,

control, communications, seismology, etc. Practice has shown
their definite superiority as compared with classical techniques
because of their ability to adapt to changing and unknown
environments.

Due to their practical importance, there has been a great
number of ASPA’s developed over the years, each with its own
merits and drawbacks. The existence of such a large variety
of techniques naturally raises the question of performance
evaluation and, consequently, the need for development of
comparison methods that can rank the algorithms with respect
to some desirable characteristics.

The most important characteristic of the ASPA can probably
be considered to be the convergence speed during the initial
transient phase. In fact, it is with respect to this characteristic
that algorithms are usually compared in practice. As far as
initial transient phase is concerned, performance evaluation
and comparison methods rely either on simulations or on
theoretical developments that most of the time consider special
types of input signals (such as i.i.d. or Gaussian). Regarding
the theoretical results, it must also be noted that even under
the aforementioned special input signals, they make use of the
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well-known independence assumption(IA) in order to derive
tractable expressions for the convergence rate. Although the
IA is obviously erroneous, practice has shown that the cor-
responding conclusions are very plausible and in accordance
with simulations. This is particularly the case when the step
size in the adaptive algorithm is small (which is the most
practically interesting case).

A common algorithmic model known for its simplicity and
practical usefulness, which is often analyzed in the literature,
is the generalized form of LMS

(1)

where

(2)

and where are scalar nonlinearities, and is the
input data vector with denoting a vector obtained by
applying the scalar nonlinearity on every element of the
vector Finally, denotes the desired response, and

is a scalar positive quantity known as step size.
Existing results aiming in the optimization of the conver-

gence speed of the algorithm in (1) by proper selection of the
nonlinearities and are limited. In [9], we can find
the analysis of the transient behavior of the algorithm defined
in (1) for the case where and the
sequence being i.i.d. The analysis is based on the IA, and
in the paper, it is strongly suggested (although not proved) that
the regular LMS, i.e., the algorithm with ,
is optimum. In [4], the special case is considered;
again, , but the processes is now
assumed Gaussian. Using the IA, it is proved that when is
also white, then the optimum scalar nonlinearity has the
form for a properly selected constantIf,
however, the sequence is Gaussian but not white, then it
is shown that the nonlinearity (the LMS algorithm)
is locally optimum, i.e., optimum for the case

In this paper, we also intend to consider the local case
and attempt to find the algorithm that has the

fastest convergence rate for a considerably more general
algorithmic class than the one studied in [4]. Furthermore, our
optimality result will be shown to be valid for general input
sequences without confining ourselves to Gaussian or i.i.d.
data. Specifically, we are going to show that the LMS-Newton
algorithm is optimum within a very rich algorithmic class and
for a large variety of input signals. A second result consists
of extending the local optimality property of LMS, which has
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been proved in [4] for Gaussian data, to a very interesting data
class that contains the Gaussian as special case.

The rest of the paper is organized as follows. Section II has
background material needed for our analysis. In Section III, we
introduce our theoretical local performance measure. The op-
timum, with respect to this measure, algorithms are presented
in Section IV. Section V contains simulations, and finally,
Section VI has our conclusion.

II. BACKGROUND MATERIAL

In this section, we are going to introduce the background
material that is necessary for defining our performance mea-
sure. Let us first introduce our notation; with lowercase letters,
we will denote scalars, and with uppercase vectors and with
boldface uppercase letters, we will denote matrices. For, a
vector will denote its th element.

Let us now introduce the data model we intend to use and
the algorithms of interest. Suppose we are given sequentially
two real processes related by

(3)

where, as before

input data vector;
desired response;
additive noise;
deterministic vector.

Both vectors and are of length We are interested
in adaptive algorithms that estimate with the recursion

(4)

where

(5)

with being the estimate of at time is the
scalarstep size, and are
real nonlinear vector transformations of the input data history

The vector transformations have
the same length with and are known asregression vectors.
The algorithmic class defined by (4) and (5) is very rich,
containing most known algorithms encountered in practice
as regular, normalized, signed and quantized regressor LMS,
constant forgetting factor RLS, sliding window RLS, un-
derdetermined RLS, adaptive Newton, adaptive instrumental
variables, etc.

We like to stress that the algorithm considered in [4],
corresponding to (1) with , is significantly less
general than the proposed algorithmic model defined by (4)
and (5). Indeed, the algorithm in [4] can be obtained by
selecting and limiting to nonlinear
transformations of the form applied only on the
current input vector with the additional constraint that

, i.e., the same scalar nonlinearity is
applied to all elements of the vector

As in [4], our aim is to find the nonlinear transforma-
tions that optimize the

convergence speed of the corresponding algorithm during the
transient phase. This will be made possible by defining a
suitable local performance measure that is equivalent to the
convergence speed. The rest of this section and the next section
will be devoted to the definition of this performance measure.

Except the convergence speed of toward , which,
as we said, is the primary characteristic in which we are
interested, there is also another quantity that plays an important
role in the analysis of adaptive algorithms. We refer to the
amount of fluctuation of around the ideal vector
under steady state. Regarding the steady-state performance,
there exist very powerful results based on the theory of
stochastic approximationwith the important observation that
their development does not require the employment of the
IA. In fact, the algorithms covered by this theory are even
more general than the ones defined by (4) and (5) [3], [22].
Unfortunately, corresponding results for the transient phase
and, more specifically, for the convergence rate are not as
widely available as for the steady state. Existing results either
make use of the IA and obtain estimates of the convergence
rate [4], [9], [10], [18] or do not rely on the IA and obtain
only bounds for the desired rate [12]–[14]. Since, in order
to define a reliable performance measure, we need efficient
estimates of both the convergence rate and the steady-state
performance, it seems rather imperative to base our analysis
on the IA (as was the case in most similar publications in
the past). However, it should be noted that regardless of the
seemingly crude approximation induced by the use of the
IA, the actual error seems in fact to be not so significant.
We can, for example, easily verify that at steady state, the
performance estimates obtained using the IA are correct up to a
first-order approximation with respect to(as compared with
the results obtained by the stochastic approximation theory,
which does not rely on the IA). Furthermore, there are strong
indications due to simulations [9], [18] and recent theoretical
developments that are not based on the IA [21] that the same
property is also true for estimates of the convergence rate.
This means that the IA yields, for the practically important
local case , very satisfactory estimates.

A. Assumptions

Before stating the two theorems that will provide the
required estimates for the convergence speed and the steady-
state performance, let us introduce our assumptions that are
necessary for our analysis.

1) The input vector process and the regression vector
processes are all sta-
tionary and have up to fourth-order bounded moments;
furthermore, we require the input covariance matrix

to be positive definite, meaning that
the input process is persistently exciting.

2) The additive noise process is stationary, zero
mean, white, and independent of the processes
with a finite variance equal to

The assumptions we made are rather mild; furthermore, it
is worth mentioning that we do not limit ourselves to data
that are of a specific type as i.i.d. or Gaussian, as is the



MOUSTAKIDES: LOCALLY OPTIMUM ADAPTIVE SIGNAL PROCESSING ALGORITHMS 3317

case in previous publications. Despite the mildness of our
assumptions, there are, nevertheless, implications on the class
of allowable algorithms. Thus, let us examine each assumption
separately and elaborate on the effect it produces on the
algorithmic class and the input data we like to consider.

For the problem we are addressing, the assumption that the
input data process is stationary is not restrictive. Since
we are interested in the convergence speed of the algorithms
and not in their tracking capability, such an assumption is
customary. The requirement that this process is persistently
exciting is also very common since it guarantees conver-
gence of the estimates toward the ideal vector (here,
convergence in the mean).

The assumption that the regression vector processes
are stationary is the most crucial one.

Notice that the regression vectors relate to the whole history
of the input data sequence and not just the current data
vector ; therefore, the amount of information used for their
computation increases with time, resulting in time-varying
statistics. These statistics, however, as time progresses, tend,
in most algorithms, to a steady state. Such is, for example,
the case when exponential windowing of the data is used
(i.e., forgetting factor RLS). Here, we clearly have violation
of the stationarity assumption unless the regression vectors
converge to their steady-state statistics significantly faster than
the corresponding estimates , or the algorithm is already
in steady state, and there is a sudden change in the vector
On the other hand, there exists an abundance of algorithms for
which the regression vectors have finite memory being of the
form Such algorithms are, for example,
the ones applying a sliding window on the data. Hence, once
the whole window is covered with data, we clearly have
stationarity for the regression vectors (i.e., sliding window
RLS).

The requirement that the fourth-order moments of and
exist is technical and ensures existence of all

expectations appearing in our analysis. Finally, Assumption
A2 introduces the simplest and most commonly used noise
model.

B. Excess Mean Square Error

In most signal processing applications, the quality of the
estimate is not measured through the estimation error
vector but rather through the scalar error

(6)

and, more precisely, through themean square error
, where , and denotes

expectation. The quantity is known asexcess error, its
power as excess mean square error, and the ratio

as misadjustment[15].
Since is part of the mean square error of every algorithm

in our class, the excess mean square error becomes a natural
candidate for the subject of study. Another possibility could,
of course be the power of the estimation error vector, namely,

Clearly, the latter would be more appropriate for

a pure estimation problem, but in this work, we concentrate
on the former.

Let us from now on, for notational simplicity, denote the
regression vectors as

(7)

Because is independent of the processes and
since the regression vectors are functions only of input
history, we conclude that is also independent of the
processes This suggests the following partitioning of
the estimation error vector into two parts, namely

(8)

satisfying the recursions

(9)

where denotes the identity matrix of dimension, and
is some constant but arbitrary vector. The

above partition in turn suggests a corresponding partition of
the excess mean square error in the form

(10)

Note that the crossterm is equal to
zero due to the independence between from one side and

and from the other. Part is due to the initial
conditions and the fact that our initial estimate is away from
the true value We can see that it starts from a 1 value,
and we are going to show below that for stable algorithms, it
tends exponentially fast to zero. Part, on the other hand, is
due to the additive noise. It starts from an value and
tends to a value at steady state. Since, in our study, we
are concerned with the local case , we conclude that
part is responsible for the transient phase of the algorithm,
whereas part is responsible for the steady-state behavior of
the excess mean square error. The next subsection introduces
estimates of the convergence rate and the steady-state excess
mean square error which, as we said, are necessary for defining
our performance measure.

C. Exponential Convergence and Steady-State
Excess Mean Square Error

From this point on, we are going to rely on the IA to
derive our results. Let us first obtain estimates for the con-
vergence rate of The exponential rate of is defined as

, and the following theorem estimates
it.

1By the expression�(x), we mean thatc1jxj � j�(x)j � c2jxj for
constantsc1; c2: In addition, byo(x), we mean thatlimx!0 o(x)=x = 0:
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Theorem 1: Let
, where

Define Re , where are the eigen-
values of the matrix and Re denoting the real part. If

, then we have

(11)

Proof: A proof based on the IA can be found in the
Appendix. For a proof that does not use the IA (but requires
more stringent assumptions), see [21].

As a result of Theorem 1, we have the first corollary
addressing the stability properties of

Corollary 1: If , then for small enough
converges exponentially fast to zero at a rate that is approx-
imately equal to If , then for
small enough tends exponentially fast to infinity, meaning
that the algorithm is unstable. Finally, if , no
conclusion can be derived since higher order approximations
in are required.

Comment: In A1, we assumed that the input process
is persistently exciting by requiring the covariance matrix

to be nonsingular. It should be noted that
this assumption is rather necessary for our analysis to be
applicable. This is because, as explained in Corollary 1, the
estimate of the convergence rate of a stable algorithm is valid
if However, if is singular, then
we can easily show that this will also be the case for the matrix

, and therefore, we will have
Under the result of Theorem 1, we can now proceed with

the estimation of the steady-state behavior of
Theorem 2: Let the matrix

, with ,
have eigenvalues with strictly positive real parts; then

(12)

where , and satisfies the Lyapunov equation

(13)

with
Proof: A proof based on the IA is presented in the

Appendix. A more rigorous proof that does not rely on the
IA can be found, for example, in [3, p. 107].

We have now available all necessary background results
to define our performance measure and specify the optimum
algorithms.

III. L OCAL PERFORMANCE MEASURE

Since speed of convergence is the characteristic that is
of interest to us, the most natural candidate for measuring
performance is clearly the exponential rate of convergence of

This rate, as we can see from Theorem 1, depends on
the step size and, for small , can be approximated by

It is this dependence on on which we want to
elaborate.

When comparing algorithms from our class, there is clearly
no reason to use the same step-sizein each one of them.
Since convergence rates depend directly on, this raises the
question of what is a proper selection of the step sizes that can
guarantee a “fair” comparison without favoring any algorithm
at the expense of another. There are two possible directions
we can follow to solve this problem. The first, which was
proposed in [6] and [9], consists of selecting the step sizes
so that the corresponding rates are equal and then consider as
optimum the algorithm with the smallest steady-state excess
mean square error. The second, which was proposed in [5]
and also used in most signal processing applications, consists
of selecting the step sizes so that the steady state excess
mean square errors are equal and consider as optimum the
algorithm with the highest convergence rate. Here, we are
going to follow the latter direction because it will also allow
for the definition of the notion of relative performance of two
algorithms. However, for the local case, we can show that both
methods can lead to the same final performance measure.

Let us first introduce a relative performance measure be-
tween two adaptive algorithms from the class defined by (4)
and (5). Denote by the corresponding
matrices defined by Theorems 1 and 2 for the two algorithms.
Furthermore, let be the two step sizes selected so that
the steady-state excess mean square error of both algorithms
is equal to a common value From Theorem 2, we
immediately conclude that

(14)

Under the constraint imposed by (14) that the two step
sizes are selected to yield the same steady-state excess mean
square error, we can now consider the transient parts of the
two algorithms. As a relative performance measure, we can
clearly define the relative number of iterations required by
the corresponding transient parts to converge to zero. Since,
theoretically, each algorithm requires an infinite number of
steps to converge to zero, in order to find this ratio, we proceed
as follows. We first compute the number of iterations required
by each transient part to reach a common value ;
then, take the limit of the corresponding ratio of iterations as

tends to zero.
The number of iterations required by the

corresponding to reach a common value, from the
definition of the exponential convergence rate and Theorem
1, is equal to

(15)

which using (14) takes the form

(16)
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The relative performance, as we said, is the limit of the ratio
of as tends to zero. We thus have

(17)

Since we consider the local case , the terms
in the previous expression are negligible as compared with
the remaining terms. We can thus define as thelocal relative
measureof Algorithm 1 with respect to Algorithm 2LRM
the expression

LRM (18)

Since an algorithm is better (converges faster) when it requires
fewer iterations to converge, this means that algorithm 1 is
better than algorithm 2 if LRM

Let us now define a quantity that will constitute our final
performance measure, which will refer to a single algorithm.
We define asefficacyof an algorithm the expression

EFF (19)

where we recall that is the
solution to the Lyapunov equation (13) with ,
and From (18), we can now see that
the LRM can be computed using the efficacies of the two
algorithms as

LRM (20)

and clearly, Algorithm 1 is better than Algorithm 2 if EFF
Consequently, if we are interested in the optimum

(fastest converging) algorithm in our class, this amounts to
finding the algorithm with the maximum efficacy. This will be
the subject of our next section.

A last observation regarding the efficacy is the fact that it
can be directly related to the exponential convergence rate of
the algorithm. Specifically, from Theorem 1 and (14), to a
first-order approximation, we have that

EFF (21)

where we recall that is the steady-state excess mean square
error, and consequently, is the misadjustment. In other
words, for fixed misadjustment, the efficacy is proportional to
the exponential convergence rate.

IV. L OCALLY OPTIMUM ALGORITHMS

In this section, we are going to maximize the efficacy over
two different algorithmic classes. The first will be the general
algorithmic model defined by (4) and (5) and Assumptions

The second will refer to an LMS-like class where
some additional constraint will be imposed on the input data,
aiming in generalizing the second optimality result of [4].

A. Optimum Algorithm for the General Model

With the following theorem, we are going to show that the
algorithm that maximizes the efficacy is the LMS-Newton [8],
[11], [23], which therefore is the locally optimum algorithm
in our class.

Theorem 3: The maximum value of the efficacy is equal to
, and it is attained if and only if , where

is any positive real scalar.
Proof: Let us first introduce a very useful property

concerning the trace of products of matrices. If are
matrices with the same dimensions, we then have

trace trace trace trace
(22)

We can now proceed with our proof. From the non-negative
definiteness of the covariance matrix of , we can
conclude that2 , where we recall that

, and We have
equality if and only if

(23)

holds in the mean square sense. Notice now that the solution
to the Lyapunov equation (13) is given by [7, p. 428]

, meaning that is increasing (see
footnote) in In other words, if we replace by
and denote with the solution to

(24)

we have Multiplying from right and left with
results in , which with the help
of (22), yields

trace trace (25)

If in (24) we multiply from the right by , take traces, and
use (22), we obtain

trace trace (26)

We know that matrices of given dimensions form a linear
vector space. For this space, we can define an inner product
of the form trace That is indeed an
inner product is easy to verify using the definition. We thus
have validity of the Schwarz inequality, which for this case
takes the form

trace trace trace (27)

with equality if and only if for some scalar The
Schwarz inequality combined with (22) yields

trace trace

trace trace (28)

with equality if and only if

(29)

2If PPP 1 and PPP 2 are symmetric matrices, we say thatPPP 1 � PPP 2 if the
differencePPP 1 � PPP 2 is non-negative definite.
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for some scalar Since we consider stable algorithms, we
have from Theorem 1 that all eigenvalues ofmust have
positive real part. This means that trace Now
substituting (26) in (28) yields

trace trace (30)

Recalling that is real (thus, complex eigenvalues appear in
conjugate pairs), we have

trace (31)

combining this with (25) and (30), we conclude that the
efficacy is bounded from above by

To attain the upper limit, notice that we must have validity
of (23) and (29) and equality in (31) simultaneously. Since

are symmetric positive definite matrices, so is the
matrix Therefore, we can make the following
diagonalization: with diagonal and
having real and positive diagonal elements. Multiplying from
left and right by and , respectively, we conclude
that the product is also diagonalizable and has real
and positive eigenvalues. Thus, in order for to
correspond to a stable algorithm, we must select In
order now for to satisfy (31) with equality, since has real
eigenvalues, all eigenvalues of need to be equal. However,

is diagonalizable, and thus, it can have a single
eigenvalue if and only if Applying this relation to
(23), we prove the necessity of the condition
Sufficiency can be easily established by direct substitution.
This concludes the proof.

Of course, the LMS-Newton algorithm has only theoretical
interest since its application requires knowledge of the input
data covariance matrix , which is usually not available in
practice. On the other hand, it is expected that by estimating
this matrix using the input data, we will be able to achieve
performance close to the optimum. Indeed, as we are going to
see in the next section, there are several such possibilities.

There is one special case where the matrixis known be-
forehand, and the corresponding optimum algorithm is readily
realizable in practice. This case is presented in the following
corollary.

Corollary 2: If , then the optimum algorithm in
the class is the LMS.

In other words, if the elements of the input data vector
are uncorrelated and have equal variances, no other algorithm
has better performance than LMS. This corollary, in a sense,
generalizes considerably the first optimality result of [4].
Specifically, in [4], it is shown that if the input data are
Gaussian and white, then the optimum nonlinearity in
(1), when is fixed to , is
for some constant In the local case , this translates
into the optimum nonlinearity having the form ,
i.e., the LMS algorithm. With our corollary, we have, in fact,
shown that when the input data sequence is white, then LMS
is locally optimum for a significantly larger algorithmic class
and for data sequences having any marginal distribution (not
necessarily Gaussian).

Comment: A noticeable characteristic of the optimum al-
gorithm comes from the fact that its efficacy is independent of
the dependency structure of the input data vector. Using (21),
this suggests that the optimum convergence rate also has the
same property.

B. Optimum Algorithm for an LMS Like Family

In this subsection, we will focus on LMS and some of
its variants. We pay special attention to this algorithm since,
because of its simplicity, low complexity, and robustness, it
is a very popular candidate for real-time applications. Notice
that the efficacy of LMS is EFF trace
We can see that the larger the eigenvalue spread of the matrix

, the poorer LMS performs as compared with the optimum
algorithm of the previous subsection.

Let us now consider the case where the elements of the
regression vectors are given nonlinear transformations of
the corresponding elements of , that is

(32)

where are scalar nonlinearities, and
denotes the vector obtained by applying the scalar

nonlinearity to each element of the vector , i.e.,
Examples are the

signed regressor LMS using and sign ,
the quantized regressor LMS using some quantized version
of the elements, a special case of the normalized LMS with

, etc. We now come to our last theorem
that identifies the regular LMS as the optimum among all such
variants for an interesting class of input signals.

Theorem 4: Let the matrix be nonsingu-
lar and the elements of the input data
vector have identical marginal distributions satisfying the
conditional linearity constraint (CLC) as in

(33)

for and constants. Then, the efficacy of
the algorithm defined in (32) is given by

EFF EFF (34)

where The efficacy is maximized when
with any positive constant.

Proof: The CLC in (33) states that the conditional ex-
pectation of the th element of given its th element must
be a linear function of theth element (consequently, is
the correlation coefficient of and ; thus,

Let us first compute the matrix , which here takes
the form We have that
the th element of this matrix, using conditional ex-
pectation, can be written as

,
where the last equality comes from the CLC (33) and the
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fact that we have the same marginal distributions. In the same
way, we can show that From
this, we conclude that

(35)

Substituting these relations in (13) and taking traces, we have
that

trace (36)

Using (35) and (36) in the definition of the efficacy, we can
easily show (34). To maximize the efficacy, we only need to
maximize the scalar term in front of EFF in (34). By a
simple application of the Schwarz inequality, we can see that
this term is no larger that unity, and it becomes one if and
only if Finally, we must select to produce
a stable algorithm. This concludes the proof.

Let us now elaborate on the CLC defined in (33). Several
well-known classes of input data processes satisfy this con-
dition. The first is the case where is composed of i.i.d.
elements where for (here, however, we have
a stronger optimality of LMS because of Corollary 2). The
second is the more interesting case, where the distribution
of is zero mean Gaussian; this is the case analyzed in
[4]. The third is when the distribution of is a convex
combination of Gaussian distributions. Finally, if we regard
the elements of the vector as consecutive points of a scalar
process , then we can show that the CLC is equivalent
to the Bussgang condition (which is also known from blind
deconvolution techniques) [1]. Several processes, especially
of the Markov type, are shown in [1] to satisfy the Bussgang
condition and, consequently, (33). In the next section, we are
going to present an example of such a process having uniform
marginals.

Comment: Notice from (34) that by dividing any two
efficacies corresponding to two different algorithms from
the class, the resulting LRM depends only on the common
marginal distribution of the elements of and not on its
actual multivariate distribution. In other words, the relative
performance of any two such algorithms is independent of the
dependency structure of the elements of

As an example, let us compute the LRM of the signed
regressor LMS (SRLMS) with respect to the regular LMS.
Using (34), we obtain

LRM (37)

If the data have Gaussian marginals, then the ratio of the
two efficacies becomes , whereas in the case of uniformly
distributed marginals, it is equal to 4/3. This means that in the
first case, LMS requires 57% fewer iterations than the SRLMS
to converge for any process satisfying the CLC and having
Gaussian marginals, whereas in the second case, for uniform
marginals, this percentage drops to 33%. Detailed analysis of
SRLMS and comparisons with LMS under Gaussian data can

be found in [10]. The two algorithms were also compared in
[5] for uniform i.i.d. input data.

V. SIMULATIONS

In this section, we are going to present simulation in order
to compare with our theoretical conclusions obtained in the
previous section. We are basically going to present two sets
of experiments corresponding to the two optimality results
introduced in Theorems 3 and 4.

In the first set, we simulate the following algorithms: LMS-
Newton (LMS-N), RLS, and sliding window RLS (SWRLS).
Specifically, we use the following adaptation formulas for each
algorithm.

LMS-Newton:

(38)

with being the exact covariance matrix of
, which is assumed to be known exactly.

RLS:

(39)

with the parameter selected to have a small value
SWRLS:

(40)

Regarding the last algorithm, it should be noted that it is, in
fact, a modification of the classical SWRLS whose estimates
are given by It is easy to
see that the algorithm in (40) reduces to the classical SWRLS
when The modification in (40) of the original algorithm
was considered necessary in order to achieve control, for fixed
window size , over the excess mean square error (which is
something that is not possible with the classical version). The
above modification is proposed in [2] and [19], where it is also
stated that this algorithm has the highest convergence rate of
all algorithms belonging to the underdetermined RLS class.
As we are going to see, this performance can, at best, match
the performance of the LMS-Newton algorithm, which is also
significantly inferior for cases where the window size is not
adequately large. For our experiments, we are going to use two
window values, namely, (SWRLS-30) and
(SWRLS-100).

The input data vector has the form
, where the scalar process

is an AR Gaussian satisfying with
and Gaussian i.i.d. The random variable is normalized
to unit variance. The input sequence is passed through
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Fig. 1. Performance of adaptive algorithms during the initial transient phase
and after an abrupt change of the true system for Gaussian AR data.

Fig. 2. Performance of adaptive algorithms during the initial transient phase
and after an abrupt change of the true system for uniform i.i.d. data.

an FIR system (the vector ) of length having
elements randomly distributed in Finally, to the output
of the FIR system, we add white Gaussian noise of
variance 0.01 to generate the desired response The step
sizes are selected so that the steady-state excess mean square
error becomes equal to 35 dB (misadjustment of 15 dB).
This results in using, for LMS-N, RLS, and SWRLS-100, the
value and, for SWRLS-30, the value
We apply the four algorithms we mentioned before for a
number of points equal to 10 000 with the characteristic that
at time 5000, we make a change of the true model from
to The experiment is repeated 50 times and as excess
mean squared error, for every time instant, we use the
arithmetic mean of the corresponding 50 realizations of the
excess squared error. The results are presented in Fig. 1.

Fig. 2 depicts the same algorithms for a similar experiment
as the previous one, only here, the input sequence is
uniform i.i.d. with variance equal to unity, and the additive
noise is also uniform with variance 0.01. The step sizes
are the same as in the previous experiment.

Before examining the two figures, let us briefly discuss what
is to be expected according to our analysis. Notice first that
RLS does not satisfy our assumptions during the whole test
period. Specifically, the part of Assumption A1 referring to the
stationarity of the regression vector is not satisfied
because of the nonstationarity of the matrix Therefore,
we do not expect that, during the initial transient phase, RLS
will necessarily follow our conclusions. On the other hand,
we expect that this will be the case when the algorithm has
converged, and there is a sudden change in the model
This is true because the regression vector depends only on the
input data and not on the true model Let us now examine
whether RLS can match the optimum performance whenever it
satisfies our assumptions. Notice that if the step sizeis small,
then the matrix at steady state is a good approximation to

This means that the regression vector is also
a good approximation to and, according to Theorem
3, we expect that RLS will match in performance the LMS-N.

As far as the SWRLS algorithm is concerned, we have
validity of our assumptions once the sliding window is covered
with data; hence, this algorithm can, at best, match the
performance of LMS-N. Let us examine whether this is indeed
possible. From Theorem 3, we have that the necessary and
sufficient condition for optimality is Since

and, from (40), we have ,
this yields

(41)

The question clearly is whether the sum consti-
tutes a satisfactory approximation to (for some scalar

), where we recall that For a
large enough window size, using the law of large numbers,
the matrix approximates well , and thus, the sum in
question is also expected to approximate well For small
window size , however, is not a good approximation to

, and therefore, the corresponding sum does not approximate
well. For example, for a problem size , a

window of size might be considered small, whereas
might be considered adequate. In other words,

SWRLS-100 is expected to match the performance of LMS-N,
whereas SWRLS-30 is expected to be inferior.

Observing Figs. 1 and 2, we have that, indeed, SWRLS-100
is close to the performance of LMS-N and so is RLS after the
change of the model (where it satisfies our assumptions). On
the other hand, we can see that SWRLS-30 is significantly
inferior to LMS-N.

In both figures, we can see that RLS, during the initial
transient phase, is significantly faster than all other algorithms.
In fact, it is even faster than the optimum LMS-N. As we
explained above, during this period, RLS does not satisfy
our assumptions; therefore, it does not necessarily follow
our conclusions. The extraordinary fast convergence speed of
this popular algorithm comes from the fact that it has the
unique property of exactly estimating in a finite number
of steps when there is no additive noise present. LMS and
most other adaptive algorithms do not enjoy this characteristic.
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Fig. 3. Performance of LMS and signed regressor LMS during the initial
transient phase for Gaussian i.i.d. and AR data.

This convergence property is preserved, as was proved in [20],
when the additive noise is low, and the parameterin (39) is
small (which is the case in our experiments).

Finally, we can see that the convergence rate of the al-
gorithms that match the LMS-N is indeed independent of
the distribution and the dependency structure of the data, as
was pointed out in our comment at the end of Section IV-A.
This is demonstrated by the different data distributions and
dependency structures used to produce the results appearing
in Fig. 1 (Gaussian and highly correlated) and Fig. 2 (uniform
and i.i.d.).

The second set of experiments we intend to present refers
to Theorem 4. Here, we test the two most well-known algo-
rithms in the class, namely, LMS and signed regressor LMS
(SRLMS). The corresponding recursions are the following.

LMS:

(42)

SRLMS:

(43)

Fig. 3 depicts the performance of the two algorithms for
AR data of the form , where is
i.i.d. Gaussian and is normalized to unit variance. The
FIR system is the same as in the previous examples, and
the additive noise is also Gaussian with variance 0.01.
Two values for the parameter are used, namely,
and . The step sizes for the two algorithms, for both
values of , are for LMS and for
SRLMS, producing an excess mean square error of 35 dB.
The algorithms are applied to 5000 points, except here, we
do not impose any change in the true model Again, the
experiment is repeated 50 times in order to compute estimates
of the excess mean square error.

Since the process is Gaussian, we have validity of
the CLC (33); consequently, as was stated in Section IV-B,

Fig. 4. Performance of LMS and signed regressor LMS during the initial
transient phase for uniform i.i.d. and Markov data.

LMS is 56% faster than SRLMS, regardless of the dependency
structure of the data. We can see in Fig. 3 that this is indeed
the case. The relative performance of the two algorithms is
the same for both values of the parameterand approximates
the theoretical value well.

Finally, Fig. 4 has a similar experiment as the previous
one but with a uniformly distributed data process of
unit variance. To generate a non-i.i.d. process with uniform
marginals, we considered to be a Markov process with
transition probability density equal to

(44)

where denotes the uniform density with support
(in order for to have unit variance). When

, then is a legitimate transition density
for since it is non-negative and integrates to unity for
any It is easy to show that the marginal
(steady-state) density of this Markov process is indeed uniform
by verifying that
Furthermore, we can show that the bivariate density of
and is of the form

; therefore, we can easily verify that the CLC
in (33) is also valid.

For uniform marginal densities, we have seen in Section IV-
B that LMS is 33% faster than SRLMS, regardless of the
dependency structure of the data. Fig. 4 depicts exactly this
point for two values of the parameterin (44), namely,
and In this experiment, the step size for LMS is
and for SRLMS We can see again that the relative
performance does not depend onand that it is close to the
theoretical value.

VI. CONCLUSION

We have presented a new analytic method for comparing
constant gain adaptive signal processing algorithms. By mak-
ing an asymptotic analysis of the second-order statistics of the
excess error during the transient as well as the steady-state
phase of the algorithm, we were able to obtain estimates of



3324 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

the convergence rate and the steady-state excess mean square
error. This, in turn, led to the definition of a theoretically
computable local performance measure (the efficacy), which
is consistent with the comparison methods used in most signal
processing applications. We showed that the algorithm that
optimizes our measure is the Newton-LMS. This algorithm
has only theoretical interest since, for its practical realization,
it requires thea priori knowledge of the second-order statistics
of the input data. Practically realizable algorithms were also
presented that approximate the optimum performance very
closely. Finally, limiting ourselves to an LMS-like family of
algorithms, we showed that for an important class of input
signals, LMS is better than any of its variants that apply
the same nonlinear transformation on the elements of the
regression vector.

APPENDIX

Before going to the proofs of Theorems 1 and 2, let us
briefly introduce the notion of the Kronecker product for
two matrices along with some basic properties that will be
necessary for our proofs.

Let be two matrices with elements and of
dimensions and The Kronecker product of and

, which are denoted as , is a matrix of dimensions
defined in a block form as

...
...

... (45)

In addition, let vec denote a vector of length that results
if we place the columns of the matrix one after the other.

Provided that the dimensions of the matrices involved are
such that the operations below are valid, we have the following
properties of the Kronecker product:

1) ;
2) ;
3) ;
4) vec vec vec .

For a proof of the above and other interesting properties of
the Kronecker product, see [17, ch. 12].

We have now the following lemma concerning the eigen-
values of an expression involving Kronecker products.

Lemma 1: Let be a square matrix of dimensions ,
where are the corresponding eigenvalues;
then, the eigenvalues of the matrix are
the numbers

Proof: See [17, p. 412].
We can now proceed with the proofs of our two theorems.
Proof of Theorem 1:The application of the IA will consist

of assumptions that recursive estimates of any kind are inde-
pendent of and that Thus, to
find , we have

trace (46)

Since is constant, to study the convergence properties of,
it suffices to study the convergence properties of the matrix

or, equivalently, its vector form vec
Since

vec vec (47)

we can equivalently study the vector For this vec-
tor, we have the following recursion using (9) and stationarity
of the processes :

(48)

where and where, again, we
used the IA to separate the expectations. We now conclude
that ; consequently, the behavior
of is exponential and governed by the eigenvalue
of with the maximum amplitude. More precisely, we have

(49)

where is any matrix norm, and are the eigenvalues
of [16, pp. 36–38]. Since we assumed thatis small, we
can see from (48) that the matrix is, in fact, a perturbation
of the identity matrix Thus, its eigenvalues satisfy

, where are the eigenvalues of the
matrix [16, pp. 74–83]. Taking logarithms
in (49), using the relation , which is true
for small , using Lemma 1, then dividing by and taking
the limit as proves the required relation.

Proof of Theorem 2:To prove this theorem, we are going
to proceed as in Theorem 1. Using the IA, we first note that

trace Using the vector form for
matrices, we can easily verify that for two matrices , we
have trace vec Using this property,
we can write

trace

vec

vec (50)

From the definition of in (9) and using again the IA and
stationarity of the processes , we can find the
recursion

(51)

where we recall that , and thus, vec
, where was defined in (48). For stable

algorithms, that is, algorithms for which and
for small enough , we have that has all its eigenvalues
inside the unit circle. Thus, the above recursion is stable and
converges to the vector

vec (52)

Substituting from (48), dividing by , and taking the limit
as , we conclude that we can write

vec (53)
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where

vec vec (54)

It turns out that the last relation is the solution to the Lyapunov
equation (13) written in a vector form [7, p. 428]. Combining
this with (50) yields the desired result.
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