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Locally Optimum Adaptive
Signal Processing Algorithms

George V. Moustakides

Abstract—We propose a new analytic method for comparing well-known independence assumpti¢i®\) in order to derive
constant gain adaptive signal processing algorithms. Specifically, tractable expressions for the convergence rate. Although the
estimates of the convergence speed of the algorithms allow for the IA is obviously erroneous, practice has shown that the cor-

definition of a local measure of performance, called the efficacy, di USi lausibl di d
that can be theoretically evaluated. By definition, the efficacy is responding conclusions are very plausibie and in accordance

consistent with the fair comparison techniques currently used in With simulations. This is particularly the case when the step
signal processing applications. Using the efficacy as a perfor- size in the adaptive algorithm is small (which is the most
mance measure, we prove that the LMS-Newton algorithm is practically interesting case).

optimum and is, thus, the fastest algorithm within a very rich A common algorithmic model known for its simplicity and

algorithmic class. Furthermore, we prove that the regular LMS . L . .
is better than any of its variants that apply the same nonlinear practical usefulness, which is often analyzed in the literature,

transformation on the elements of the regression vector (such IS the generalized form of LMS
as signed regressor, quantized regressor, etc.) for an important

class of input signals. Simulations support all our theoretical Wi = Wi + pglen) f(Xn) Q)
conclusions.
Index Terms—Adaptive estimation, adaptive filters, adaptive where
signal processing. "
en =Yn — Wy Xy (2
[. INTRODUCTION and whereg(z), f(x) are scalar nonlinearities, an¥l,, is the

DAPTIVE signal processing algorithms (ASPA’s) ardnPut data vector withf(Xn) denoting a vector obtained by
Awidely used in many application areas such as filteringPP!ying the scalar nonlinearitj(x) on every element of the
control, communications, seismology, etc. Practice has shoffftor X»- Finally, y(n) denotes the desired response, and
their definite superiority as compared with classical techniquéis> 0 IS @ scalar positive quantity known as step size.
because of their ability to adapt to changing and unknown Existing results aiming in tr_\e optimization of the_conver-
environments. gence speed of the algorithm in (1) by proper selection of the

Due to their practical importance, there has been a gré@nlinearitiesg(z) and f(x) are limited. In [9], we can find
number of ASPA’s developed over the years, each with its OVVI;'Ie analysis of the transient behavior of the algorithm defined
merits and drawbacks. The existence of such a large varidly(1) for the case whereX,, = [z, ---z,_n4.]" and the
of techniques naturally raises the question of performanggduencéz»} beingii.d. The analysis is based on the IA, and
evaluation and, consequently, the need for development Bfn€ paper, itis strongly suggested (although not proved) that
comparison methods that can rank the algorithms with respit¢ regular LMS, i.e., the algorithm with(x) = f(z) = =,
to some desirable characteristics. is optimum. In [4], the special casgx) = = is considered;

The most important characteristic of the ASPA can probab@8ain-Xn = [£n - -- & n11]", but the processefe, } is now
be considered to be the convergence speed during the inifigpumed Gaussian. Using the IA, itis proved that whery is
transient phase. In fact, it is with respect to this characteris@S© White, then the optimum scalar nonlinearfty:) has the
that algorithms are usually compared in practice. As far %M f(z) = (z/c+pa?) for a properly selected constantlf,
initial transient phase is concerned, performance evaluatiB@Wever, the sequende, } is Gaussian but not white, then it
and comparison methods rely either on simulations or & Shown that the nonlinearitj(z) = « (the LMS algorithm)
theoretical developments that most of the time consider spedfajocally optimum, i.e., optimum for the cage< 1.
types of input signals (such as i.i.d. or Gaussian). Regarding" this paper, we also intend to consider the local case
the theoretical results, it must also be noted that even under< 1 and attempt to find the algorithm that has the

the aforementioned special input signals, they make use of {Rgt€St convergence rate for a considerably more general
algorithmic class than the one studied in [4]. Furthermore, our
. . . . _ optimality result will be shown to be valid for general input
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been proved in [4] for Gaussian data, to a very interesting datanvergence speed of the corresponding algorithm during the

class that contains the Gaussian as special case. transient phase. This will be made possible by defining a
The rest of the paper is organized as follows. Section Il hasitable local performance measure that is equivalent to the

background material needed for our analysis. In Section IlI, veenvergence speed. The rest of this section and the next section

introduce our theoretical local performance measure. The opil be devoted to the definition of this performance measure.

timum, with respect to this measure, algorithms are presentedxcept the convergence speeddf, toward W,, which,

in Section IV. Section V contains simulations, and finallyas we said, is the primary characteristic in which we are

Section VI has our conclusion. interested, there is also another quantity that plays an important
role in the analysis of adaptive algorithms. We refer to the
II. BACKGROUND MATERIAL amount of fluctuation ofiW,, around the ideal vectoiV.

In this section, we are going to introduce the backgrour#?der steady state. Regarding the steady-state performance,

. : - ere exist very powerful results based on the theory of
material that is necessary for defining our performance mea- . S . .
T o2 Stochastic approximatiomvith the important observation that
sure. Let us first introduce our notation; with lowercase letters, . :
fhieir development does not require the employment of the

we will denote scalars, and with uppercase vec;tors and WA In fact, the algorithms covered by this theory are even
52:3;?3?[5 F:Eiﬁrgaesnitlgtfsr;[’hvﬁemgﬂ?nOte matrices. ¥oa more general than the ones defined by (4) and (5_) [3], [22].
Let us now introduce the data model we intend to use arL}Jé\fortunately, cgrrespondmg results for the transient phase
the algorithms of interest. Suppose we are given sequentia?lnd’ more specifically, for the convergence rate are nqt as
two real processey,.}, { X } related by WYder available as for the ste.ady sFate. Existing results either
nhy et make use of the IA and obtain estimates of the convergence

yn = WX, +wy, (3) rate [4], [9], [10], [18] or do not rely on the IA and obtain
only bounds for the desired rate [12]-[14]. Since, in order
where, as before to define a reliable performance measure, we need efficient
X, input data vector; estimates of both the convergence rate and the steady-state
yn desired response; performance, it seems rather imperative to base our analysis
wy, additive noise; on the IA (as was the case in most similar publications in
W, deterministic vector. the past). However, it should be noted that regardless of the

Both vectorsX,, and W, are of lengthN. We are interested Seemingly crude approximation induced by the use of the

in adaptive algorithms that estimak®, with the recursion  IA, the actual error seems in fact to be not so significant.
We can, for example, easily verify that at steady state, the

p—1 ; i i
_ . performance estimates obtained using the 1A are correct up to a
Wi =W+ p ; i3 (X, oo, X1) (4) first-order approximation with respect to(as compared with

the results obtained by the stochastic approximation theory,
where which does not rely on the 1A). Furthermore, there are strong
indications due to simulations [9], [18] and recent theoretical
developments that are not based on the 1A [21] that the same
with W,, being the estimate of¥’, at timen,u > 0 is the Property is also true for estimates of the convergence rate.
scalarstep sizeand F;(X,,, -+, X1),i = 0,---,p— 1, arep This means that the IA vyields, for the practically important
real nonlinear vector transformations of the input data histol§cal casep < 1, very satisfactory estimates.

Xy, -, Xy. The vector transformations;( X,,, - - -, Xy ) have

the same I.engt.h withV,, anq are known asegressiqn vectorg A. Assumptions

The algorithmic class defined by (4) and (5) is very rich,

containing most known algorithms encountered in practice Before stating the two theorems that will provide the
as regular, normalized, signed and quantized regressor L Njequired estimates for the convergence speed and the steady-

constant forgetting factor RLS, sliding window RLS un_staite performance, let us introduce our assumptions that are
derdetermined RLS, adaptive Newton, adaptive instrumenf§cessary for our analysis.

€ni — Yn—i — rtl—an—iv 'LIO,,p— 1 (5)

2

variables, etc. 1) The input vector procedsX,, } and the regression vector
We like to stress that the algorithm considered in [4], ~ Processe$li(Xy,.--, X1)},i =0,.--,p—lareall sta-
corresponding to (1) withg(z) = =, is significantly less tionary and have up to fourth-order bounded moments;

general than the proposed algorithmic model defined by (4) furthermore, we require the input covariance matrix
and (5). Indeed, the algorithm in [4] can be obtained by @ = E{X,, X/} to be positive definite, meaning that

selectingp = 1 and limiting Fo(X,,,---,X;) to nonlinear the input process is persistently exciting.
transformations of the formF,(X,) applied only on the 2) The additive noise procesgw,} is stationary, zero
current input vectorX,, with the additional constraint that mean, white, and independent of the process&s }
Fo(X,) = f(X,), i.e., the same scalar nonlinearifyz) is with a finite variance equal toy,.

applied to all elements of the vectdf,. The assumptions we made are rather mild; furthermore, it

As in [4], our aim is to find the nonlinear transformais worth mentioning that we do not limit ourselves to data
tions F;(X,, ---,X1),s = 0,---,p — 1 that optimize the that are of a specific type as i.i.d. or Gaussian, as is the
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case in previous publications. Despite the mildness of oarpure estimation problem, but in this work, we concentrate
assumptions, there are, nevertheless, implications on the classthe former.

of allowable algorithms. Thus, let us examine each assumptiorLet us from now on, for notational simplicity, denote the
separately and elaborate on the effect it produces on tegression vectors as

algorithmic class and the input data we like to consider. Zs = Fi(Xo, -, X1) 7)

For the problem we are addressing, the assumption that the Tt Ay T AL
input data proces$.X, } is stationary is not restrictive. SinceBecause{w,} is independent of the process¢«’,,} and
we are interested in the convergence speed of the algorithsirice the regression vectog, ; are functions only of input
and not in their tracking capability, such an assumption féstory, we conclude thafw,} is also independent of the
customary. The requirement that this process is persistengipcesseq 7, ;}. This suggests the following partitioning of
exciting is also very common since it guarantees convehe estimation error vectah,, into two parts, namely
gence of the estimatdd’,, toward the ideal vecto, (here,
convergence in the mean).

The assumption that the regression vector processesisfying the recursions
{F;(X,,---,X1)} are stationary is the most crucial one. -1
Notice t_hat the regression vectors relatt-_z to the whole history r, = <1N — 1 Z ZMX,Z_Z) Pno1,T0 =40
of the input data sequence and not just the current data rd
vector X,,; therefore, the amount of information used for their p—1
computation increases with time, resulting in time-varying I, = <IN —u Z Zn,in”> o, ;
statistics. These statistics, however, as time progresses, tend,

=0
in most algorithms, to a steady state. Such is, for example, p—1
the case when exponential windowing of the data is used + i Z Wp—iZn i, g =0 9)
(i.e., forgetting factor RLS). Here, we clearly have violation i=0

of the stationarity assumption unless the regression VectQffere I,, denotes the identity matrix of dimension, and
converge to their steady-state statistics significantly fasterthgra — W, — W, is some constant but arbitrary vector. The

the corresponding estimatég,,, or the algorithm is already g4p6ve partition in turn suggests a corresponding partition of
in steady state, and there is a sudden change in the 8GLor {he excess mean square error in the form

On the other hand, there exists an abundance of algorithms for

which the regression vectors have finite memory being of the E{ci} = +7n
form F;(X,,,---,X,_n). Such algorithms are, for example, vn =E{(T%_,X,)%}
the ones applying a sliding window on the data. Hence, once e = E{I_ X)) (10)

the whole window is covered with data, we clearly have _

stationarity for the regression vectors (i.e., sliding windoWote that the crossterfa{(I"},_, X,,)(II;,_,; X,,)} is equal to

RLS). zero due to the independence betw¢en } from one side and
The requirement that the fourth-order moments¥pf and {X»} and{Z, ;} from the other. Part, is due to the initial

Fi(X,,---,X;) exist is technical and ensures existence of gonditions and the fact that our initial estimate is away from

expectations appearing in our analysis. Finally, Assumptidfe true valugV... We can see that it starts fronﬁa(l)lva_lue, _

A2 introduces the simplest and most commonly used noiggd we are going to show below that for stable algorithms, it

model. tends exponentially fast to zero. Patf, on the other hand, is
due to the additive noise. It starts from &{x?) value and
B. Excess Mean Square Error tends to a valu®(p) at steady state. Since, in our study, we

ianal . licati h ity of are concerned with the local cage< 1, we conclude that
I_n most signal processing app ications, the _qua!ty of t art+y,, is responsible for the transient phase of the algorithm,
estimateW,, is not measured through the estimation err

A b her th h th | hereas part,, is responsible for the steady-state behavior of
vector A, = W, — W, but rather through the scalar error the excess mean square error. The next subsection introduces

Wy — W)X estimates of the convergence rate and the steady-state excess
mean square error which, as we said, are necessary for defining
our performance measure.

€n =Yn — Wt_an = Wp —

n

=Wp — An—l*Xvn (6)

and, more precisely, through tmeean square erroE{c2} = i

o2 + E{2}, where ¢, = A'_ X,, and E{-} denotes C. Exponential Convergence and Steady-State

expectation. The quantity,, is known asexcess errgrits EXC€Ss Mean Square Error

power E{c2} as excess mean square erfoand the ratio  From this point on, we are going to rely on the IA to

E{c2}/02 asmisadjustmenf15]. derive our results. Let us first obtain estimates for the con-
Sincecs?, is part of the mean square error of every algorithrergence rate of,,. The exponential rate of,, is defined as

in our class, the excess mean square error becomes a natitial ..., (log(y;*)/n), and the following theorem estimates

candidate for the subject of study. Another possibility couldt,

of course be the power of the estimation error vector, namelyig, the expressior (), we mean thae:|z| < |O(z)] < ez|e| for

E{||A,.||?}. Clearly, the latter would be more appropriate fotonstants:, . In addition, byo(x), we mean thatim, o o(z)/a = 0.
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Theorem 1l:Let A = Ef;ol E{Z..X._,} = Ef;ol When comparing algorithms from our class, there is clearly
E{Zn4::X.} = E{Z,X!}, where Z, = Y'_5 Z,..;. ho reason to use the same step-sizé each one of them.
Define Amin(A) = min;{Re(\;)}, where \; are the eigen- Since convergence rates depend directly.orthis raises the
values of the matrixA and Ré-) denoting the real part. If question of what is a proper selection of the step sizes that can

Amin(A4) # 0, then we have guarantee a “fair” comparison without favoring any algorithm
. at the expense of another. There are two possible directions

i 1 <Iim log(v, )) = 2\min(A). (11) We can fo.IIow to solve this problem. The.first, which was
#—=0 p \n—oo n proposed in [6] and [9], consists of selecting the step sizes

Proof: A proof based on the IA can be found in the° that the corresponding rates are equal and then consider as

Appendix. For a proof that does not use the IA (but requiré)g“mum the algorithm with the smal!est steady-state excess
. . Mmean square error. The second, which was proposed in [5]
more stringent assumptions), see [21].

As a result of Theorem 1, we have the first corollargnd also.used in most s.|gnal processing applications, consists
. - . f selecting the step sizes so that the steady state excess
addressing the stability properties of.

Corollary 1: If Awin(A) > 0, thenr, for small enoughy mean square errors are equal and consider as optimum the

: : algorithm with the highest convergence rate. Here, we are
converges exponentially fast to zero at a rate that is approxs

) . . going to follow the latter direction because it will also allow
imately equal t02/iAmin(A). If Amin(4) < 0, then s, for for the definition of the notion of relative performance of two

small enoughy tends exponentially fast to infinity, meaning :
that the algorithm is unstable. Finally, ¥.m(A) = 0, no algorithms. However, for the local case, we can show that both

. : . . .~ . methods can lead to the same final performance measure.
conclusion can be derived since higher order approximation N .
in , are required et us first introduce a relative performance measure be-
Comment: In AL, we assumed that the input process, } tween two adaptive algorithms from the class defined _by (4)
. . i . . .and (5). Denote bw,;,Q,, R;, P;,« = 1,2 the corresponding
is persistently exciting by requiring the covariance matriX__, . . .
4 . atrices defined by Theorems 1 and 2 for the two algorithms.
Q = E{X,, X!} to be nonsingular. It should be noted tha .
' ' urthermore, lefy, 12 be the two step sizes selected so that

this assumption is rather necessary for our analysis to hé .
P Y Y e steady-state excess mean square error of both algorithms

applicable. This is because, as explained in Corollary 1, t ee ual to a common value < 1. From Theorem 2. we
estimate of the convergence rate of a stable algorithm is valg<d ’ '

if Amin(A4) > 0. However, ifQ = E{X,, X! } is singular, then immediately conclude that
we can easily show that this will also be the case for the matrix

A=E{Z,X'}, and therefore, we will have,,;,(A) = 0. i = K 1 +o(n),i=1,2. (14)
Under the result of Theorem 1, we can now proceed with o3, trace{Q;P;}
the estimation of the steady-state behaviotrpf
Theorem 2:Let the matrixA = SI—) E{Z,;X!_;} =  Under the constraint imposed by (14) that the two step
Eﬁ:ol F{Zn+i: X} = E{Z, X!}, with Z,, = 21;:_01 Zn+ii, Sizes are selected to yield the same steady-state excess mean
have eigenvalues with strictly positive real parts; then square error, we can now consider the transient parts of the
1 two algorithms. As a relative performance measure, we can
}Liﬂ% ﬁ (nlgr;o 7rn> = o2 trace{QP)} (12) clearly define the relative number of iterations required by

the corresponding transient parts to converge to zero. Since,

whereQ = E{X,, X!}, andP satisfies the Lyapunov equationtheoretically, each algorithm requires an infinite number of
’ steps to converge to zero, in order to find this ratio, we proceed

AP+ PA'=R (13) as follows. We first compute the number of iterations required
_ o, by each transient par;, to reach a common valug > 0;
with R = E{Z,Z, }. then, take the limit of the corresponding ratio of iterations as
Proof: A proof based on the IA is presented in the, tends to zero.
Appendix. A more rigorous proof that does not rely on the The number of iterations:;,;« = 1,2 required by the
IA can be found, for example, in [3, p. 107]. B correspondingy, to reach a common valug, from the

We have now available all necessary background resuffinition of the exponential convergence rate and Theorem
to define our performance measure and specify the optimumis equal to

algorithms.
logy™" + o(logy ™)
lll. L ocAL PERFORMANCE MEASURE i = 20t Amin (A7) + 0(p1;) (15)
Since speed of convergence is the characteristic that is
of interest to us, the most natural candidate for measuriggich using (14) takes the form
performance is clearly the exponential rate of convergence of
~n- This rate, as we can see from Theorem 1, depends on log -1 log -1
the step sizen and, for smally, can be approximated by p, = 1087 " tology™) (16)

2pAmin(A). It is this dependence op on which we want to ' lQ 2Amin(4;) + o(r)
elaborate. oy, trace{Q;P;}
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The relative performance, as we said, is the limit of the ratid. Optimum Algorithm for the General Model

of n1/ny as~y tends to zero. We thus have With the following theorem, we are going to show that the

Amin(A42) o(w) algorithm that maximizes the efficacy is the LMS-Newton [8],
.o _ trace{@,Pr) [11], [23], which therefore is the locally optimum algorithm
lim — = 2 ] 17) |
=0 7ng Amin(A1) o(m) in our class.
trace{Q, P1} + T Theorem 3: The maximum value of the efficacy is equal to

. _ 1/N, and it is attained if and only i¥Z,, = aQ'X,,, where
Since we consider the local case< 1, the termso(w)/7 is any positive real scalar.
in the previous expression are negligible as compared with proof: Let us first introduce a very useful property

measureof Algorithm 1 with respect to Algorithm 2LRM1 2)  matrices with the same dimensions, we then have
the expression
trace D'E} = tracd ED'} = trace DE'} = tracg{E' D}.

)‘min(AQ)
trace{Q, P2} . (22) .
lim "~ LRMy, = ﬁj)? (18) We can now proceed with our proof. From the non-negative
y—0 N min 1

B A definiteness of the covariance matrix pZ., X!]t, we can
trace{Q, P1} conclude th& R > AQ~'A', where we recall thard =
Since an algorithm is better (converges faster) when it requite$Z, X },Q = E{X, X!}, andR = [E{ZEZ}. We have
fewer iterations to converge, this means that algorithm 1 égjuality if and only if
better than algorithm 2 if LRM, < 1. _ .
Let us now define a quantity that will constitute our final Zn =AQ7 X, (23)
performance measure, which will refer to a single algorithn'rll

We define asfficacyof an algorithm the expression olds in the mean square sense. Notice now that the solution

P to the Lyapunov equation (13) is given by [7, p. 428]

EFF = Amin(4) (19) P= [ e_—ATRe—A T dr, mear_wing tha is increasing (see
2trace{QP} footnote) inR. In other words, if we replac&® by AQ ' A*
where we recall thatt = E{Z, X’ },Q = E{X,, X!}, Pisthe 2@nd denote with”; the solution to
solution to the Lyapunov equation (13) wil = E{Z,Z.}, AP, + P A = AQ~' A (24)

and Z,, = Ef;(} Zynyii. From (18), we can now see that

the LRM can be computed using the efficacies of the twwe haveP, < P. Multiplying from right and left with@
algorithms as results inQ'?P,Q'* < Q'/*PQ/?, which with the help
EFF, ) of (22), yields

2 20
EFF, ( tracgQP,} < tracgQP}. (25)

and clearly, Algorithm 1 is better than Algorithm 2 if EFE . . . .
EFF,. Consequently, if we are interested in the optimurf in (24) we multiply from the right by, ", take traces, and
(fastest converging) algorithm in our class, this amounts #$€ (22), we obtain
finding the algorithm with the maximum efficadthis will be . 1 atpel
the subject of our next section. 2trace A} = trac AQ AP, "} (26)

A last observation regarding the efficacy is the fact that it we know that matrices of given dimensions form a linear
can be directly related to the exponential convergence rate\@lctor space. For this space, we can define an inner product
the algorithm. Specifically, from Theorem 1 and (14), to 8f the form (D, E) = tracg D'E}. That (-,-) is indeed an

1/2

LRMy » =

first-order approximation, we have that inner product is easy to verify using the definition. We thus
. logyt - have validity of the Schwarz inequality, which for this case
Jim  —%— =4 — EFF (21) takes the form
where we recall that is the steady-state excess mean square (traceg{ D'E})? < trace D' D}trace E'E} (27)

error, and consequently,/o? is the misadjustment. In other o .
words, for fixed misadjustment, the efficacy is proportional #4ith equality if and only ifD = «k for some scalare. The
the exponential convergence rate. Schwarz inequality combined with (22) yields

(trace{A})* = (trace((P; /2 AQ™/*)(Q/2Py/)})?

IV. LOCALLY OPTIMUM ALGORITHMS
<tracg AQ ' A' P }trace P,.Q} (28)

In this section, we are going to maximize the efficacy over
two different algorithmic classes. The first will be the generalith equality if and only if
algorithmic model defined by (4) and (5) and Assumptions
Ai, As. The second will refer to an LMS-like class where A=aP,Q (29)
some additional constraint will be imposed on the input dataz; p, and p, are symmetric matrices, we say th&y > P» if the
aiming in generalizing the second optimality result of [4]. differenceP; — P5 is non-negative definite.



3320 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

for some scalakx. Since we consider stable algorithms, we Comment: A noticeable characteristic of the optimum al-
have from Theorem 1 that all eigenvalues Afmust have gorithm comes from the fact that its efficacy is independent of
positive real part. This means that trédd > 0. Now the dependency structure of the input data vector. Using (21),
substituting (26) in (28) yields this suggests that the optimum convergence rate also has the
same property.
trace A} < 2trace P, Q}. (30)
B. Optimum Algorithm for an LMS Like Family
Recalling thatA is real (thus, complex eigenvalues appear in In this subsection, we will focus on LMS and some of

conjugate pairs), we have its variants. We pay special attention to this algorithm since,
because of its simplicity, low complexity, and robustness, it
is a very popular candidate for real-time applications. Notice
o , , that the efficacy of LMS is ERfys = (A\nin(@Q)/trace@}).
combining this with (25) and (30), we conclude that thgye can see that the larger the eigenvalue spread of the matrix

efficacy is bounded from above by/N. ~_Q, the poorer LMS performs as compared with the optimum
To attain the upper limit, notice that we must have Va|ldlt)§|gorithm of the previous subsection.

of (23) and (29) and equality in (31) simultaneously. Since | ot ys now consider the case where the elements of the

P, Q are 23yrr11r'r12etric positive definite matrices, so is thgygression vectorg,, ; are given nonlinear transformations of
matrix P3/2QPL/?. Therefore, we can make the followingipa corresponding elements &F, ;i = 0,---.p— 1, that is

diagonalization:Pt/2QP%/? = TDT* with D diagonal and

Npin(A) < tracg A}. (31)

having real and positive diagonal elements. Multiplying from eni =Yn—i — Wi 1 Xn

left and right by P /% and P%/?, respectively, we conclude p-1

that the productP,@ is also diagonalizable and has real Wo=Wy_1+un Z €n,i fi(Xn—s) (32)
and positive eigenvalues. Thus, in order fér= oP,Q to i=0

correspond to a stable algorithm, we must setect 0. In where f;(z),i = 0,---,p — 1, arep scalar nonlinearities, and
order now forA to satisfy (31) with equality, sincd has real F(X0) der{otes 'Ehe ;/ector7 obtained by applying the scalar
eigenvalues, all eigenvalues df need to be equal. However, onlinearity f;(x) to each element of the vectak,,, i.e.

A = oP,Q is diagonalizable, and thus, it can have a singl?g(X ) = XD XY (X IND)E. Examples are the
eigenvalue if and only if4 =aly. Applyi_n_gthis relatilon to sizgngd regr;ssgr LZI\/ISnusing = 1"’ and' folz) = signz),

(23), we prove the necessity of the conditigh = aQ™ X the quantized regressor LMS using some quantized version

Sufﬁmency can be easily established by direct subsutuuo(r)\f the elements, a special case of the normalized LMS with
This concludes the proof.

— 2
Of course, the LMS-Newton algorithm has only theoretic O(x? N (.x./c + %), etc. We now come _to our last theorem
. . . . . . at identifies the regular LMS as the optimum among all such
interest since its application requires knowledge of the inpu

data covariance matrig), which is usually not available in variants for an interesting class of input signals.
’ y Theorem 4:Let the matrix@Q = E{X, X’} be nonsingu-

practice. On the other hand, it is expected that by estimat\i/rg; d the el b i g N of the input dat
this matrix using the input data, we will be able to achievé ?nX ﬁ ee_n;ent_ "I J = ’I' a'.’t 'bot' € mFu . a?h
performance close to the optimum. Indeed, as we are goingvf?)C or.X,, have identical marginal distributions satisfying the

see in the next section, there are several such possibilities.Cond't'On"JII linearity constraint (CLC) as in

There is one special case where the maf}ixs known be- E{x[F|xy = Ck,er[ﬂ (33)
forehand, and the corresponding optimum algorithm is readily
realizable in practice. This case is presented in the followigr £,/ = 1,---, N, andc;; constants. Then, the efficacy of
corollary. the algorithm defined in (32) is given by

Corollary 2: If @ = 021y, then the optimum algorithm in

S/ L
the class is the LMS. EFF; = ([E{‘X’[L1f(‘}’[l1)}2
In other words, if the elements of the input data vecxoy E{(xX2E{f(xI))2}
are uncorrelated and have equal variances, no other algorithm _ -1 i . o
has better performance than LMS. This corollary, in a senddhere f(z) = XiZq fi(x). The efficacy is maximized when
]f (z) = az with « any positive constant.

generalizes considerably the first optimality result of [4} ’ ) .
Specifically, in [4], it is shown that if the input data are Proof: The CLC in (33) states that the conditional ex-

Gaussian and white, then the optimum nonlinearity) in pectat_ion of thekt_h element ofX,, given itsith element mgst
(1), wheng(z) is fixed tog(z) = =, is f(z) = (x/c + pa?) be a linear function of théth flement gconsequentlykjl is

for some constant. In the local casg: < 1, this translates the correlation coefficient ok i and_X,[L]; thus, ci.1 = cix)-

into the optimum nonlinearity having the forpi(z) = #,  Let us first compute the matrixd, which here takes
i.e., the LMS algorithm. With our corollary, we have, in factthe form A = E{[X7_5 fi(X,)]X;}. We have that
shown that when the input data sequence is white, then LNf® k,lth element of this matrix, using conditional ex-
is locally optimum for a significantly larger algorithmic clasPectation, can be written a&{[Z73 f;(XI))xl}

and for data sequences having any marginal distribution ("= E{E{XY|xIh r,(xIyy = o E{XEFM],
necessarily Gaussian). where the last equality comes from the CLC (33) and the

EFF.Ms (34)
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fact that we have the same marginal distributions. In the satne found in [10]. The two algorithms were also compared in
way, we can show thaE{ X! X!y = ¢, E{[X!!]2}. From [5] for uniform i.i.d. input data.
this, we conclude that

A=rQ V. SIMULATIONS
[E{T(X,[}J)X,[}]} In this sectic_)n, we are goirjg to presen.t simulatipn in _order
S F{ IS (35) to compare vylth our theoreuc_al concI.usmns obtained in the
E{[X2]%} previous section. We are basically going to present two sets
Substituting these relations in (13) and taking traces, we ha®eexperiments corresponding to the two optimality results
that introduced in Theorems 3 and 4.
(1] In the first set, we simulate the following algorithms: LMS-
tracgl QP — NE{[J(X3 PP} 36) Newton (LMS-N), RLS, and sliding window RLS (SWRLS).
S 2r Specifically, we use the following adaptation formulas for each

Using (35) and (36) in the definition of the efficacy, we caalgorithm.
easily show (34). To maximize the efficacy, we only need to LMS-Newton:
maximize the scalar term in front of EEfs in (34). By a

_ ., _ Tt
simple application of the Schwarz inequality, we can see that n =tn = Wy Xn .

this term is no larger that unity, and it becomes one if and Wy =Wpo1 + pe,Q X, (38)
only if f(x) = az. Finally, we must select > 0 to produce . . . . .

a stable algorithm. This concludes the proof. [ | with @ = E{X.X,} being the exact covariance matrix of

Let us now elaborate on the CLC defined in (33). Severél’ﬁl_véhmh is assumed to be known exacitly.
well-known classes of input data processes satisfy this con-
dition. The first is the case whet¥,, is composed of i.i.d. e =uyn — W!_ X,
elements wherey;, ; = 0 for k& # [ (here, however, we have . + .
a stronger optimality of LMS because of Corollary 2). The @ =01 -1)Q1 + /;LX"X"’QO = 1oLy
second is the more interesting case, where the distribution Wo =Wh1 +pen@Q," Xy (39)
of X, is zero mean Gaussian; this is the case analyzed i
[4]. The third is when the distribution of(,, is a convex
combination of Gaussian distributions. Finally, if we regard
the elements of the vectdf,, as consecutive points of a scalar Cri =Yn_i— W}
process{z,}, then we can show that the CLC is equivalent
to the Bussgang condition (which is also known from blind Q, = Z X, . X!
deconvolution techniques) [1]. Several processes, especially

With the parametes selected to have a small valée= 0.001.
SWRLS:

71Xn7i7 LIOvvp_l

of the Markov type, are shown in [1] to satisfy the Bussgang p—1

condition and, consequently, (33). In the next section, we are W, =W,,_; 4+ uQ.* Z €niXn—i- (40)
going to present an example of such a process having uniform i=0

marginals.

Regarding the last algorithm, it should be noted that it is, in

Comment: Notice from (34) that by dividing any two fact, a modification of the cla55|cal SWRLS whose estimates
efficacies corresponding to two different algorithms from p—
are given byW, = @,* > 0 Yn—iXn_i. It is easy to

the class, the resulting LRM depends only on the COMMALe that the algorithm in (40) reduces to the classical SWRLS
marginal distribution of the elements d€,, and not on its

actual multivariate distribution. In other words, the relatlve wheny = 1. The modification in (40) of the original algorithm

erformance of anv two such alaorithms is independent of th&S considered necessary in order to achieve control, for fixed
gependency struct)l/Jre of the elgments)ﬁj P WIndOW sizep, over the excess mean square error (which is

As an example, let us compute the LRM of the S|gne mething that is not possible with the classical version). The

ove modification is proposed in [2] and [19], where it is also
regressor LMS (SRITMS) with respect to the regular I‘Msztated that this algorithm has the highest convergence rate of
Using (34), we obtain

all algorithms belonging to the underdetermined RLS class.
[E{[X,[}]]Q} As we are going to see, this performance can, at best, match
[ P B7)  the performance of the LMS-Newton algorithm, which is also
BEGIE ety infor o Size

significantly inferior for cases where the window size is not
If the data have Gaussian marginals, then the ratio of thdequately large. For our experiments, we are going to use two
two efficacies becomes/2, whereas in the case of uniformlywindow values, namelyp = 30 (SWRLS-30) andp = 100
distributed marginals, it is equal to 4/3. This means that in t{8WRLS-100).
first case, LMS requires 57% fewer iterations than the SRLMSThe input data vectorX, has the form X, =
to converge for any process satisfying the CLC and havilg,,z,_1, -, z,_19]', Where the scalar procesgz,}
Gaussian marginals, whereas in the second case, for unifasnan AR Gaussian satisfying, = ax,,_1 + v, with a = 0.9
marginals, this percentage drops to 33%. Detailed analysisawfd{v, } Gaussian i.i.d. The random variahlg is normalized
SRLMS and comparisons with LMS under Gaussian data camunit variance. The input sequenge,, } is passed through

LRMsr1Ms, LMS =
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20 ; ; , . . . , . ‘ Before examining the two figures, let us briefly discuss what
LMS-N is to be expected according to our analysis. Notice first that
0 \.‘ ---- RS | RLS does not satisfy our assumptions during the whole test
~ . x:?;go period. Specifically, the part of Assumption Al referring to the
X ~

stationarity of the regression vect@) ' X,, is not satisfied
because of the nonstationarity of the mat€) . Therefore,
we do not expect that, during the initial transient phase, RLS
will necessarily follow our conclusions. On the other hand,
we expect that this will be the case when the algorithm has
converged, and there is a sudden change in the mddel
This is true because the regression vector depends only on the
input data and not on the true mod#l,. Let us now examine
whether RLS can match the optimum performance whenever it
satisfies our assumptions. Notice that if the step gigesmall,
A e e 500 80007000 8000 sooo iaee  then the matrix@, , at steady state is a good approximation to
Number of Samples Q. This means that the regression vectyr= Q,, 1X, is also
Fig. 1. Performance of adaptive algorithms during the initial transient pha@e900d approximation t@~'X, and, according to Theorem
and after an abrupt change of the true system for Gaussian AR data. 3, we expect that RLS will match in performance the LMS-N.
As far as the SWRLS algorithm is concerned, we have
validity of our assumptions once the sliding window is covered

Excess Mean Square Error (in db}
1
>

S r—g

N ma

1ok LMS_N _ with data; hence, this algorithm can, at best, match the
---- RS | performance of LMS-N. Let us examine whether this is indeed
\, s SWRLS-100 possible. From Theorem 3, we have that the necessary and

‘‘‘‘‘‘‘ SWRLS-30 sufficient condition for optimality isZ, = aQ~'X,,. Since

Z, =¥} Z,; and, from (40), we haveZ, ; = Q' X,._;,
this yields

Zy = X (41)

p—1
—1
=0

The question clearly is whether the sufi_; Q,+; consti-
tutes a satisfactory approximation taQ~* (for some scalar
«), where we recall thaQ), = Ef;& X, X! .. For a
% 1000 2000 000 4000 5000 G000 7o00 sooo sooo ioooo  large enough window sizg, using the law of large numbers,
Number of Samples the matrix@,,/p approximates welf), and thus, the sum in
Fig. 2. Performance of adaptive algorithms during the initial transient phagél€stion is also expected to approximate we) . For small
and after an abrupt change of the true system for uniform i.id. data.  window sizep, howeverQ,, /p is not a good approximation to
Q, and therefore, the corresponding sum does not approximate
an FIR system (the vectoiV,) of length N = 20 having «Q ! well. For example, for a problem siz& = 20, a
elements randomly distributed jr-1 1]. Finally, to the output window of sizep = 30 might be considered small, whereas
of the FIR system, we add white Gaussian no{se,} of p = 100 might be considered adequate. In other words,
variance 0.01 to generate the desired respgpsé. The step SWRLS-100 is expected to match the performance of LMS-N,
sizes are selected so that the steady-state excess mean squageeas SWRLS-30 is expected to be inferior.
error becomes equal to 35 dB (misadjustment of 15 dB).Observing Figs. 1 and 2, we have that, indeed, SWRLS-100
This results in using, for LMS-N, RLS, and SWRLS-100, thés close to the performance of LMS-N and so is RLS after the
value i = 0.0032 and, for SWRLS-30, the valye = 0.0017. change of the model (where it satisfies our assumptions). On
We apply the four algorithms we mentioned before for the other hand, we can see that SWRLS-30 is significantly
number of points equal to 10000 with the characteristic thaferior to LMS-N.
at time 5000, we make a change of the true model fi&in In both figures, we can see that RLS, during the initial
to —W,. The experiment is repeated 50 times and as excesansient phase, is significantly faster than all other algorithms.
mean squared error, for every time instant we use the In fact, it is even faster than the optimum LMS-N. As we
arithmetic mean of the corresponding 50 realizations of tlexplained above, during this period, RLS does not satisfy
excess squared error. The results are presented in Fig. 1. our assumptions; therefore, it does not necessarily follow
Fig. 2 depicts the same algorithms for a similar experimentir conclusions. The extraordinary fast convergence speed of
as the previous one, only here, the input sequepsel is this popular algorithm comes from the fact that it has the
uniform i.i.d. with variance equal to unity, and the additiveinique property of exactly estimating’, in a finite number
noise{w;, } is also uniform with variance 0.01. The step sizesf steps when there is no additive noise present. LMS and
are the same as in the previous experiment. most other adaptive algorithms do not enjoy this characteristic.

Excess Mean Square Error (in db)




MOUSTAKIDES: LOCALLY OPTIMUM ADAPTIVE SIGNAL PROCESSING ALGORITHMS

3323

AN LMS(a=0) LLMS(a=0)
0 \ .\ 0 AN
N - - - - SRLMS(a=0) AN, -~~~ SRLMS(a-0)
-5 R T LMS(a-0.5) -5 A\ T LMS(a=1)
NS :
. - _ -~ = =~ SRLMS(a-1
_io} SR SRLMS(a=0.5) 10 (a=1)

Excess Mean Square Error (in db)
I
o

Excess Mean Square Error (in db)
I
I

-351

e

_40 . . . . . . L
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Fig. 3. Performance of LMS and signed regressor LMS during the initilig. 4. Performance of LMS and signed regressor LMS during the initial
transient phase for Gaussian i.i.d. and AR data. transient phase for uniform i.i.d. and Markov data.

This convergence property is preserved, as was proved in [20)1S is 56% faster than SRLMS, regardless of the dependency
when the additive noise is low, and the paraméter (39) is structure of the data. We can see in Fig. 3 that this is indeed
small (which is the case in our experiments). the case. The relative performance of the two algorithms is

Finally, we can see that the convergence rate of the #te same for both values of the parametemd approximates
gorithms that match the LMS-N is indeed independent dfie theoretical value well.
the distribution and the dependency structure of the data, aginally, Fig. 4 has a similar experiment as the previous
was pointed out in our comment at the end of Section IV-Ane but with a uniformly distributed data procegs,} of
This is demonstrated by the different data distributions anuhit variance. To generate a non-i.i.d. process with uniform
dependency structures used to produce the results appeamagginals, we considereflz,, } to be a Markov process with
in Fig. 1 (Gaussian and highly correlated) and Fig. 2 (uniforttansition probability density(xz,|z,—1) equal to
and i.i.d.).

The second set of experiments we intend to present refers
to Theorem 4. Here, we test the two most well-known alg
rithms in the class, namely, LMS and signed regressor L
(SRLMS). The corresponding recursions are the following.

S(enlzn-1) = u(wn) [1+ 5 2] (44)

vhere u(z) denotes the uniform density with support
2v/3,v/3] (in order for z,, to have unit variance). When
la] < 1, then s(z,|z,.—1) is a legitimate transition density

LMS: for {z,} since it is non-negative and integrates to unity for
en =Yn — Wi_ X, anyzr,_1 € [—\/3, \/3]. It is easy to show that the marginal
W, =W,y + pen X, (42) (steady—;tate) density of this Markov process is indeed uniform
by verifying that u(x,,) = [ s(zp|zp_1)u(z,-1) dr, 1.
SRLMS: Furthermore, we can show that the bivariate densityrf
. and z,,—; is of the forms(z,, zn—;) = w(@n)w(z,—;)[1 +
n =tn = Wy Xn (&) znz,—]; therefore, we can easily verify that the CLC
W, =Wo_1 + pepsign(Xy,). (43) in (33) is also valid.

Oé For uniform marginal densities, we have seen in Section V-
AR data of the formz, = az,_1 + v,, where {v,} is q thatdLMS 'i 33t% fas}teﬂr] thgmt SFE.‘ME’ dreg.a;dless c:lf t[}s
i.i.d. Gaussian and,, is normalized to unit variance. The ependency structure ot the data. g. epicts exaclly this

FIR systemWV, is the same as in the previous examples, ar‘i)é)';i[ f(l)r :\tlw\{o value_s of t?eﬂfaratlmet@nn f(44|)_’|\: g mi%”oﬁgg
the additive noisgw,, } is also Gaussian with variance 0.012N¢"- N tis expenment, the step size for LIMSAS= 9. .
Two values for the parameter are used, namelyg = 0 and for SRLMSu, = 0.0027. We can see again that the relative

and 0.5. The step sizes for the two algorithms, for boﬂ;?en‘ormance does not depend erand that it is close to the

values ofa, are . = 0.0032 for LMS and ;» = 0.0025 for theoretical value.

SRLMS, producing an excess mean square error of 35 dB.

The algorithms are applied to 5000 points, except here, we

do not impose any change in the true mo#é|. Again, the We have presented a new analytic method for comparing

experiment is repeated 50 times in order to compute estimatesistant gain adaptive signal processing algorithms. By mak-

of the excess mean square error. ing an asymptotic analysis of the second-order statistics of the
Since the proces$z,} is Gaussian, we have validity of excess error during the transient as well as the steady-state

the CLC (33); consequently, as was stated in Section IV-Bhase of the algorithm, we were able to obtain estimates of

Fig. 3 depicts the performance of the two algorithms f

VI. CONCLUSION
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the convergence rate and the steady-state excess mean sdufirgl™,} or, equivalently, its vector form ve&{I",,I’;}}.
error. This, in turn, led to the definition of a theoreticallySince

computable local performance measure (the efficacy), which . .

is consistent with the comparison methods used in most signal VEC(EAL'n1" 1} = E{ved{l: I} = E{l'» @ I} (47)
pro_ce_ssing applications._We showed that the a_lgorithm_ thv% can equivalently study the vectefI",,®I",, }. For this vec-
optimizes our measure 1 th? Newton-LMS. Th|s alg.orlt.h%r, we have the following recursion using (9) and stationarity
has only theoretical interest since, for its practical reahzauogf the processe$X,}, {Z, it.i = 0,---.p— 1:
it requires thea priori knowledge of the second-order statistics P AR A
of the input data. Practically realizable algorithms were alsOE{l", ® I',} = FE{[',,_; ® ['n_1}

presented that approximate the optimum performance very FeTvs— uAIn — ulv @ A+ 2D (48
closely. Finally, limiting ourselves to an LMS-like family of =y mpA Iy = pin @ A (48)
algorithms, we showed that for an important class of inpyhereD = E{(Z,, ® Z,,)(X, ® X,.)!} and where, again, we
signals, LMS is better than any of its variants that applysed the IA to separate the expectations. We now conclude
the same nonlinear transformation on the elements of htE(T, @I, } = F"(Ao® Ao); consequently, the behavior
regression vector. of E{I', ®I',, } is exponential and governed by the eigenvalue

of F' with the maximum amplitude. More precisely, we have
APPENDIX

7

Before going to the proofs of Theorems 1 and 2, let us Jim /]| F] = max | fi| (49)

briefly introduce the notion of the Kronecker product for

two matrices along with some basic properties that will b¥here |l - || is any matrix norm, andf; are the eigenvalues
necessary for our proofs. of F' [16, pp. 36—38]. Since we assumed thats small, we

Let C. D be two matrices with elements . d; . and of Can See from (48) that the matri is, in fact, a perturbation
) IR 2¥)

dimensionsn x [ andk x ¢. The Kronecker product of and of the identity matrixd 2. Thus, its eigenvalueg; satisfy

D, which are denoted a€ ® D, is a matrix of dimensions /i = 1 — #pi + o(u), where p; are the eigenvalues of the
(mk) x (Ig) defined in a block form as matrix Iy ® A+ A® Iy [16, pp. 74-83]. Taking logarithms
in (49), using the relatiotog(1+x) = x+o(x), which is true

ca e for small z, using Lemma 1, then dividing by and taking
CoD= : : : . (45) the limit as;. — 0 proves the required relation. ]
cmaD - cpmuD Proof of Theorem 2:To prove this theorem, we are going

. to proceed as in Theorem 1. Using the IA, we first note that
In addition, let ve€ denote a vector of lengtil that results . = trac QE{IL,_,II'_,}}. Using the vector form for

if we p!ace the columrjs of t_he matrt one after the other. matrices, we can easily verify that for two matricBs E, we
Provided that the dimensions of the matrices involved fLyve tracéD'E} = vec[D}vec{E}. Using this property

such that the operations below are valid, we have the followig\ge

; can write
properties of the Kronecker product:
1) (C+D)@E=CQE+DOE; mn = traceg{ QE{IL, 11T, ,}}
2) E@(C+D)=E@C+EoD, =ved'vecE{IL,_,II} _,}

3) (CD)® (EF) = (C® E)Do F);

4) vedCD} = (I @ C)vec|{ D} = (D' @ I''vec|C}.
For a proof of the above and other interesting properties Bfom the definition ofll,, in (9) and using again the IA and
the Kronecker product, see [17, ch. 12]. stationarity of the processez, ;}.{X,}, we can find the

We have now the following lemma concerning the eigemecursion
values of an expression involving Kronecker products.

Lemma 1: Let A be a square matrix of dimensiongx N,  E{ll, ® ll,} = FE{ll,_1 ® IL,_1} + p’ovec{R} (51)
where A\;,¢ = 1,.--,N are the corresponding eigenvalues; —
then, the eigenvalues of the matiid @ Iy + Iy @ A) are where we_frecall thak = E{Z,Z,}, and thus, vefR} =
the N2 numbers\; + ;4,5 = 1,---, N. E{Z, ® Z,}, where FF was defined in (48). For stable

Proof: See [17, p. 412]. algorithms, that is, algorithms for which,,;,{A4} > 0 and

We can now proceed with the proofs of our two theoremdor small enoughy, we have thatF” has all its eigenvalues
Proof of Theorem 1:The application of the IA will consist inside the unit circle. Thus, the above recursion is stable and

of assumptions that recursive estimates of any kind are ind&nverges to the vector

Ere]gdjnt Vc;fe{)k(‘g\}/eand that{Z,, ;},¢ = 0,---,p — 1. Thus, to T E{IL, © 1L} = 0% (Ix2 — F) ' vec{R}.  (52)

Yo =E{Tl | X, X!, 1} =FE{I'l F{X, X/} 1} SubstitutingF" from (48), dividing by, and taking the limit

—VedQ'E{IL,_; @I, }. (50)

=trace{ QE{l,,_ I _,}}. (46) asp — 0, we conclude that we can write
Sinceq is constant, to study the convergence properties,of lim l( lim E{IL, ® Hn}) =02 vec{P} (53)
it suffices to study the convergence properties of the matrix #=0 i \n—oo
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where

[14]

vec{P} = (In @A+ A@1In)"" vec{R}.  (54)

[15]

It turns out that the last relation is the solution to the Lyapunov
equation (13) written in a vector form [7, p. 428]. Combinind™®!

this with (50) yields the desired result.

el |
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