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Fast and Stable Subspace Tracking
Xenofon G. Doukopoulos, Member, IEEE, and George V. Moustakides, Senior Member, IEEE

Abstract—We consider the problem of adaptive subspace
tracking, when the rank of the subspace we seek to estimate is
assumed to be known. Starting from the Data Projection Method
(DPM), which constitutes a simple and reliable means for adap-
tively estimating and tracking subspaces, we develop a fast and
numerically robust implementation of DPM, which comes at a
considerably lower computational cost. Most existing schemes
track subspaces corresponding either to the largest or to the
smallest singular values, while our DPM version can switch from
one subspace type to the other with a simple change of sign of its
single parameter. The proposed algorithm provides orthonormal
vector estimates of the subspace basis that are numerically
stable since they do not accumulate roundoff errors. In fact, our
scheme constitutes the first numerically stable, low complexity,
algorithm for tracking subspaces corresponding to the smallest
singular values. Regarding convergence towards orthonormality
our scheme exhibits the fastest speed among all other subspace
tracking algorithms of similar complexity.

Index Terms—Fast adaptive algorithms, numerically stable sub-
space tracking, orthogonal iteration, subspace tracking.

I. INTRODUCTION

I N this paper, we are interested in developing adaptive tech-
niques capable of performing subspace tracking. Common

key ingredient in such methodologies constitutes the assump-
tion that the subspace rank is considered known. This is very
common in the subspace tracking literature and therefore
adopted in the present work as well. The interested reader
may refer to [1] for information theoretic criteria, like Akaike
Information Criterion (AIC) and Minimum Description Length
(MDL) in order to cope with the rank selection problem.
Adaptive subspace tracking algorithms are of great importance,
since they find numerous applications as: telecommunication
systems, adaptive filtering, direction of arrivals, antenna array
processing, linear systems, etc.

A. Problem Definition

In a typical application of subspace-based adaptive signal
processing we are receiving, sequentially, observation vectors
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. Assuming stationarity we define the observation co-
variance matrix as . Applying a singular value
decomposition (SVD) on , we can write

(1)

where and
. The diagonal elements

are the singular values of satisfying

(2)

Hence, the diagonal matrices , contain the largest and
the smallest singular values of , respectively,
while , contain the corresponding singular vectors.
The matrices , are both orthonormal, constituting or-
thonormal bases for the corresponding subspaces and they are
orthogonal to each other since . The problem we
would like to solve is as follows.

Assuming that the data sequence is available se-
quentially, we would like to provide adaptive estimates ei-
ther for or for .

Perhaps the most common data case encountered in practice
corresponds to the following signal plus noise model:

(3)

where is a sequence of length- vectors lying on an -di-
mensional linear subspace and are independent and iden-
tically distributed (white) noise vectors with independent ele-
ments. In this case, the SVD of (1) takes the special form

(4)

where denotes the identity matrix of size ;
is the SVD of the covariance matrix of with

nonsingular and the covariance matrix of
with the noise power. Matrix is then said to span

the signal subspace, whereas spans its complement, i.e., the
noise subspace.

The algorithm we are going to develop in Section III along
with the corresponding analysis of its convergence properties
can be applied to the general data case. However, with a slight
abuse of notation, we will call the subspace corresponding to
the largest singular values “the signal subspace” and the sub-
space corresponding to the smallest singular values “the noise
subspace,” keeping of course in mind that these names originate
from the signal plus noise data model of (3).
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B. Literature Review

Before proceeding with a description of the existing work,
let us first classify the subspace tracking algorithms with re-
spect to their computational complexity. A straightforward way
to estimate the subspace of interest is to apply an SVD on the
covariance matrix . This approach, known as direct SVD, re-
quires operations. In order to avoid the excessively high
computational complexity needed by direct SVD, alternative
schemes requiring less operations were developed. If denotes
the rank of the (signal or noise) subspace we would like to es-
timate, since usually , we propose the following classi-
fication of the existing algorithms according to their computa-
tional complexity. Schemes requiring or op-
erations will be classified as high complexity; algorithms with
complexity as medium complexity and finally methods
with operations as low complexity. The last category
constitutes the most important one from a real time implementa-
tion point of view, and schemes belonging to the low complexity
class are also known in the literature as fast subspace tracking
algorithms.

The literature referring to the problem of subspace tracking
is extremely rich. The survey article [2] constitutes an excel-
lent review of results up to 1990, treating the first two classes,
since the last class was not available at the time. It is clearly the
continuous interest in the subject and significant recent devel-
opments that gave rise to the third class. In the present work, we
mainly emphasize on this low complexity class for both signal
and noise subspace tracking, while we briefly address the most
important schemes of the other two classes. An exhaustive lit-
erature review can be found in [3, pp. 30–43].

The great majority of articles addressing the problem of sub-
space tracking focus mainly on signal subspace, while the liter-
ature intended for the noise subspace is unfortunately very lim-
ited. Starting from the former, let us first introduce the most im-
portant methods belonging to the high complexity class. Owsley
[4] was the first to introduce an adaptive procedure in order to
update signal subspace estimates with operations. His
adaptation was basically the application of an Orthogonal It-
eration variant (which is going to be introduced in Section II)
that uses the exponentially windowed sample autocorrelation
matrix as an estimate of the covariance matrix . According
to [2], the version that presents the overall best performance is
a Lanczos-type algorithm. The same type of algorithm, is also
proposed in [5], [6] adopting the Rayleigh-Ritz approximation
of [7]. All these Lanczos-type schemes require opera-
tions. Based on the interesting idea of rank revealing decompo-
sitions, first proposed in [8], alternative subspace tracking tech-
niques were developed requiring complexity [9]–[11].

Let us now continue with signal subspace tracking algorithms
belonging to the medium complexity class. The Data
Projection Method (DPM) [12] is an important representative
of this class. Since this algorithm will serve as the basis for our
novel fast algorithmic scheme we defer its detailed presentation
for the next section. The most popular algorithm of the medium
complexity class was proposed by Karasalo [13]. Karasalo’s al-
gorithm offers the best performance to cost ratio [2] and thus
serves as a point of reference for all subsequent low complexity

techniques. Its overall complexity is ,
with the part coming from the need to perform an SVD on
an matrix.

Focusing on the low complexity class, the Projection Ap-
proximation Subspace Tracking (PAST) algorithm is a very well
known approach for signal subspace tracking proposed in [14].
The main advantage of this scheme is its simple struc-
ture having a single parameter to be specified and its main hand-
icap its inability to provide orthonormal estimates. The next two
algorithms of interest are MALASE [15] and PROTEUS-2 [16].
Both algorithms have a rather complicated structure but they
provide orthonormal estimates for the subspace basis. The first
has four parameters and the second one that need to be tuned.
The next algorithm, known as the Low Rank Adaptive Filter
(LORAF), was proposed in [17] and came out by suitably pro-
jecting the observed data onto the signal subspace instead of the
complete data space. Its fastest version (of complexity ),
known under the acronym LORAF-3, has one parameter to be
specified and provides orthonormal estimates. Finally, in a re-
cent work [18], we have the algorithm FAPI which has a single
parameter and provides orthonormal estimates with a very high
overall performance. A very serious drawback of all previous
algorithms is the fact that they do not have a noise subspace
tracking counterpart.

The noise subspace tracking literature is very limited com-
pared to the wide variety of methodologies offered for signal
subspace estimation. However, noise subspace tracking can be
of equal importance for many applications. For example, in the
domain of telecommunications, there exist several blind channel
estimation methods that rely on the knowledge of the noise sub-
space basis as in [19] for CDMA and in [20], [21] for OFDM
systems. In [22], the SQRI minor subspace tracking scheme is
proposed. This method employs a sequential inverse iteration
based on square root QR update of the covariance matrix. It
exhibits extremely good performance characteristics however,
due to its computational complexity which is , it be-
longs to the high complexity class. The estimated subspace is
orthonormal at each iteration to machine accuracy. In [23], an
algorithm for tracking the minor subspace of a correlation ma-
trix is proposed. Due to the fact that the data autocorrelation ma-
trix is explicitly calculated and used in matrix-vector multiplica-
tions the algorithm presents an overall complexity of .
However, in the special case of time series analysis it can be
reduced to , where corresponds to the number of ad-
ditional dimensions (with respect to ) in which the new es-
timate of the desired basis is searched and is equal to 1 or 2
according [23]. The resulting algorithm presents a similar per-
formance with [22], however, as it is stated in [23], it deviates
very slowly from orthonormality.

As far as low complexity noise subspace tracking is con-
cerned, it is interesting to point out that, in general, it is not
possible to obtain such an algorithm by a straightforward mod-
ification of a signal subspace scheme. Existing noise subspace
algorithms of complexity , are all problematic, either
exhibiting instability (divergence) or nonrobustness (numerical
instability due to roundoff error accumulation). In the first case,
we have [24], which diverges in noise subspace tracking. Ef-
forts to eliminate its instability were attempted in [25] and [26]
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by forcing the estimates to be orthonormal at each time step.
Although there is a definite improvement in the stability charac-
teristics, the resulting schemes are nonrobust, deviating slowly
from orthonormality due to round-off error accumulation.

Another interesting scheme is the FRANS algorithm of [27],
which we discuss in detail in the sequel, and which combines the
DPM method with a fast orthonormalization procedure. How-
ever, FRANS is not stable and diverges fast from onrthonor-
mality as it is also argued in [3], [28]. In [29] the application
of Householder transformation in order to cope with FRANS’s
divergence is proposed. The new algorithm, called HFRANS
presents indeed a much more stable behavior. This approach is
different from the one we propose in the present manuscript.
Unfortunately, even HFRANS continues to diverge from or-
thonormality (much slower than FRANS). This is proved in
[30], where upper limits concerning the progress of the diver-
gence are derived for both FRANS and HFRANS. Furthermore
it is also interesting to mention that if orthonormality is lost,
HFRANS is incapable of regaining this desirable property.

The fast DPM scheme we present in this work, was first de-
veloped for complex arithmetic, and successfully applied to the
problem of adaptive OFDM channel estimation [21]. Here we
introduce its real arithmetic version and focus on performance
comparisons with all other existing low complexity schemes.
We mainly insist on convergence and robustness under finite
precision arithmetic. Regarding both issues, our algorithm will
be equipped with a number of analytical results that sufficiently
capture the essence of its somewhat unique behavior (especially
in the case of robustness). Thus, a much more complete analysis
of FDPM can be found here than its initial presentation in [28].

In [31], the authors apply our orthonormalization procedure
(i.e., the one proposed form FDPM in [28]) and finally arrive in
correcting the instability exhibited by all existing variants of the
OJA algorithm. The FOOJA of [31] does not perform any better
than our scheme despite its higher computational complexity.

II. ORTHOGONAL ITERATION AND VARIANTS

In this section, we present the Orthogonal Iteration and two
of its variants that are capable of estimating the subspaces cor-
responding to both the largest and smallest singular values. The
Orthogonal Iteration [32, p. 353] is the simplest iterative proce-
dure, coming from Numerical Analysis, which can be used to
compute the singular vectors corresponding to the dominant
singular values of a symmetric, nonnegative definite matrix.

Lemma 1: Let be a symmetric, nonnegative definite matrix
of size , denote with

its singular values and with the corresponding
singular vectors. Consider the sequence of matrices of
dimensions , defined by the iteration

(5)

where “orthnorm” stands for orthonormalization using QR-de-
composition or the modified Gram-Schmidt procedure, then

(6)

provided that the matrix is not singular.

Proof: The proof can be found in [32, pp. 410, 411] .
For the orthogonal iteration to converge, it is imperative that

. Whenever the latter is valid, the convergence is
exponential and proportional to or, equivalently,
with an exponential rate equal to . According
to the above definition, it becomes clear that positive rates cor-
respond to convergence, while negative to divergence. At this
point, several remarks are necessary.

Remark 1: If some of the largest singular values coincide,
then the corresponding singular vectors are not unique. In such
case the Orthogonal Iteration converges to a basis in the corre-
sponding subspace.

Remark 2: If instead of QR or Gram-Schmidt, we use any
other orthonormalization procedure, the sequence con-
verges to an orthonormal basis in the subspace spanned by the
first singular vectors. The latter is, of course, unimportant
whenever the largest singular values are all equal to each other
and, thus, the vectors of any orthonormal basis are also singular
vectors.

We proceed with the presentation of two variants of the or-
thogonal iteration that allow for adaptive implementations. The
two proposed variants are the following:

(7)

(8)

where is a “small” scalar parameter known as step size.
We observe that the two variants differ only in the sign that
precedes . Notice that has the same singular vec-
tors as , while the singular values are equal to . In
the “ ” case, since , the eigenvalues have the same or-
dering as the original . This suggests that (7) will converge
to the singular vectors corresponding to the largest singular
values, exactly as in (5). In the “ ” case on the other hand,
for sufficiently small (so that the matrix is nonnegative def-
inite), the singular values are ordered in exactly the opposite
way as compared to the original . This forces (8) to converge
to the subspace of corresponding to the smallest singular
values. Regarding convergence, it is again exponential but at a
rate equal to

for (7) and
for (8). In both cases, the conver-

gence rate is of the form where . Since for
sufficiently small the rate is positive (provided of course that

or ), the corresponding algo-
rithm is stable.

A. Adaptive Orthogonal Iteration

When matrix is unknown and, instead, we acquire the data
vector sequence sequentially, we can replace in (7) and
(8) with an adaptive estimate that satisfies .
This leads to the Adaptive Orthogonal Iteration algorithm

(9)

where the “ ” sign generates estimates for the signal subspace
and the “ ” sign for the noise subspace. Depending on the
choice of we can obtain alternative subspace tracking al-
gorithms.
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Clearly the simplest selection for is the instantaneous
estimate of the covariance matrix, that is, which
gives rise to the Data Projection Method (DPM) first introduced
in [12]

(10)

(11)

(12)

with the orthonormalization performed using Gram-Schmidt.
Due to this latter requirement, it is clear that the overall compu-
tational complexity of DPM is equal to . This simple
adaptive scheme will serve as a starting point for developing
our subspace tracking algorithm in the next section. In fact the
goal is to replace the Gram-Schmidt part with a faster orthonor-
malization procedure that will reduce the overall complexity to

.

B. Projection Operator and Convergence Analysis

Let us first denote with the subspace basis we would like
to estimate; i.e., if the “ ” sign is employed in (11) or

if instead we use the “ ” sign. Notice that in the ma-
jority of applications involving subspace tracking we are mainly
interested in the projection of the data sequence onto the
subspace of interest and not so much in the subspace basis
itself. If is an estimate of then constitutes an esti-
mate of the projection operator while the ideal projector is equal
to .

Regarding convergence of towards there are two
issues that are of interest: transient and steady-state behavior.
Transient phase is characterized through the mean convergence
of the estimation scheme, in other words how con-
verges towards . Steady-state behavior, on the other hand,
is quantified through the steady-state projection error power.
To define this quantity let us first introduce the projection error
power at time as

(13)

where denotes the Frobenius norm of
the matrix . Then projection error power at steady state is
simply the limit . We have the following lemma
that treats the two points of interest for the case of the adaptive
orthogonal iteration.

Theorem 1: Consider the adaptation defined in (9) where
is any adaptive estimate of satisfying , then the
mean projector trajectory tends to the ideal projector

at an exponential rate of the form ; where
is a positive constant (stability) independent from ; fur-

thermore the steady-state projection error power is of the form
, where is also a positive constant indepen-

dent from .
Proof: The proof can be found in Appendix I.

As we can see from Theorem 1, any increase in the step
size produces an equivalent increase in the convergence rate
and in the steady-state projection error power. Due to this fact,
the value of in the adaptive algorithm becomes a compro-
mise between the two conflicting requirements of having a fast

converging algorithm and a small steady-state projection error
power (this is a general observation for all adaptive estimation
algorithms with constant step size).

C. Alternative Implementations

DPM is a special case of the adaptive orthogonal iteration in
(9) with . One might wonder whether it is possible
to improve subspace tracking by using less crude estimates of

. Such possibility constitutes, for example, the sliding window
sample covariance matrix

(14)

With , (14) becomes a better estimate of than the
simple outer product . It is therefore only natural to ex-
pect that this will translate into better subspace estimates when
used in (9). As we shall see in the next lemma, this intuitively
plausible conjecture is in fact false.

Lemma 2: Consider the adaptation in (9) with

(15)

Then, to a first-order approximation in , the mean projector tra-
jectory and the steady-state projection error power

are independent from the spe-
cific sequence used in the adaptation.

Proof: The proof can be found in Appendix I.
From Lemma 2 we deduce that by using the more efficient es-

timate of given by (14) or more generally by (15), the adap-
tive orthogonal iteration exhibits very similar performance as
the simple DPM algorithm. Indeed this is true since the tran-
sient and the steady-state phase, to a first-order approximation
in , have exactly the same statistics. We are going to corrobo-
rate this theoretical finding with the first simulation example in
Section IV. In fact, with the simulation we are going to realize
that these algorithms, not only match their statistics but they also
have very similar trajectories. Let us now continue with the in-
troduction of the fast orthonormalization versions of DPM.

III. FAST ORTHONORMALIZATIONS OF DPM

Going from complexity to is possible by
sacrificing exact orthonormality at each step. In a subspace
tracking problem, however, orthonormality is a leading and par-
ticularly desirable characteristic. Therefore the relaxation of this
property must be made very cautiously. Indeed the majority of
existing schemes attempt to comply with two very strict
requirements regarding orthonormality:

R1) When the initial estimate is orthonormal, then all sub-
sequent estimates must satisfy the same property.
R2) If for some reason orthonormality is lost (when for
example we initialize with a nonorthonormal matrix), then
the scheme must converge, as quickly as possible, to an
orthonormal matrix.

The first requirement is very susceptible to nonrobust be-
havior (round-off error accumulation). For the second, it is clear
that we would like convergence towards orthonormality to be
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significantly faster than the time required by the estimates to
converge (in the mean) to the true subspace. As we are going to
see the fast DPM version we are going to propose here, avoids
robustness problems and exhibits an extremely high conver-
gence speed towards orthonormality.

Besides our own orthonormalization procedure we are also
going to present and analyze the FRANS algorithm of [27] which
constitutes an alternative means of fast orthonormalization of
DPM. As we will demonstrate in the sequel, FRANS exhibits
robustness problems and significantly slower convergence to-
wards orthonormality as compared to our adaptive scheme.

We recall that DPM is the result of using the crude estimate
for the data autocorrelation matrix . According
to [3], for the algorithm to converge we need to select a step
size such that , where is the largest
singular value of . To satisfy this requirement we propose
the use of a normalized step size . We know
that , however most of the time we have

, therefore, selecting even close to unity
results in . Since is not available, we can
replace it by an estimate. There are two possibilities, we can
either replace by its instantaneous estimate or apply a simple
exponential window. More precisely we can select

(16)

and is an exponential forgetting factor.
Going back to DPM (10)–(12), we observe that we can write

(17)

where matrix is responsible for performing (exact or ap-
proximate) orthonormalization. It is the different choices of
that give rise to alternative fast versions. Let us first find a re-
cursion for using (17), expecting that this will guide us
in properly selecting . We have

(18)

where . Clearly the goal is to make
the product , thus assuring orthonormality for our
estimates. Recursion (18) is the key relation to define FRANS.

A. The FRANS Algorithm

FRANS can be derived from (18) by selecting to satisfy
Requirement R1. In other words, if is orthonormal then

must be selected so that enjoys the same property. Using
(18) this means that must satisfy the equality

(19)

A straightforward selection that fulfills (19) is

(20)

which gives rise to the FRANS algorithm [27]

(21)

(22)

(23)

(24)

and we recall that is normalized according to (16). The adap-
tation depicted in (21)–(24), has complexity . As we are
going to see in the next section, in the case of signal subspace
estimation, this scheme is robust (not accumulating round-off
errors) and stable (when initialized with a nonorthonormal
matrix it converges to an orthonormal one). When however
we use the algorithm to estimate the noise subspace, we have
exactly the opposite behavior since FRANS becomes non-
robust and unstable. In other words when initialized with an
orthonormal matrix, because of round-off error accumulation,
after some point orthonormalization is lost and, even worse,
when initialized with a nonorthonormal matrix it diverges. Even
in the case of signal subspace estimation where the FRANS
algorithm is robust and stable [33], the speed of convergence
towards orthononormality is of the same order of magnitude
as the speed of convergence of the estimates towards their
limit . It turns out that this latter fact is common practice to
all existing algorithms of complexity , except the one
proposed next.

B. The Fast DPM Algorithm

In order to derive our scheme we are going to follow a slightly
different logic than the one applied to derive FRANS. Instead of
requiring, as in (17), the matrix to be orthonormal,
we simply ask it to be orthogonal. Normalization of the columns
of is then a process that requires operations, as-
suring that the overall target computational complexity will not
be exceeded.

Now, let us see how we can select . Forming the product

(25)

we recall that this is not equal to as in FRANS, since
the columns of need normalization to produce . The idea
is to make this product a diagonal (instead of identity) matrix,
property that assures orthogonality of the columns of . We
will select so that requirement R1 is valid. According to R1
if we assume that is orthonormal, then (25) takes the form

(26)

Notice now that if is an orthonormal matrix having as first
column the vector (and, thus, the remaining
columns containing vectors orthogonal to ), then (26) be-
comes the following diagonal matrix:

(27)

where . It is fortunate that there exists a very
well-known and widely used matrix in Numerical Analysis with
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TABLE I
STEPS OF THE FDPM ADAPTIVE ALGORITHM

the desired properties for . We refer to the Householder Re-
flector matrix [32, p. 195] which is defined as follows:

(28)

(29)

and gives rise to our fast DPM (FDPM) algorithm. The complete
adaptation is summarized in Table I, where “normalize” stands
for normalization of the columns of the matrix . The overall
complexity is1 multiplications, additions,

divisions, and square roots. The strong points of
our FDPM algorithm are as follows.

• It has a simple structure with a single parameter (the step
size) to be specified.

• By changing the sign in front of we can switch from
signal to noise subspace estimation (this property is inher-
ited from DPM).

• It is robust with respect to finite precision for both signal
and noise subspace estimation (there is no round-off error
accumulation).

• It converges to an orthonormal matrix when it is initialized
with a nonorthonormal one (stability).

• Finally, it has an extremely high convergence rate towards
orthonormality, which is the fastest among all competing
schemes of the same computational complexity.

The weak point of our algorithm is:
• It provides an orthonormal basis for the desired subspace

and not the corresponding singular vectors. Actually most
of the other algorithms have exactly the same problem.
This weakness however is not very crucial since in the ma-
jority of applications we are interested in projecting the
data onto the signal or noise subspace and not in finding the
actual singular vectors. Projection can be performed with
the help of any orthonormal basis that spans the subspace
since all bases produce the same projection operator. There
are even very common situations where this problem is un-
avoidable as in the signal plus noise model described in
(3), when we are interested in the noise subspace. Since in
the noise subspace there exists only one (multiple) singular

1This complexity is obtained if for a scalar � and vectors x;y we perform
�xy as (�x)y and xy =� as ((1=�)x)y .

value (the noise power), the singular vectors are not unique,
therefore, the vectors of any basis spanning the noise sub-
space can play the role of singular vectors.

C. Stability and Robustness Analysis of FRANS and FDPM

The goal is to analyze the divergence of the estimate from
orthonormality or equivalently the divergence of the product

from the identity matrix. Notice that the orthonormality
error is always present due to finite precision arithmetic and pos-
sible initialization with a nonorthonormal matrix. By writing

, where expresses the difference from
the identity matrix, we are going to study the behavior of in
each algorithmic case.

Let us first consider FRANS which is simpler to analyze.
From (18) we can write

(30)

where is given in (20) and denotes the finite precision
errors due to numerical operations at step . We have the fol-
lowing theorem that describes the error performance of FRANS.

Theorem 2: FRANS is robust and stable in the case of signal
subspace estimation and nonrobust and unstable in the case of
noise subspace estimation. The exponential rate of convergence
towards orthonormality is of the form , where in
the signal subspace (stability) and in the noise subspace
(instability).

Proof: The proof can be found in Appendix II.
Let us now proceed with FDPM. Substituting in (25)

, we obtain

(31)

If (a diagonal matrix containing the di-
agonal elements of the product), then can be normalized to
produce as . We can, thus, write

(32)

Replacing the left-hand side (LHS) with we obtain

(33)
with the last equality being true because is
diagonal. From the same equality we also observe that the diag-
onal elements of contain only round-off errors (no accumu-
lation) due to the normalization of the columns of performed
at each step. The analysis of (33) is summarized in the following
theorem.

Theorem 3: FDPM is stable and robust for both signal and
noise subspace estimation. Regarding exponential convergence
towards orthonormality the corresponding rate can be written as

, with (stability) and independent from .
Proof: The proof can be found in Appendix III.

In order to understand the significance of Theorems 2 and 3,
let us define the orthonormality error power

(34)
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If has an exponential rate of convergence equal to , this
means that . Consequently, if
the error power converges to zero (stability), whereas if

the error power diverges (instability). There is another inter-
esting property associated with the rate of convergence. Assume
that we are in the stable case where and let be the
time required by the error power to attain a small value
which we regard as convergence in the practical sense. Then
we have that . Now consider the
same algorithm with two different step sizes and and let

, be the iterations required by the algorithm to attain the
same error power level under the two different step sizes. It
is then clear that we can write

, from which we obtain

(35)

since . In other words, we end up with the fairly evident
conclusion that in an exponentially stable adaptation, conver-
gence time is inversely proportional to the rate of convergence.

Let us now see how the previous outcome translates in the
case of FRANS and FDPM. For FRANS, since

, this means that we can write (35) as

(36)

In other words, convergence time towards orthonormality is in-
versely proportional to the step size . This conclusion has the
following interesting consequence: if we decide to reduce by
a factor (such need arises whenever we desire to lower
the steady-state projection error power by a factor ), then this
will induce an increase by the same factor in the time required
to converge towards orthonormality.

The situation is drastically different in the case of FDPM
where . Relation (35) then becomes

(37)

Since for small step sizes we have , this suggests that
even if we make a drastic change in , this will produce only a
marginal change (because of ) in the time required to attain
orthonormality. In other words, convergence towards orthonor-
mality is practically insensitive to changes in the step size. This
very desirable characteristic, as we shall see in Section IV, is
enjoyed only by our algorithmic scheme. The other algorithms
have performance similar to FRANS, i.e., satisfy (36), this being
true even for Karasalo’s method of complexity .

IV. SIMULATION COMPARISONS

Let us begin our simulations section by corroborating the con-
clusion of Lemma 2. Specifically, with our first simulation we
are going to verify that by using better adaptive estimates for

, we do not necessarily improve subspace estimation with
the adaptive orthogonal iteration. We consider three different
sliding window implementations according to (14) with

and 100. Case corresponds to DPM. We apply
(9) with the “ ” sign in order to estimate the noise subspace.
Our data vector is of length . We adopt the signal plus

Fig. 1. Performance of (9) for various estimations of the data autocorrelation
matrix. Noise subspace tracking.

noise model of (3) where the random signal lies on an
dimensional linear subspace. We assume that the singular values
of the signal subspace are and
the additive noise is white Gaussian of variance . This
value induces an SNR level of approximately 15 dB, which is
a very common selection when simulating communication sys-
tems. The step size that was employed in this example is equal
to .

Fig. 1 depicts the norm squared of the projection error i.e.
, of a single run. We confirm that the per-

formance is practically insensitive to the window length , ex-
actly as predicted by our analysis. In fact, the same conclusion
holds true even if we estimate the data autocorrelation matrix
with the popular exponentially windowed sample autocorrela-
tion matrix defined through the recursion

, with denoting the exponential forgetting
factor.

We continue with comparisons regarding signal and noise
subspace estimation and the corresponding convergence to-
wards orthonormality. We use exactly the same signal and noise
model as before. For FDPM and FRANS, we apply the simple
step size normalization . In all subsequent graphs,
expectation for error power computation, is approximated by
averaging 100 independent runs.

A. Signal Subspace Tracking

Let us consider the problem of signal subspace estima-
tion. We compare FDPM against the schemes: FAPI,
PAST, PROTEUS-2, MALASE, LORAF-3 and also Karasalo’s
scheme which has computational complexity . The
latter, as was aforementioned, is very frequently considered in
the literature as point of reference for the methods.
FRANS is not included in our comparisons since it has exactly
the same performance as FDPM. As it will become clear below,
the algorithms that compete more directly with FDPM are FAPI
and LORAF-3. FAPI’s complexity is and
LORAF-3 requires operations. However,
none of these methods has a noise subspace counterpart, as it
is the case for FDPM. We recall that FDPM’s complexity is

.
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Fig. 2. Performance of the signal subspace tracking schemes, orthonormal
change.

Fig. 2 depicts the projection estimation error power
defined in (13). At iteration 1500, we apply an abrupt change
to the exact basis preserving its orthonormal structure. This
type of change is imposed to examine the tracking capabilities
of all algorithms to follow the new subspace. Step sizes and
other parameters are selected so that all algorithms attain the
same steady-state projection error power level. Specifically, we
used for Karasalo ; for FDPM and FRANS

; for FAPI ; for MALASE ; for
LORAF-3 and for PAST . It is then
clear that the algorithm with the fastest rate of convergence can
be regarded as the best. FDPM, FAPI, and LORAF-3 exhibit an
overall better performance than the other schemes, fol-
lowing very closely Karasalo’s method. We observe
that FAPI slightly outperforms our FDPM scheme. However,
as we are going to see in our next figure, this small advantage
disappears in the case of convergence towards orthonormality
where FAPI’s speed of convergence is significantly inferior to
FDPM and, furthermore, FAPI lacks a noise subspace tracking
version which is very useful for several important applications.
In Fig. 2 we can also see that MALASE and PROTEUS-2 have
similar performance requiring twice as many iterations com-
pared to FDPM to attain the same error power level. Finally,
PAST has by far the worst performance requiring significantly
more time to converge. Regarding PAST we should point out
that its performance, relative to the other schemes, improves
considerably under lower SNR levels (for more details see [3,
pp. 40, 41]).

In Fig. 3 we plot the orthonormality error power, as defined
in (34), for FDPM, FAPI, FRANS, MALASE, LORAF-3 and
Karasalo’s algorithm. PAST and PROTEUS-2 are deliberately
excluded from the comparison since the former does not provide
orthonormal estimates while the latter has an extremely slow
convergence. To generate this figure, at iteration we
replace the estimate by a nonorthonormal matrix to ex-
amine convergence towards orthonormality. Each algorithm is
executed with two step sizes , with . Since
FAPI and LORAF-3 use an exponential forgetting factor , we
know that plays the role of an equivalent step size. There-
fore, the two forgetting factors we are using are related through
the equation . Graphs in solid line

Fig. 3. Deviation from orthonormality of the signal subspace tracking schemes,
nonorthonormal change.

correspond to the larger step size. In particular: for Karasalo
; for FDPM and FRANS ; for FAPI

; for MALASE ; and for LORAF-3
. Graphs in dashed line correspond to the smaller

step size (which is 1/10 of the previous case). We can see that
all the tested algorithms practically attain orthonormality within
machine accuracy. FDPM has by far the highest convergence
speed which changes only marginally with the drastic change in
its step size. This very interesting property of our algorithm was
accurately predicted by our analysis in Section III-C. From the
same figure we also conclude that all other algorithms exhibit a
considerable convergence speed reduction when the smaller step
size is employed (this is true even for Karasalo’s algorithm). In
fact, all other algorithms, except MALASE, roughly require 10
times more iterations to converge under the smaller step size,
suggesting that the corresponding rate is proportional to the step
size of the algorithm.

B. Noise Subspace Tracking

Here we examine the noise subspace tracking characteristics
of our algorithm. Apart FDPM, FRANS [27] is also capable of
performing noise subspace estimation. We recall that both algo-
rithms constitute different orthonormalization versions of DPM.
Ouranalysispredictedthat, innoisesubspaceestimation,FRANS
is nonrobust, that is, when initialized with an orthonormal ma-
trix, it accumulates round-off errors and finally diverges from or-
thonormality. FDPM on the other hand is robust, retaining or-
thonormalityat all times.Our analysisalsopredicted thatFRANS
is unstable, meaning that when initialized with a nonorthonormal
matrix it diverges immediately. FDPM on the other hand is stable
since it regains orthonormality in (very) few iterations.

To demonstrate the validity of the previous statements, we
perform our last set of simulations. We use the same signal and
noise model as in the previous cases. We compute the projection
error power and the orthonormality error power for DPM (of
complexity ), FRANS, HFRANS, FDPM, and FOOJA.
FOOJA is the most direct competitor of FDPM and comes with
a leading computational complexity term of that is higher
than FDPM. FOOJA is the first version, after multiple unsuc-
cessful trials that is robust. As we recall from Section I, this
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Fig. 4. Performance of the noise subspace tracking schemes, orthonormal
change. Deviation from orthonormality of the noise subspace tracking schemes,
orthonormal change.

was achieved by employing FDPMS’s orthonormalization pro-
cedure first presented in [28]. The following step sizes were
adopted: DPM, FDPM, FRANS, HFRANS, and FOOJA

. The noise subspace of interest has rank and
a multiple singular value equal to . Again we impose
changes to observe the performance of the schemes under com-
parison. We adopt two different scenarios. In the first, we change
the ideal basis at time retaining its orthonormal
structure in order to examine the capability of the algorithms to
follow abrupt changes in the subspace. In the second, is kept
constant, but we replace the estimate in all algorithms
with the same, nonorthonormal matrix. By forcing loss of or-
thonormality, we examine the capability of each algorithm to
recover this characteristic.

Figs. 4 and 5 depict the projection error power and the corre-
spondingorthonormalityerrorpowerforthefirstscenario.Wecan
see inFig.4 thatas longas theorthonormalityerror is significantly
smaller than the estimation error, the DPM-based algorithms ex-
hibit the same indistinguishable performance in the projection
error. Focusing on Fig. 5, we observe that DPM, FDPM, and
FOOJA satisfy orthonormality within machine accuracy (DPM
orthonormalizes at every iteration), FRANS on the other hand is
slowly and persistently drifting away from this desirable prop-
erty. After 3000 iterations, FRANS’s orthonormality error has
degraded by more than 160 dB. In fact, if we continue the sim-
ulation long enough, FRANS eventually becomes unstable, pro-
vidingmeaninglesssubspaceestimates.Thereason that thediver-
gence from orthonormality does not manifest itself sooner in the
projectionerrorpower, isdue to thehighnumericalaccuracyenvi-
ronment under which we performed our simulations (Matlab). It
is clear that in a less accurate environment this divergence would
have been transferred to the projection error power much faster.
As far as HFRANS is concerned, it is a more stable version than
FRANS. However, by carefully observing Fig. 5 we realize that
the algorithm still diverges (slowly) from orthonormality, a fact
that is also reported in [30].

In the second scenario, depicted in Figs. 6 and 7, we delib-
erately destroy orthonormality in the estimate . Similar
remarks as in the previous example can be made for the first

Fig. 5. Deviation from orthonormality of the noise subspace tracking schemes,
orthonormal change.

Fig. 6. Performance of the noise subspace tracking schemes, nonorthonormal
change.

half of the execution. When however we focus on the part after
the abrupt change, we realize that DPM has no problem since
it orthonormalizes at every iteration, while FDPM regains or-
thonormality very quickly. On the other hand, neither FRANS
nor HFRANS can recover from the change and the orthonor-
mality error is immediately passed onto its subspace estimates,
destroying them completely.

V. CONCLUSION

In this paper, we have considered the problem of adap-
tive subspace tracking. Our principal contribution consists in
developing a fast and numerically stable orthonormalization
technique for the DPM algorithm [12]. The proposed scheme
reduces DPM’s computational complexity from to

meaning that the corresponding algorithm belongs
to the low complexity class of subspace tracking techniques.
The advantage of our method is its simple structure and its
capability to switch from signal subspace to noise subspace
estimation with a simple change of sign in its step size. As
far as noise subspace tracking is concerned, we should point
out that our algorithm is the first complexity scheme
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Fig. 7. Deviation from orthonormality of the noise subspace tracking schemes,
nonorthonormal change.

which is numerically stable (attaining orthonormality within
machine accuracy). Finally, regarding convergence towards
orthonormality, our algorithm exhibits the fastest rate among
all existing subspace tracking algorithms. The conver-
gence characteristics of our method were first predicted by a
simple theoretical analysis which was based on available results
from Stochastic Approximation theory, with our theoretical
findings being in absolute agreement with our simulations.

APPENDIX I
PROOF OF THEOREM 1 AND LEMMA 2

In order to prove Theorem 1 and Lemma 2 and also Theorems
2 and 3, we are going to rely on the Stochastic Approximation
Theory. We summarize the basic results we are going to need
contained in [34, pp. 101–108]. Consider the following adapta-
tion:

(38)

where denotes the adaptive estimates, is a sta-
tionary random data sequence, and is a vector function.
If we call , where the expectation
is taken only with respect to the data and is assumed
deterministic, then for the mean trajectory we
have the following adaptation:

(39)

The equilibrium points of this adaptation are the solutions of

(40)

which are the possible states where the adaptation in (38) can
converge to (in the mean). Regarding stability of an equilibrium
point we examine it from the local point of view by assuming
that where is small. This allows for the
linearization of (39) around as follows:

(41)

where denotes the Jacobian of evaluated at the
equilibrium . The equilibrium is (locally) stable if the
matrix has all its eigenvalues strictly inside the
unit circle. This, for sufficiently small happens whenever all
the eigenvalues of have positive real part. If at least
one eigenvalue has negative real part then is (locally) un-
stable. From (41), we conclude that, close to the equilibrium,
the mean error trajectory behaves as the following matrix power:

. The main contribution to this ma-
trix power comes from the largest, in magnitude, eigenvalue of
the matrix . Therefore, for sufficiently small , we
can write , where the
eigenvalues of and denotes real part. This sug-
gests that the (local) exponential convergence rate towards
is equal to .

Regarding the estimation error at steady
state, as far as first- and second-order statistics are concerned,
it follows the linear model

(42)

If the equilibrium is stable, then the error covariance matrix
, at steady state, is of the form , where matrix

satisfies the following Liapunov equation:

(43)
In the special case where is affine in , that is

(44)

with a matrix function and a vector function, we have
a much stronger result [35]. Specifically, the estimation error

, with

(45)

the unique equilibrium (provided that is invertible),
as far as mean convergence and steady-state second-order sta-
tistics are concerned, satisfies the recursion

(46)

In this case, stability is no longer local but global and for suffi-
ciently small it is assured when the eigenvalues of
have positive real part. The previous information is sufficient for
proving the desired results.

Proof of Theorem 1: Since we are interested in the projection
operator and the latter is independent from the orthonormaliza-
tion procedure, we apply the following orthonormalization in
(9):

(47)
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If we form the projection operator, then we have

(48)

Denoting with the projection operator and recalling that is
small, we linearize with respect to the step size, retaining terms
of order up to , this yields

(49)

where for the last approximate equality we also used the fact that
is orthonormal. Adaptation (49) is of the form of (38).

According to the general theory presented previously, the mean
trajectory satisfies the recursion

(50)
Let us now consider the (deterministic) orthogonal iteration

(51)

If we form the projector , then we can verify that, to a
first-order approximation in , this projector satisfies the same
approximate recursion as in (50). As we have seen in Section II,

tends exponentially fast to the ideal subspace basis with a
rate of the form . We can, thus, conclude that
(and therefore ) converges to with the same rate.

Regarding the error power of at steady state, following
(42), we write and linearize (49). Then, at steady
state, as far as first- and second-order statistics are concerned,

satisfies the recursion

(52)

By considering the column-wise version of the
projection error (i.e., where the matrix elements are read in
a column by column manner) and by using repeatedly the
equality , where “ ” denotes
Kronecker product, the previous recursion can be written as

(53)

where

(54)

(55)

We note that (53) is of the same form as (42), therefore, the
covariance matrix of , at steady state, is proportional
to (to a first-order approximation). Additionally, since for a

matrix , the square of the Frobenius norm is equal to
the sum of squares of all the elements of , this means that

. We thus
conclude that the projection error power is equal to the trace
of the covariance matrix of suggesting that, at steady
state, the projection error power is also proportional to (to a
first-order approximation). This concludes the proof.

Proof of Lemma 2: From (50) the mean trajectory of the
adaptation depends only on the average and is therefore in-
dependent from the sequence . Regarding the steady-state
projection error power, as we have seen, it is equal to the
trace of the covariance matrix of , with the latter
satisfying the adaptation in (53). The covariance matrix ac-
cording to (43), depends on the matrices , and the sum

. The two matrices , are
independent from , we will show that the same holds true
for the sum. Indeed if for simplicity we denote ,
then we can write

(56)

(57)

(58)

(59)

(60)

To go from (57) to (58), we used the stationarity of the data; from
(58) to (59) we applied the change of indexes ,
which does not affect the limits of the third sum; finally, from
(60), it becomes clear that the steady-state error covariance is
independent from the sequence .

APPENDIX II
PROOF OF THEOREM 2

Here we consider the stability and robustness properties of
FRANS by analyzing (30). Assuming small step size we can
write (30) as follows:

(61)

(62)
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where we retained terms up to order . The last recursion is of
the special affine form of (44), therefore, if we call

(63)

and assume that the round-off error is zero mean the equi-
librium state is equal to the zero vector. This means that (62),
as far as mean trajectory and steady-state second-order statistics
are concerned, according to (46) it is equivalent to

(64)

The recursion in (64) is a classical linear system in state-space
form with the “state,” the “input” and the
“system matrix”. We know that such a system is stable if the
eigenvalues of are all inside the unit circle and unstable if at
least one eigenvalue is outside. Since is positive definite
if we denote with its eigenvalues, then the eigen-
values of are equal to for .
Now notice that when we use the “ ” sign (corresponding to
signal subspace), for sufficiently small the eigenvalues of
are all in the interval (0,1) meaning that the system is stable. We
have exactly the opposite picture in the noise subspace when we
employ the “ ” sign. Since the eigenvalues of are larger than
unity we obtain an unstable system.

Assuming that the round-off error is zero mean and taking
expectation in (64), we obtain the recursion of the mean tra-
jectory which is of the form

. Therefore, if we start with a nonzero error (ini-
tialize with a nonorthonormal matrix) then the average error
tends to zero in the signal subspace case and it diverges in the
noise subspace case. Let us now select , in other words
initialize the algorithm with an orthonormal matrix. If we as-
sume that the round-off error and the state are un-
correlated and call and the covariance matrices of
and , respectively, then from (64) we obtain the recur-
sion . Again this recursion converges to a
bounded matrix when is stable and diverges when is un-
stable. This means that the orthonormality error covariance
and, therefore, the orthonormality error power, in signal sub-
space estimation remains bounded, while in noise subspace it
increases without limit.

Finally for the convergence rate, since the mean trajectory
behaves as with the main contribution coming from the
largest in absolute value eigenvalue of , exactly as described
in the beginning of Appendix I, the convergence rate is equal to

, where in the signal
subspace case and in the noise subspace
case.

APPENDIX III
PROOF OF THEOREM 3

To analyze FDPM we refer to (33). This adaptation is non-
linear in , therefore we are going to demonstrate local sta-
bility assuming that is small. Recalling that is also small,
we can write

(65)

where the fourth term in the right-hand side (RHS) comes from
the fact that . Since we assumed that and
also that the error is small, the third and forth term are negligible
compared to the first two leading to the following simplification:

(66)

where , similarly to , is a vector of length with
all elements equal to zero except the th which is equal
to 1. Noticing that we can write

, if we use this in (66),
after some manipulations, we can write the recursion in vector
form as

(67)

Assuming zero mean and uncorrelated from , as far
as mean convergence and steady-state second-order statistics of

are concerned, the previous relation is equivalent to

(68)

where . To show stability and robustness,
as in the proof of Appendix II, we only need to show that the
linear system in (68) is stable, namely that all eigenvalues of the
system matrix lie
inside the unit circle. For this, we are going to use the following
lemma whose proof can be found in [32, pp. 410, 411].

Lemma 3: If is a real symmetric matrix of size with
eigenvalues , then the eigenvalues are real; further-
more, if denotes a real vector of length we have

(69)

Let us first apply this lemma to show that has all its eigen-
values with magnitude bounded by 1. From (29) we have that

is symmetric with eigenvalues equal to 1. Since the eigen-
values of are all the possible products ,
where and are the eigenvalues of and , re-
spectively; we conclude that has eigenvalues equal to

1 as well. Using Lemma 3 this suggests that for any nonzero
constant vector , we have .
Taking expectation yields , .
Taking infimum, then supremum over and using Lemma 3, we
prove that , where ,

denote the smallest and largest eigenvalue of .
We will now show that the eigenvalues of the desired system

matrix are bounded from below and above by ,
suggesting that is more stable that . Note that

is a diagonal matrix with all
its diagonal elements equal to 1 except diagonal elements
that are equal to 0. This matrix is symmetric and equal to
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its square, it is, therefore, an orthogonal projection operator.
This means that it can be decomposed as where is
an orthonormal matrix of dimensions . Let us
identify the eigenvalues of . Because is rank
deficient, matrix has rank , meaning that of its
eigenvalues are equal to 0. We can also easily show that the
remaining eigenvalues are the same as the eigenvalues
of . Indeed, if is an eigenvalue/eigenvector pair
for then we can immediately verify that is
a similar pair for . It is clearly the latter eigenvalues that we
would like to bound. Notice now that for any vector of length

, the vector is of length . Furthermore, due
to the orthonormality of , we have . With this in
mind and recalling Lemma 3 we can write

(70)

The previous inequality is true since the second minimization
is performed over a smaller space. In exactly a similar way, we
can show that . We thus conclude that the
system matrix in (68) has all its eigenvalues bounded by 1.

Up to this point we have assured marginal stability
since we have not excluded the case of an eigenvalue
being 1. Thus, let us assume that we have a vector

that satisfies . We recall
that and, as we have argued above,

. We, therefore, conclude that
the quantity is a random variable
less than or equal to 1 for all data realizations with a mean
equal to 1. But this is only possible when the random variable
is always equal to 1 for all realizations (or more accurately,
with probability one). The latter outcome is also equivalent to
saying that the deterministic vector is an eigenvector to all
random matrices , corresponding to a unit eigenvalue.
Such a possibility however is easily avoidable if for example the
data have some completely random (white noise) component.
Under such an assumption the eigenvalues are strictly inside
the unit circle assuring stability of our scheme. As we have
seen, this stability property is, to a first-order approximation,
independent from the step size .
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