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Both Pr(7, i) and Pp(r, ¢) are quasi-convex. Moreover, they [8] M. Grétschel, L. Lovasz, and A. SchrijveGeometric Algorithms
are both strictly monotonically decreasing functions war.tSo for and Combinatorial Optimizatian Berlin, Germany: Springer-Verlag,
e : A 1988.
every a.dmISSIble fusion rule;, deflnev.—, to be the smallest such tha_t [9] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor
Pr(r, ‘). < . Dueto the monotonically decrea§|ng prOpeljty,’thS detection systemsJEEE Trans. Aerosp. Electron. Systol. AES-23,
must satisfyPr (7, 1) = «o and the correspondinBp (7;, 7) is the pp. 98-101, Jan. 1986.

maximized detection probability forthe admissiblefusionfuleDefine ~ [10] A. R. Reibman and L. W. Nolte, “Optimal detection and performance
of distributed sensor system$ZEE Trans. Aerosp. Electron. Systol.

i* = arg max Pp(r, i) AES-23, pp. 24-30, Jan. 1987.
¢ [11] M. S. Gockenbach and A. J. Hegrsley, “Optimal signal sets for non-
then F;« is the optimal fusion rule and the maximum detection prob- Gaussian detectors3IAM J. Optimiz.vol. 9, no. 2, pp. 316-326, 1999.

ability is Pp(+, i*). This method also applies to the case with non-[12] P-S.Rao, D. H. Johnson, and D. D. Becker, “Generation and analysis of
Y p(7i, i7) pp non-Gaussian Markov time serie$2EE Trans. Signal Processingol.

Gaussian noise distributions. 40, pp. 845-856, Apr. 1992.
[13] R.S.Blum, “Distributed detection for diversity reception of fading sig-
VI. CONCLUSION nals in noise,lEEE Trans. Inform. Theoryol. 45, pp. 158-164, Jan.
1999.
In this correspondence, we considered distributed detectiencof  [14] Q. Zhang, P. K. Varshney, and R. D. Wesel, “Optimal distributed binary
{—m, m}, where theth of n local sensors observes = s+ z; with hypothesis testing with independent identical sensorsCanf. Infor-

i.i.d. additive noise;;. Theith sensor makes a binary decisiorbased mation Sciences and Systervar. 2000.

on a threshold-. A fusion center uses these decisions to produce the
global decision using a fusion rulg.

When all admissible rules have the probability of error as a quasi-
convex function ofr, the problem decomposes into a series guasi-
convex optimization problems that may be solved using well-known . e . .
techniques. We showed this quasi-convexity property for generalizespn the Relative Error Probabilities of Linear Multiuser
Gaussian noise. For some non-Gaussian noise distributions we showed Detectors
this quasi-convexity property when the hypotheses have eqpiabri
probability.

We also used the quasi-convexity perspective to provide solution
techniques for Bayes risk and Neyman—Pearson formulations of the
sensor data fusion problem. Abstract—The relative error-probability performance of three linear

Applying our solution technique to binary sensors in Gaussian noiggiltiuser detectors—the minimum mean-square error detector, the decor-
reveals that the number of binary sensors needed for every SNRrlator, and the conventional matched filter (MF) detector—is investigated
achieve error probability o0~ is fewer than twice the number of under nonorthogonal signaling and additive white Gaussian noise condi-

s .. . . jions. It is shown that, contrary to the general belief, the minimum mean-
infinite-precision sensors required. So the binary sensor can be a beig%'zre-error (MMSE) detect(?r/ does ngot uniformly outperform the other

choice from a practical or economic point of VieW-_ _ ‘two detectors. In fact, even for the two-user case, one can find counterex-
Zhanget al.[14] generalize these results by showing quasi-conveximples where the matched filter is significantly better.

in the likelihood ratio function for any distribution on the i.i.d. obser- Index Terms—Code division multiple access (CDMA), multiuser detec-
vationsz;. tion. ’
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its performance can be extremely poor in the presence of severe nwikere

tiple-access interference (MAI). Two key linear multiuser detectors are

known to combat MAI very efficiently. Specifically, théecorrelating (R, X)=eil(R+ X ?)T'R(R+ X7%) e

detector (odecorrelato) defeats MAI by selecting a proper linear filter X = diag{z1, ..., 25}

to eliminate it [4], [8], while theminimum mean-square-err@MMSE)

detector achieves robustness against MAI by selecting the linear filigr= Aifo,b=[1by... bx]' e =[10...0]°, andQ(-) denotes

that minimizes the mean-square value of the output MAI plus noise [Zhe complementary unit cumulative Gaussian distribution. Finally, we

(5], [71H9]. should note that the sums in (2) and (4) are taken over all possible com-
The MMSE detector has been the center of recent attention duepifiations oft;, i = 2, ..., K. In the following sections, we compare

its noticeable feature of being practically implementable through blinHese three expressions under various signaling conditions.

adaptive schemes; that is, through schemes that use only the signature

waveform of one user of intere_st and do not require training SeqUENGEST | MATCHED FILTER VERSUS THEMMSE AND DECORRELATING

or knowledge of signatures of interferers [2]. In [6] one can find a de- DETECTORS

tailed analysis of this detector’s performance under various conditions

related to multiuser applications, along with efficient approximations In this section, our goal is to show that the MF outperforms both

of the corresponding error rates. the MMSE and decorrelating detectors provided the user of interest is
Several analytical and numerical results have suggested the confatfficiently strongin power. In particular, we prove the following result.

ture (stated in [6]) that the MMSE detector outperforms the decorrelatorpro'oositiOn 1: FiX R, a2, ..., 21, and assume thak is positive

f?f any comblnatf|0n|.0f5|gnal and rl;msehpov;ersr.] Furthhermore, %S'm'@éfinite. If at least one interfering user has a signature waveform that
(if not stronger) feeling seems to be shared when the MMSE deteciof, ;. rthogonal to the signature waveform of User 1, then there exists

is compared against the conventional MF detector. Itis the aim of ti§¢iciently largex; for which the MF detector outperforms both the
work to prove that both of these conjectures are in fact false. SpecN)I-MSE detector and the decorrelator

cally, for the comparison of the MMSE detector versus the decorrelator
we show that for the two-user case and for large enough cross corre-
lation of the signature signals, it is possible to find noise and signalFor the case where the signatures of the interfering users are orthog-
powers for which the MMSE detector is inferior to the decorrelator. Wenal to the signature of User 1 we know that all three schemes have
also show that such a case cannot appear under perfect power cotfi@same performanddivse = Pn = Pur = Q(x1), which is, of
conditions. For the comparison of the MF against the MMSE and tigeurse, the single-user performance.
decorrelating detector we show that, for the genéfalser case with ~ From Proposition 1 itis not clear what the sizerofmust be in order
essentially arbitrary cross correlations, the MF detector outperforties the proposition to hold. It turns out, at least for the two-user case,
the other two detectors provided that the power of the user of interesthigt even for moderate values .of the conclusion of the proposition
sufficiently large. Examples where the MF is better than the other tvgan hold. Ifp denotes the cross correlation of the normalized signa-
detectors are also presented for the perfect power control case.  ture waveforms of the two users, then Fig. 1 depicts, as a functipn of
Let us now define the problem of interest in some more detail. Cothe pairs(x:1, x2) for which the detectors have the same performance.
sider al-user binary communication system with corresponding noBpecifically, Fig. 1(a) shows these pairs for the MF and MMSE de-
malized modulation waveforms, ..., sk, and signaling antipodally tector, while Fig. 1(b) shows the corresponding pairs for the MF and
through an additive white Gaussian noise channel. If we limit ourselvéi¥e decorrelator. All points were obtained numerically. We also men-
to the synchronous signal case then the lergthectory whoselth  tionthatin Fig. 1(a) points lying to the right of each curve correspond to
component is the output of a filter matchedsids a sufficient statistic the case where the MF outperforms the MMSE detector, while in Fig.
for the problem of detecting the transmitted symbols. The vectan  1(b) points below each curve correspond to combinations where MF
be written as [8, p. 56] is better than the decorrelator. From Fig. 1(a), we also observe that for
anyx; > w2 there always exists a curve, corresponding to sufficiently
y = RAb + on (1) highp, surrounding the poirts:, «2), meaning that the combination
lies in the region where MF outperforms MMSE. Notice, on the other
whereR denotes the normalized crosscorrelation matrix of the signdiand, that wher: < x2 the MMSE seems to always outperform the
s1, ..., si; Aisthe diagonal matridiag{ A, ..., Ax } with 4; the MF (for any p); this also includes the case = x» of perfect power
received amplitude of usérb = [by....,bx]' is a vector whoséth  control. Unfortunately, as we will see, we were not able to prove this
component is the symbé] € {£1} of userl; n is aA’(0, R) normal last statement analytically.
random vector independentixfand, finally,(r2 is the intensity of the
additive channel noise. A. Counterexample
As noted above, we wish to examine the relative performance of theIn Fig. 2, we have plotted the relative performance of the three detec-
MMSE (_jetector, the decorrelator,_and the_ MF de_tector. Without Iosst%frS for the cases = 0.2+, and for various values of. Specifically,
generall_ty throughout our analys_ls we will con5|d_e_r_ User 1 to be t . 2(a) depicts the case of the MF versus the MMSE detector whereas
user of |nter_est. The corresponding error probabilities are then givell 2(b) the MF versus the decorrelator. We note that the MF can sig-
by the following formulas [8, pp. 113, 249, 300]: nificantly outperform both rivals for values ¢f| > 0.4.
. o Itis of interest to consider a specific numerical example Aet= 1,
(Cl(R T AT R I’) (2) Az =0.2and anoise intensity 6f 20 dB (o = 0.1). A difference of
V(R X) 10-20 dB in user powers and a signal-to-noise ratio (SNR) of the order
) of 20-30 dB is very common in most simulations in the literature. If
Pp=Q (m) (3) p = 0.5, then the relative performance beconf&svsr/ Pur = 1.6,
VeiR e Pp/Pur = 41.7. If we now reduce the noise power by 3 dB =
Pup =27 3" Q(ei RXD) (4) 0.071),then the relative performance beconfésvise / Pur = 19.7,
bimt1 Pp/Pur = 838.1, while with an additional 3-dB reduction in the

Proof: The proof is presented in the Appendix. O

Puvse =278 Z Q

b;==+1
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30

(b)

Fig. 1. Combinations of:1, z2 where (a) the MF and the MMSE and (b) the MF and the decorrelator have equal performance, for various values of the cross
correlationp.

Pymse/Pur

10 20 30
Z1

(b)

Fig. 2. Relative performance of (a) MF versus MMSE and (b) MF versus the decorrelatorpwhe.2 x, and for various values of.

noise(s = 0.05) we obtain an enormous differenéevse / Pur = b= PV 92 ®)
5799.3, Pp/Pur = 338197.3. VI F262)(1 = p?) + ¢2

ande = /1 — p2, ¢» = =, 2. Notice thatPymisg and Pp are sym-
lll. THE MMSE DETECTORVERSUS THEDECORRELATINGDETECTOR  metric in the correlation factqr. Consequently, without loss of gener-
we willassume that > 0. Let¢, andp be fixed, then parameters

We now turn, as in [6], to a comparison of the MMSE detector arffity: ) ;
the decorrelating detector. Here, we restrict attention to the two-uder?> ¢ Pecome fixed as well since they depend onlysenandy and
case(K = 2). Proceeding along the same lines as in [6, Propositid??t onz;. The two error p_rob_abllltles can thus be written as functions
5.2] we will show that the MMSE detector outperforms the decorrelat8f #1- @nd we denote their difference by
provided thaip| is smaller than some upper limit < 1. The signif- J(x1) = Puvse(21) — Pp(x1). 9
icant new information brought by our result as compared to [6] (apaf the following subsection we analyze this function in detail.

a slight improvement on the upper bound fgf) is the fact that the

proposed upper bound is tight. By this we mean tht|ift> p. then A, Analysis of/(x)

there are combinations of noise and signal powers for which the decorwe first note that/(0) = J(sc) = 0. Consider now the derivative
relator qutperforms th_e MMSE detector. This, of course, suggests t Em), or, more precisely, the following expression that has the same
the conjecture stated in [6] (that the MMSE detector is always bettgrgn:

than the decorrelator) is false.

Itis convenient to rewrite the error probabilities for the two detectors V2T 2,29
using a slightly different notation e (1) = d = F(1) (10)
1 1
Pyyse = 3 Qlaxy +0) + 5 Q(axy = D) (5) where
Pp =Q(cxq) (6) F(x1) =05 {ef(clmlJrcz)Z n ef(clmlfcz)z}
where
1—p* + ¢ d= ge*b%z/%f, ¢1 = Va? — &, andey = ab/c;. The number of

“= \/(1 +262)(1 — p2?) + 62 ) sign alternations of the expression in (10) far > 0 depends on the
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F(z1)

z1

Fig. 3. The two possible forms of the functidf(x ).

number of positive real roots of the equatibe= F'(x1). This equation B. Analysis ofG(¢2, p)

has at least one positive root (becausé) = J(oc) = 0 guarantees ;. p and conside6 (¢2, p) as a function of.. We can then verify

an extremum fot/ (1)) and, as one can observe from Fig. 3 Wherg,; ihe sign of its partial derivative with respectiois the same as
we present the two possible formsB{x, ), at most two. We can now the sign of the following third-order polynomial:

prove the following lemma.
_ . U(da, p) = (1=p"462)° =p*(1=p* ) (1= p°+¢2)+2p° (1= p*)".
Lemma: Supposes, andp are fixed. Then the MMSE detector is (62, p) = (1=p"F02) =p (1= )1 =p"+62)+ 20" (1=p)
better than the decorrelator for every valuerofiff d < F(0). (12)

~ Proof: From Fig. 3 we can conclude thatdf< £(0), the equa- sing standard results concerning roots of third-order polynomials [1,
tiond = F(x1) has only one positive root (say, ). This means that , 7] one can show that when > /27/28 ~ 0.982 the polyno-
J(a1)is decreasingim, for0 < 1 < w. andincreasingfar, > w.. gl has three distinct real roots, one of which is negative, whereas for
Since/(0) = J(oc) = O this suggests that(z1) < 0;inotherwords, o ~ , <, /27/28, the polynomial has one negative real root and two
that the MMSE detector is superior to the decorrelator for all values @fmpjex conjugate roots.

1. Consider now the case> F(0).In or_der fo_r this to be possible,  consider the case > /27/28; as noted above, the polynomial
since we always have a rootin our equation, itis clearhati) must  7(5, ) has three distinct real roots, one of which is negative and the
have a minimum at, = 0 and a maximum at some positive point (Sether two have common sign. SinE&2(1 — p?), p) < 0 and

Fig. 3). We can thus conclude that in this case the MMSE detector can

be inferior to the decorrelator for, sufficiently small. O limoo U(¢z, p) = +o0.

po2—+

Let_us now substitute all quantities entering in the inequa_zﬂitg This means that there is at least one root in the intéa(dl— ), o)
F(0) in terms of the two parametefsand ¢.. We then obtain the \ynich in turn, suggests that the two roots with the common sign are

following equivalent relation: positive. From the above we have the following remarks concerning
. G2, p).
Gl = 1= % + 6 (62, p)
¢2, P =21+ 260) (1= ) + 63 Remark 1: If p < \/27/28, thenU (¢», p) is positive foro, > 0,
5 and, consequentlgf( ¢z, p) is strictly increasing i2 and larger than
X exp < , /_p ¢2 ~ — ) >1 (11) unity(sinceG(0, p) = 1). Forthis case, the inequality in (11) is clearly
2[(1 +2¢2)(1 = %) + 63] satisfied for every, > 0.

which due to the Lemma is necessary and sufficient for guaranteeindkemark 2: If p > /27/28 thenG(¢-, p), as a function 0, > 0,

superior performance for the MMSE detector over the decorrelator foresents two local extrema at the two positive real roofs @, p),

every value ofr; . the first one being a local maximum and the second a local minimum.
From the proof of the Lemma it is clear that if (11) is not satisfie®ince the first extremum is a local maximum this means that its value is

for some combination o, andp, we can then find sufficiently small larger than unity (becaug& 0, p) = 1). The local minimum, however,

xy such thatPuivisre > Pp. Let us now examine (11) more closely. can be either larger or smaller than unity depending.dhfor somep
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1.4 T T T T T T T
p=+/27/28 ~ 0.982 ]

p=0J9

p = ps ~ 0.9918

G(¢2,p)

Fig. 4. G(¢2, p) as a function ofp, for various values op.

the corresponding local minimum 6#(¢-, p) goes below unity, then that the proposed upper limit. is tight since for anyfl > p > p. we
inequality (11) is clearly not satisfied for evegyy > 0. If, on the can find values for the parametes such that (11) is false, meaning
other hand, the local minimum is greater or equal than unity then (1thgt for sufficiently smalk:y we haveJ(xz1) > 0. O

is satisfied for alky> > 0.

The variable behavior off(¢., p) is depicted in Fig. 4, where we C. Counterexample

plot this function with respect te> and for characteristics values of A counterexample for the conjecture in [6] is the following. ket=

the parametes. We are now in a position to find all values of the crosd, z2 =5, andp =0.996 > p. then Pymsk = 0.4699 > P, =0.4644.
correlationp for which the MMSE detector outperforms the decorrek should be mentioned, however, that unlike the case presented in the
lator for all possible noise and signal powers. previous section, the counterexample here is of no practical impor-

tance. For cross correlations as largd) 999, the error rates, where

. Proposition 2: There exists . with /27/28 < p. < 1 such that the decorrelator is better than MMSE, were always altove
if 0 < p < p. then the MMSE detector outperforms the decorrelator

for any value ofr, ande-; furthermore ifl > p > p. then there exist

values forz; and¢. such that the MMSE detector is inferior to the

decorrelator. In this section we to consider the special case= A, = --- =
Proof: Due to Remark 1 we conclude that for aby< p < Ax = A or, equivalentlyy, = 22 = --- = xx =  which cor-

/27/28 we have thatz(¢», p) > 1 forall ¢» > 0. This, of course, responds to perfect power control. The error probabilities of the three

implies that for any0 < p < /27/28 the MMSE detector outper- detectors, for this case, take the form

forms the decorrelator for any noise and signal powers. With the help

IV. POWER CONTROL

of Remark 2 we will be aple_ to slightly improve this result and propose Pumsp =2 K Z 0 <$ ef(*R+1)! Rb) (13)
an upper bound op that is in fact tight. =, (R, x)

Consider the caské > p > /27/28 where Remark 2 applies. If
we plot the local minimum ofx(#2, p) as a function ofp then we Pr=0Q < * ) (14)
can observe that it is decreasing wjthFurthermore, there exists a VelR tey

val_uep* for which the corresponding Iocal_njinimum is exactl_y _equal to Pup =2' K Z Q(zec! Rb) (15)
unity. Due to Remark 2 and the monotonicity of the local minimum as
a function ofp we then conclude that for. > p > /27/28 we have
G(¢2. p) > 1 for all values ofé». On the other hand, if > p > p., Wherez(R, z) = e{(«’R+1) "R(z*R+1I) 'e1.
there exist values fap. where the inequality+(¢$2, p) > 1 is false
(see Fig. 4). A. MMSE Versus the Decorrelator

Combining the two intervals we conclude that for dny p < p« Here we will examine the relative performance of the two detectors

the inequality in (11) is true for all values of,, the_refore thz_e MMSE for the two-user case. We have the following proposition.
detector outperforms the decorrelator for any noise and signal powers.

The upper limitp,. can be computed numerically; the value we obtain is Proposition 3: For the two-user case and under perfect power con-
p« = 0.991765239964. From the above discussion we can also dedudeol the MMSE detector always outperforms the decorrelator.

b;==1
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Proof: Denote the two error probabilities @ mse(x, p) and  wherek’ = 2r+ 1. Condition (21) can be seen to be true i6r> 2,

Pp(z, p). Since Pumsk(z, 1) = Pp(=x, 1), considerp < 1. Ap- since it makes the quantity in the brackets negative faralD. ..., r.
plying the change of variables= £/+/1 — p? the error probabilities This concludes the proof. O
become

Y ) Although Proposition 4 indicates that it is possible for the case of odd
Panise (€, p) =050 <£é +1+ P) +050 <££ +1- P) Ix to find counterexamples to the conjecture that the MMSE detector
z(p, &) z(p, &) is better than the MF, we should nevertheless note that, at least for
(16) the equicorrelated case, these counterexamples appear only at extreme
values of the cross correlatign Specifically, it was found numerically

Po(&: p) =Q(0), (@7 that for K’ = 3 the cross correlation must exceed the valug942
where while things seem to improve (for MMSE detector) Asincreases
) since for’ = 5 the cross correlation needs to be larger th&975
2p ) =€+ (1= p")(26° +1). and for k' = 7 larger thar0).9986.

We will now show thatPvivsi (€, p), for fixed ¢, is a decreasing func-
tion in p. This is sufficient to prove the proposition since then

C. MF Versus the Decorrelator
As we stated in Section I, it is known [8, p. 249] that the MF outper-
Puvse(é, p) < Pavse(€, 0) = Q(§) = Pp (€, p)- forms the decorrelator for sufficiently high noise power (provided that

To show that the partial derivative Ghunisi: (€, p) With respect to User 1 is not orthogonal to the interfering users). Since this fact holds
p is negative, after some tedious but straightforward calculations, @ any combination of:,, = itis also true for the perfect power con-

equivalent to showing the following inequality: trol case. If we are, however, interested in the case where the noise
9¢2 4 1 2(1 4 ¢2) power does not go to infinity (i.e4 does not tend to zero), then it is
p f t1s tanh { p St fi_{ - . (18) possible to obtain a result similar to the one presented in the previous
£+1 ° G+ 1-mM2e+1D)

subsection (in fact, slightly stronger). Again if we denote the corre-
Forp > (£24-1)/(2¢2 4+ 1) this inequality is true because for positivesponding error probabilities witly; 1 (2, p) and Py (x, p), then we
zwe havel > tanh(z).Onthe other hand, when< (¢241)/(2¢*4+  obtainPp(x, 1) = 0.5 and

1), sincep”® < p andz > tanh(z) for = > 0; we can write K=t (o
22 11 Pur(z, 1) =2'7F P TN QGIE —2n)). (22)
Ei 1 > p > tanh(p) e ( ; n (] l
- <p : ig(l _2'_ g)z : ) (19) Using the property that for positive, y we have
S - ee+) Qa+1) +Q—y) < Q) +Q(—y) =1

which completes the proof. o o ]
it is easy to show thaPu(x, 1) < 0.5. Because of continuity this

B. MF Versus the MMSE Detector also suggests that for any fixed> 0 we can findp sufficiently close

to unity such thatPvir (z, p) < Pp(z, p).
In view of the previous result and also the fact that, from Fig. 1(a), Y e (e ) o p)

line x; = - lies entirely in the area where the MMSE detector out-
performs the MF filter, one might conjecture that the MMSE detector
would be superior to the MF for the power control case. Unfortunately, Next we present a number of statements, in the form of conjectures,
it turns out that even this conjecture is false as one can find countereégncerning comparisons of the three detectors under signaling condi-
amples for oddx. tions that constitute generalization to the ones presented in the previous
. B sections. It should be noted that these conjectures are supported by ex-
Proposition 4: Let the number of user&” be odd and the corre- yoqjye numerical computations of the corresponding error rates. Un-
sponding signature waveforms be equicorrelated with common COorfgznately, up to now it was not possible to prove them analytically.
Iat!on p. Then _under p_e_rfect power contr_ol and for any: /2 there The first conjecture refers to the comparison of the MMSE and the
exists correlation sufficiently close to unity such that the MF outper-ge o relator and constitutes the generalization of Proposition 2 to the

forms the MMSE detector. , , K -user and equicorrelated signals case.
Proof: The correlation matrix, for equicorrelated waveforms,

takes the formR = (1 — p)I + pVV' whereV = [1 ... 1]'. The Conjecture 1: Proposition 2 extends to arbitrary number of udérs
corresponding error probabilities then become functions ahdp ~ With equicorrelated signals. The upper limit( k') increases withy".

an%}let;x dernrotre t:]ebmtﬁgi“ﬁp(ﬁ’i ) andP“’i'F(f’ p_) P, 1 Conjecture 2: Proposition 3 extends to arbitrary number of users
The two error probabilities satisffuse (2, 1) = Pur(z, 1). 54 arbitrary crosscorrelation matdk
Since both functions are continuous with respect to their arguments,

it is sufficient to show that for fixed: > /2 we have The next conjecture refers to the comparison of the MMSE detec-
torand the MF detectors under perfect power control. With Proposition

M < M (20) 4, we have seen that, when the number of ugérs odd then there
9p 9p p=1 exist examples where the MF outperforms the MMSE detector. Such

R)éample was impossible to find for even valuediofin fact, there are

V. CONJECTURES

p=1

Due to the special structure of the correlation matrix, the sums in t

definition of the two error probabilities reduce to sums containing On@}rong indications that_for_th|s,_ case the MMSE detec_tor IS un_lformly
K terms instead of the™ " [6]. If we compute the two partial deriva- etter than the MF (notice in Fig. 1(a) that the dasheddine- - lies
tives forp = 1, then inequality. (20) is equivalent to in the region where the MMSE detector is better than the MF).

. ) ) ) Conjecture 3: Under perfect power control and equicorrelated sig-
Z o2 (K=2m)? /2 <Ix> {1 B (K — 2n) (1+ mz)} <0 (21) nals the MMSE detector outperforms the MF when the number of users

= n K K is even.
n=0
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VI. CONCLUSION is because each of these error probabilities is dominated in the tails

The results described in this correspondence have been pursuedéﬁ?ilarge values ofr1) by the term involving the&)-function with the

marily out of theoretical interest. The significant practical advantag Q a::es: argl;ment. I (Zt?ﬁlys S’_f[r'Ct’.ltlhs n for Sl'lu ffl(t:;]entli/hlangetme "

of the MMSE detector over the decorrelator and the MF would “kegma Zf us:qcentaig)umen nise WITLDe smafier than the smafles
outweigh any performance disadvantage revealed here, inasmuch & g'ls fa?as the reIXtRe erformance of the MF and the decorrelator is
range of parameters for which the performance disadvantages arise are - P - . .

. concerned, itis known [8, p. 255] that for sufficiently high noise power
somewhat at the extremes for practical systems. Nevertheless, t BSPMF outperforms the decorrelator. What our proposition suggests is
results do provide some cautionary guidance concerning the relat & P ) prop Sugg

. . . that the MF also outperforms the decorrelator when the signal power
merits of linear multiuser detectors. ) ; . ) . .
of the user of interest is sufficiently high. Indeed, notice that by using

again the Schwarz inequality we can show
APPENDIX

Proof of Proposition 1: The error probabilities for the detectors 1 = e} R~ '/?R'?¢; < \/e!R=Te;\/e! Re; = \/e!R~1e; (29)
of interest are given in (2)—(4). It is convenient, however, to rewrite
these expressions in order to reveal trle_Qllnearidzepepdenay @ \ith equality iff e, = Re; for some scala or equivalently iffp,, =
the arguments of th@-functions. SinceX ™" = x; “erer + SWith gy _ 5 " k' The rest of the proof goes exactly as in the previous

S = diag{0, 25 %, ..., 2"} the matrix inversion lemma yields case. ’ O
—1
(Rt X))oy = (_134;5) e . 23) REFERENCES
L+ el (R+5)" e [1] W. H. Beyer,Standard Mathematical Tables Boca Raton, FL: CRC,
1987.
o . . [2] M. Honig, U. Madhow, and S. Verd(, “Blind multiuser detectiotfEE
Substituting this into (2) and noting that Trans, Inform. Theoryvol. 41, pp. 944-960, July 1995.
[3] M. Honig and H. V. Poor, “Adaptive interference suppression W\ine-
. 1 ' 1 less Communications: Signal Processing Perspectided/. Poor and
ex(R+S)" Rer=e (R+5)” (R+S5—S)er =1 (24) G. W. Wornell, Eds. Upper Saddle River, NJ: Prentice-Hall, 1998, ch.
2, pp. 64-128.
. . . . [4] R. Lupas and S. Verdd, “Linear multiuser detectors for synchronous
(becausese; = 0), we obtain the following alternative expression: code-division multiple-access channellEEE Trans. Inform. Theory

vol. 35, pp. 123-136, Jan. 1989.
B [5] U. Madhow and M. Honig, “MMSE interference suppression for direct
P =l K Z < 1 +el(R+ S)’IRXb ) sequence spread spectrum CDMAEE Trans. Communvol. 42, pp.
MMSE = 7 = 7 = 3178-3188, Dec. 1994.
\/el(R +S5) TR+ 5)" e [6] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser de-
(25) tection,”|[EEE Trans. Inform. Theoryol. 43, pp. 858-871, May 1997.
[7] P. B. Rapajic and B. S. Vucetic, “Linear adaptive transmitter-receiver
structures for asynchronous CDMA systems,”Hroc. IEEE 3rd Int.

where X = diag{0, 22, ..., #x }. It is also convenient to explic- Symp. Spread Spectrum Techniques and Applications (ISSSTA'94)
Oulu, Finland, July 4-6, 1994.

b,==+1

itly display the dependence of the MF detector’s performance;on [8] S. Verdd, Multiuser Detection New York: Cambridge Univ. Press,
namely, 1998.
) [9] Z. Xie, R. T. Short, and C. K. Rushforth, “A family of suboptimum de-
Pup = 27K Z Q(xy + el RX'b). (26) tectors for coherent multiuser communication&EE J. Select. Areas
bimt1 Commun,.vol. 8, pp. 683-690, May 1990.

It should be noted that, except of courseref none of the remaining
quantities in (25) and (26) depends on

Using (24), the fact that} Re, = 1 and the Schwarz inequality we
can show that

1
<1 27
Vel(R+8)'R(R+ S)ter ~ @7
with equality iff
RY?¢, = QRI/Z(R+5)71€1 (28)

for some scalaw. It is easy to verify that (28) holds iff;y = 0,1 =
2, ..., K, wherep; is thelth component of the first column d@t. In
other words, we have equality in (27) iff simultaneously all interfering
users have signature waveforms that are orthogonal to the signature
waveform of User 1. If at least one interfering user does not satisfy this
constraint, then the inequality in (27) is strict.

Now, from (25) and (26), it follows immediately that, with (27) strict
and for all sufficiently larger;, we will have Pyivise > Pur. This



