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Both PF (�; i) and PD(�; i) are quasi-convex. Moreover, they
are both strictly monotonically decreasing functions w.r.t.� . So for
every admissible fusion ruleFi, define�i to be the smallest� such that
PF (�; i) � �0. Due to the monotonically decreasing property, this�i

must satisfyPF (�i; i) = �0 and the correspondingPD(�i; i) is the
maximizeddetectionprobabilityfortheadmissiblefusionruleFi .Define

i
� = arg max

i

PD(�i; i)

thenFi is the optimal fusion rule and the maximum detection prob-
ability is PD(�i ; i�). This method also applies to the case with non-
Gaussian noise distributions.

VI. CONCLUSION

In this correspondence, we considered distributed detection ofs 2
f�m; mg, where theith ofn local sensors observesxi = s+ zi with
i.i.d. additive noisezi. Theith sensor makes a binary decisionui based
on a threshold� . A fusion center uses these decisions to produce the
global decision using a fusion ruleF .

When all admissible rules have the probability of error as a quasi-
convex function of� , the problem decomposes into a series ofn quasi-
convex optimization problems that may be solved using well-known
techniques. We showed this quasi-convexity property for generalized
Gaussian noise. For some non-Gaussian noise distributions we showed
this quasi-convexity property when the hypotheses have equala priori
probability.

We also used the quasi-convexity perspective to provide solution
techniques for Bayes risk and Neyman–Pearson formulations of the
sensor data fusion problem.

Applying our solution technique to binary sensors in Gaussian noise
reveals that the number of binary sensors needed for every SNR to
achieve error probability of10�5 is fewer than twice the number of
infinite-precision sensors required. So the binary sensor can be a better
choice from a practical or economic point of view.

Zhanget al.[14] generalize these results by showing quasi-convexity
in the likelihood ratio function for any distribution on the i.i.d. obser-
vationsxi.
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On the Relative Error Probabilities of Linear Multiuser
Detectors
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Abstract—The relative error-probability performance of three linear
multiuser detectors—the minimum mean-square error detector, the decor-
relator, and the conventional matched filter (MF) detector—is investigated
under nonorthogonal signaling and additive white Gaussian noise condi-
tions. It is shown that, contrary to the general belief, the minimum mean-
square-error (MMSE) detector does not uniformly outperform the other
two detectors. In fact, even for the two-user case, one can find counterex-
amples where the matched filter is significantly better.

Index Terms—Code division multiple access (CDMA), multiuser detec-
tion.

I. INTRODUCTION

Linear multiuser detection schemes have attracted considerable at-
tention lately due to their simplicity, low complexity (as compared to
optimum detection schemes), and satisfactory performance which, al-
though not optimum in a minimum-error-rate sense, can nevertheless
satisfy a number of alternative asymptotic optimization criteria such as
high efficiency or near–far resistance [8, pp. 195–202].

The matched-filter (MF) detector is, of course, the simplest linear
detector. Since this detector neglects the presence of interfering users,
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its performance can be extremely poor in the presence of severe mul-
tiple-access interference (MAI). Two key linear multiuser detectors are
known to combat MAI very efficiently. Specifically, thedecorrelating
detector (ordecorrelator) defeats MAI by selecting a proper linear filter
to eliminate it [4], [8], while theminimum mean-square-error(MMSE)
detector achieves robustness against MAI by selecting the linear filter
that minimizes the mean-square value of the output MAI plus noise [2],
[5], [7]–[9].

The MMSE detector has been the center of recent attention due to
its noticeable feature of being practically implementable through blind
adaptive schemes; that is, through schemes that use only the signature
waveform of one user of interest and do not require training sequences
or knowledge of signatures of interferers [2]. In [6] one can find a de-
tailed analysis of this detector’s performance under various conditions
related to multiuser applications, along with efficient approximations
of the corresponding error rates.

Several analytical and numerical results have suggested the conjec-
ture (stated in [6]) that the MMSE detector outperforms the decorrelator
for any combination of signal and noise powers. Furthermore, a similar
(if not stronger) feeling seems to be shared when the MMSE detector
is compared against the conventional MF detector. It is the aim of this
work to prove that both of these conjectures are in fact false. Specifi-
cally, for the comparison of the MMSE detector versus the decorrelator
we show that for the two-user case and for large enough cross corre-
lation of the signature signals, it is possible to find noise and signal
powers for which the MMSE detector is inferior to the decorrelator. We
also show that such a case cannot appear under perfect power control
conditions. For the comparison of the MF against the MMSE and the
decorrelating detector we show that, for the generalK-user case with
essentially arbitrary cross correlations, the MF detector outperforms
the other two detectors provided that the power of the user of interest is
sufficiently large. Examples where the MF is better than the other two
detectors are also presented for the perfect power control case.

Let us now define the problem of interest in some more detail. Con-
sider aK-user binary communication system with corresponding nor-
malized modulation waveformss1; . . . ; sK ; and signaling antipodally
through an additive white Gaussian noise channel. If we limit ourselves
to the synchronous signal case then the length-K vectory whoselth
component is the output of a filter matched tosl is a sufficient statistic
for the problem of detecting the transmitted symbols. The vectory can
be written as [8, p. 56]

y = RA~b+ �n (1)

whereR denotes the normalized crosscorrelation matrix of the signals
s1; . . . ; sK ;A is the diagonal matrixdiagfA1; . . . ; AKgwithAl the
received amplitude of userl; ~b = [b1; . . . ; bK ]t is a vector whoselth
component is the symbolbl 2 f�1g of userl; n is aN (0; R) normal
random vector independent of~b; and, finally,�2 is the intensity of the
additive channel noise.

As noted above, we wish to examine the relative performance of the
MMSE detector, the decorrelator, and the MF detector. Without loss of
generality throughout our analysis we will consider User 1 to be the
user of interest. The corresponding error probabilities are then given
by the following formulas [8, pp. 113, 249, 300]:

PMMSE =21�K

b =�1

Q
et1(R+X�2)�1RXb

z(R; X)
(2)

PD =Q
x1

et
1
R�1e1

(3)

PMF =21�K

b =�1

Q(et1RXb) (4)

where

z(R; X) = et1(R+X�2)�1R(R+X�2)�1e1

X = diagfx1; . . . ; xKg

xl = Al=�, b = [1 b2 . . . bK ]t, e1 = [1 0 . . . 0]t, andQ(�) denotes
the complementary unit cumulative Gaussian distribution. Finally, we
should note that the sums in (2) and (4) are taken over all possible com-
binations ofbi; i = 2; . . . ; K. In the following sections, we compare
these three expressions under various signaling conditions.

II. THE MATCHED FILTER VERSUS THEMMSE AND DECORRELATING

DETECTORS

In this section, our goal is to show that the MF outperforms both
the MMSE and decorrelating detectors provided the user of interest is
sufficiently strong in power. In particular, we prove the following result.

Proposition 1: Fix R; x2; . . . ; xK ; and assume thatR is positive
definite. If at least one interfering user has a signature waveform that
is nonorthogonal to the signature waveform of User 1, then there exists
sufficiently largex1 for which the MF detector outperforms both the
MMSE detector and the decorrelator.

Proof: The proof is presented in the Appendix.

For the case where the signatures of the interfering users are orthog-
onal to the signature of User 1 we know that all three schemes have
the same performancePMMSE = PD = PMF = Q(x1); which is, of
course, the single-user performance.

From Proposition 1 it is not clear what the size ofx1 must be in order
for the proposition to hold. It turns out, at least for the two-user case,
that even for moderate values ofx1 the conclusion of the proposition
can hold. If� denotes the cross correlation of the normalized signa-
ture waveforms of the two users, then Fig. 1 depicts, as a function of�,
the pairs(x1; x2) for which the detectors have the same performance.
Specifically, Fig. 1(a) shows these pairs for the MF and MMSE de-
tector, while Fig. 1(b) shows the corresponding pairs for the MF and
the decorrelator. All points were obtained numerically. We also men-
tion that in Fig. 1(a) points lying to the right of each curve correspond to
the case where the MF outperforms the MMSE detector, while in Fig.
1(b) points below each curve correspond to combinations where MF
is better than the decorrelator. From Fig. 1(a), we also observe that for
anyx1 > x2 there always exists a curve, corresponding to sufficiently
high�, surrounding the point(x1; x2); meaning that the combination
lies in the region where MF outperforms MMSE. Notice, on the other
hand, that whenx1 � x2 the MMSE seems to always outperform the
MF (for any�); this also includes the casex1 = x2 of perfect power
control. Unfortunately, as we will see, we were not able to prove this
last statement analytically.

A. Counterexample

In Fig. 2, we have plotted the relative performance of the three detec-
tors for the casex2 = 0:2x1 and for various values of�. Specifically,
Fig. 2(a) depicts the case of the MF versus the MMSE detector whereas
Fig. 2(b) the MF versus the decorrelator. We note that the MF can sig-
nificantly outperform both rivals for values ofj�j > 0:4.

It is of interest to consider a specific numerical example. LetA1 = 1;
A2 = 0:2 and a noise intensity of�20 dB(� = 0:1). A difference of
10–20 dB in user powers and a signal-to-noise ratio (SNR) of the order
of 20–30 dB is very common in most simulations in the literature. If
� = 0:5, then the relative performance becomesPMMSE=PMF = 1:6,
PD=PMF = 41:7. If we now reduce the noise power by 3 dB(� =
0:071), then the relative performance becomesPMMSE=PMF = 19:7,
PD=PMF = 838:1, while with an additional 3-dB reduction in the
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Fig. 1. Combinations ofx ; x where (a) the MF and the MMSE and (b) the MF and the decorrelator have equal performance, for various values of the cross
correlation�.

Fig. 2. Relative performance of (a) MF versus MMSE and (b) MF versus the decorrelator, whenx = 0:2x and for various values of�.

noise(� = 0:05) we obtain an enormous differencePMMSE=PMF =
5799:3, PD=PMF = 338197:3.

III. T HE MMSE DETECTORVERSUS THEDECORRELATINGDETECTOR

We now turn, as in [6], to a comparison of the MMSE detector and
the decorrelating detector. Here, we restrict attention to the two-user
case(K = 2). Proceeding along the same lines as in [6, Proposition
5.2] we will show that the MMSE detector outperforms the decorrelator
provided thatj�j is smaller than some upper limit�? < 1. The signif-
icant new information brought by our result as compared to [6] (apart
a slight improvement on the upper bound forj�j) is the fact that the
proposed upper bound is tight. By this we mean that ifj�j > �? then
there are combinations of noise and signal powers for which the decor-
relator outperforms the MMSE detector. This, of course, suggests that
the conjecture stated in [6] (that the MMSE detector is always better
than the decorrelator) is false.

It is convenient to rewrite the error probabilities for the two detectors
using a slightly different notation

PMMSE =
1

2
Q(ax1 + b) +

1

2
Q(ax1 � b) (5)

PD =Q(cx1) (6)

where

a =
1� �2 + �2

(1 + 2�2)(1� �2) + �22
(7)

b =
�
p
�2

(1 + 2�2)(1� �2) + �22
(8)

andc = 1� �2, �2 = x�22 . Notice thatPMMSE andPD are sym-
metric in the correlation factor�. Consequently, without loss of gener-
ality, we will assume that� � 0. Let�2 and� be fixed, then parameters
a; b; c become fixed as well since they depend only on�2 and� and
not onx1. The two error probabilities can thus be written as functions
of x1; and we denote their difference by

J(x1) = PMMSE(x1)� PD(x1): (9)

In the following subsection we analyze this function in detail.

A. Analysis ofJ(x1)

We first note thatJ(0) = J(1) = 0. Consider now the derivative
J 0(x1); or, more precisely, the following expression that has the same
sign:

p
2�

a
ec x =2J 0(x1) = d� F (x1) (10)

where

F (x1) = 0:5 e�(c x +c ) + e�(c x �c )

d = c
a
e�b c =2c , c1 =

p
a2 � c2, andc2 = ab=c1. The number of

sign alternations of the expression in (10) forx1 � 0 depends on the
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Fig. 3. The two possible forms of the functionF (x ).

number of positive real roots of the equationd = F (x1). This equation
has at least one positive root (becauseJ(0) = J(1) = 0 guarantees
an extremum forJ(x1)) and, as one can observe from Fig. 3 where
we present the two possible forms ofF (x1), at most two. We can now
prove the following lemma.

Lemma: Suppose�2 and� are fixed. Then the MMSE detector is
better than the decorrelator for every value ofx1 iff d � F (0).

Proof: From Fig. 3 we can conclude that ifd � F (0), the equa-
tion d = F (x1) has only one positive root (say,x?). This means that
J(x1) is decreasing inx1 for 0 � x1 � x? and increasing forx1 � x?.
SinceJ(0) = J(1) = 0 this suggests thatJ(x1) � 0; in other words,
that the MMSE detector is superior to the decorrelator for all values of
x1. Consider now the cased > F (0). In order for this to be possible,
since we always have a root in our equation, it is clear thatF (x1) must
have a minimum atx1 = 0 and a maximum at some positive point (see
Fig. 3). We can thus conclude that in this case the MMSE detector can
be inferior to the decorrelator forx1 sufficiently small.

Let us now substitute all quantities entering in the inequalityd �
F (0) in terms of the two parameters� and�2. We then obtain the
following equivalent relation:

G(�2; �) =
1� �2 + �2

1� �2 (1 + 2�2)(1� �2) + �22

� exp
��2�2

2[(1 + 2�2)(1� �2) + �22]
� 1 (11)

which due to the Lemma is necessary and sufficient for guaranteeing
superior performance for the MMSE detector over the decorrelator for
every value ofx1.

From the proof of the Lemma it is clear that if (11) is not satisfied
for some combination of�2 and�, we can then find sufficiently small
x1 such thatPMMSE > PD. Let us now examine (11) more closely.

B. Analysis ofG(�2; �)

Fix � and considerG(�2; �) as a function of�2. We can then verify
that the sign of its partial derivative with respect to�2 is the same as
the sign of the following third-order polynomial:

U(�2; �) = (1��2+�2)
3
��2(1��2)(1��2+�2)+2�2(1��2)2:

(12)

Using standard results concerning roots of third-order polynomials [1,
p. 7] one can show that when� > 27=28 � 0:982 the polyno-
mial has three distinct real roots, one of which is negative, whereas for
0 < � � 27=28, the polynomial has one negative real root and two
complex conjugate roots.

Consider the case� > 27=28; as noted above, the polynomial
U(�2; �) has three distinct real roots, one of which is negative and the
other two have common sign. SinceU(2(1� �2); �) < 0 and

lim
� !+1

U(�2; �) = +1:

This means that there is at least one root in the interval(2(1��2); 1)
which, in turn, suggests that the two roots with the common sign are
positive. From the above we have the following remarks concerning
G(�2; �).

Remark 1: If � � 27=28, thenU(�2; �) is positive for�2 � 0,
and, consequently,G(�2; �) is strictly increasing in�2 and larger than
unity (sinceG(0; �) = 1). For this case, the inequality in (11) is clearly
satisfied for every�2 � 0.

Remark 2: If � > 27=28 thenG(�2; �), as a function of�2 � 0,
presents two local extrema at the two positive real roots ofU(�2; �),
the first one being a local maximum and the second a local minimum.
Since the first extremum is a local maximum this means that its value is
larger than unity (becauseG(0; �) = 1). The local minimum, however,
can be either larger or smaller than unity depending on�. If for some�
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Fig. 4. G(� ; �) as a function of� for various values of�.

the corresponding local minimum ofG(�2; �) goes below unity, then
inequality (11) is clearly not satisfied for every�2 � 0. If, on the
other hand, the local minimum is greater or equal than unity then (11)
is satisfied for all�2 � 0.

The variable behavior ofG(�2; �) is depicted in Fig. 4, where we
plot this function with respect to�2 and for characteristics values of
the parameter�. We are now in a position to find all values of the cross
correlation� for which the MMSE detector outperforms the decorre-
lator for all possible noise and signal powers.

Proposition 2: There exists a�? with 27=28 < �? < 1 such that
if 0 � � � �? then the MMSE detector outperforms the decorrelator
for any value ofx1 and�2; furthermore if1 � � > �? then there exist
values forx1 and�2 such that the MMSE detector is inferior to the
decorrelator.

Proof: Due to Remark 1 we conclude that for any0 � � �

27=28 we have thatG(�2; �) � 1 for all �2 � 0. This, of course,
implies that for any0 � � � 27=28 the MMSE detector outper-
forms the decorrelator for any noise and signal powers. With the help
of Remark 2 we will be able to slightly improve this result and propose
an upper bound on� that is in fact tight.

Consider the case1 � � > 27=28 where Remark 2 applies. If
we plot the local minimum ofG(�2; �) as a function of� then we
can observe that it is decreasing with�. Furthermore, there exists a
value�? for which the corresponding local minimum is exactly equal to
unity. Due to Remark 2 and the monotonicity of the local minimum as
a function of� we then conclude that for�? � � > 27=28 we have
G(�2; �) � 1 for all values of�2. On the other hand, if1 � � > �?,
there exist values for�2 where the inequalityG(�2; �) � 1 is false
(see Fig. 4).

Combining the two intervals we conclude that for any0 � � � �?
the inequality in (11) is true for all values of�2, therefore the MMSE
detector outperforms the decorrelator for any noise and signal powers.
The upper limit�? can be computed numerically; the value we obtain is
�? = 0:991765239964. From the above discussion we can also deduce

that the proposed upper limit�? is tight since for any1 � � > �? we
can find values for the parameter�2 such that (11) is false, meaning
that for sufficiently smallx1 we haveJ(x1) > 0.

C. Counterexample

A counterexample for the conjecture in [6] is the following. Letx1=
1, x2=5, and�=0:996>�? thenPMMSE=0:4699>PD=0:4644:
It should be mentioned, however, that unlike the case presented in the
previous section, the counterexample here is of no practical impor-
tance. For cross correlations as large as0:9999, the error rates, where
the decorrelator is better than MMSE, were always above0:4.

IV. POWER CONTROL

In this section we to consider the special caseA1 = A2 = � � � =
AK = A or, equivalently,x1 = x2 = � � � = xK = x which cor-
responds to perfect power control. The error probabilities of the three
detectors, for this case, take the form

PMMSE =21�K

b =�1

Q x
et1(x

2R+ I)�1Rb

z(R; x)
(13)

PD =Q
x

et
1
R�1e1

(14)

PMF =21�K

b =�1

Q(xet1Rb) (15)

wherez(R; x) = et1(x
2R + I)�1R(x2R+ I)�1e1.

A. MMSE Versus the Decorrelator

Here we will examine the relative performance of the two detectors
for the two-user case. We have the following proposition.

Proposition 3: For the two-user case and under perfect power con-
trol the MMSE detector always outperforms the decorrelator.
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Proof: Denote the two error probabilities asPMMSE(x; �) and
PD(x; �). SincePMMSE(x; 1) = PD(x; 1), consider� < 1. Ap-
plying the change of variablesx = �= 1� �2 the error probabilities
become

PMMSE(�; �) = 0:5Q �
�2 + 1 + �

z(�; �)
+ 0:5Q �

�2 + 1� �

z(�; �)

(16)

PD(�; �) =Q(�); (17)

where

z(�; �) = �4 + (1� �2)(2�2 + 1):

We will now show thatPMMSE(�; �), for fixed�, is a decreasing func-
tion in �. This is sufficient to prove the proposition since then

PMMSE(�; �) � PMMSE(�; 0) = Q(�) = PD(�; �):

To show that the partial derivative ofPMMSE(�; �) with respect to
� is negative, after some tedious but straightforward calculations, is
equivalent to showing the following inequality:

�
2�2 + 1

�2 + 1
� tanh �

�2(1 + �2)

�4 + (1� �2)(2�2 + 1)
: (18)

For� � (�2+1)=(2�2+1) this inequality is true because for positive
z we have1 � tanh(z). On the other hand, when� � (�2+1)=(2�2+
1), since�2 � � andz � tanh(z) for z � 0; we can write

�
2�2 + 1

�2 + 1
� � � tanh(�)

� tanh �
�2(1 + �2)

�4 + (1� �2)(2�2 + 1)
(19)

which completes the proof.

B. MF Versus the MMSE Detector

In view of the previous result and also the fact that, from Fig. 1(a),
line x1 = x2 lies entirely in the area where the MMSE detector out-
performs the MF filter, one might conjecture that the MMSE detector
would be superior to the MF for the power control case. Unfortunately,
it turns out that even this conjecture is false as one can find counterex-
amples for oddK.

Proposition 4: Let the number of usersK be odd and the corre-
sponding signature waveforms be equicorrelated with common corre-
lation �. Then under perfect power control and for anyx �

p
2 there

exists correlation� sufficiently close to unity such that the MF outper-
forms the MMSE detector.

Proof: The correlation matrix, for equicorrelated waveforms,
takes the formR = (1 � �)I + �V V t whereV = [1 . . . 1]t. The
corresponding error probabilities then become functions ofx and�
and let us denote them asPMMSE(x; �) andPMF(x; �).

The two error probabilities satisfyPMMSE(x; 1) = PMF(x; 1).
Since both functions are continuous with respect to their arguments,
it is sufficient to show that for fixedx �

p
2 we have

@PMMSE(x; �)

@� �=1

� @PMF(x; �)

@� �=1

: (20)

Due to the special structure of the correlation matrix, the sums in the
definition of the two error probabilities reduce to sums containing only
K terms instead of the2K�1 [6]. If we compute the two partial deriva-
tives for� = 1, then inequality (20) is equivalent to

r

n=0

e�x (K�2n) =2 K

n
1� (K � 2n)2

K
(1 + rx2) < 0 (21)

whereK = 2r+1. Condition (21) can be seen to be true forx2 > 2,
since it makes the quantity in the brackets negative for alln=0; . . . ; r.
This concludes the proof.

Although Proposition 4 indicates that it is possible for the case of odd
K to find counterexamples to the conjecture that the MMSE detector
is better than the MF, we should nevertheless note that, at least for
the equicorrelated case, these counterexamples appear only at extreme
values of the cross correlation�. Specifically, it was found numerically
that forK = 3 the cross correlation must exceed the value0:9942
while things seem to improve (for MMSE detector) asK increases
since forK = 5 the cross correlation needs to be larger than0:9975
and forK = 7 larger than0:9986.

C. MF Versus the Decorrelator

As we stated in Section II, it is known [8, p. 249] that the MF outper-
forms the decorrelator for sufficiently high noise power (provided that
User 1 is not orthogonal to the interfering users). Since this fact holds
for any combination ofx1; x2 it is also true for the perfect power con-
trol case. If we are, however, interested in the case where the noise
power does not go to infinity (i.e.,x does not tend to zero), then it is
possible to obtain a result similar to the one presented in the previous
subsection (in fact, slightly stronger). Again if we denote the corre-
sponding error probabilities withPMF (x; �) andPD(x; �), then we
obtainPD(x; 1) = 0:5 and

PMF(x; 1) = 21�K
K�1

n=0

K � 1

n
Q(x[K � 2n]): (22)

Using the property that for positivex; y we have

Q(x+ y) +Q(x� y) < Q(y) +Q(�y) = 1

it is easy to show thatPMF(x; 1) < 0:5. Because of continuity this
also suggests that for any fixedx > 0 we can find� sufficiently close
to unity such thatPMF(x; �) < PD(x; �).

V. CONJECTURES

Next we present a number of statements, in the form of conjectures,
concerning comparisons of the three detectors under signaling condi-
tions that constitute generalization to the ones presented in the previous
sections. It should be noted that these conjectures are supported by ex-
tensive numerical computations of the corresponding error rates. Un-
fortunately, up to now it was not possible to prove them analytically.

The first conjecture refers to the comparison of the MMSE and the
decorrelator and constitutes the generalization of Proposition 2 to the
K-user and equicorrelated signals case.

Conjecture 1: Proposition 2 extends to arbitrary number of usersK
with equicorrelated signals. The upper limit�?(K) increases withK.

Conjecture 2: Proposition 3 extends to arbitrary number of users
and arbitrary crosscorrelation matrixR.

The next conjecture refers to the comparison of the MMSE detec-
torand the MF detectors under perfect power control. With Proposition
4, we have seen that, when the number of usersK is odd then there
exist examples where the MF outperforms the MMSE detector. Such
example was impossible to find for even values ofK. In fact, there are
strong indications that for this case the MMSE detector is uniformly
better than the MF (notice in Fig. 1(a) that the dashed linex1 = x2 lies
in the region where the MMSE detector is better than the MF).

Conjecture 3: Under perfect power control and equicorrelated sig-
nals the MMSE detector outperforms the MF when the number of users
K is even.
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VI. CONCLUSION

The results described in this correspondence have been pursued pri-
marily out of theoretical interest. The significant practical advantages
of the MMSE detector over the decorrelator and the MF would likely
outweigh any performance disadvantage revealed here, inasmuch as the
range of parameters for which the performance disadvantages arise are
somewhat at the extremes for practical systems. Nevertheless, these
results do provide some cautionary guidance concerning the relative
merits of linear multiuser detectors.

APPENDIX

Proof of Proposition 1: The error probabilities for the detectors
of interest are given in (2)–(4). It is convenient, however, to rewrite
these expressions in order to reveal the linear dependency onx1 of
the arguments of theQ-functions. SinceX�2 = x�2

1
e1e

t
1 + S with

S = diagf0; x�2
2
; . . . ; x�2K g the matrix inversion lemma yields

(R+X
�2)�1e1 =

(R+ S)�1e1

1 + x�2
1
et
1
(R+ S)�1e1

: (23)

Substituting this into (2) and noting that

e
t
1(R+ S)�1Re1 = e

t
1(R+ S)�1(R+ S � S)e1 = 1 (24)

(becauseSe1 = 0), we obtain the following alternative expression:

PMMSE = 21�K

b =�1

Q
x1 + et1(R+ S)�1R ~Xb

et
1
(R+ S)�1R(R+ S)�1e1

(25)

where ~X = diagf0; x2; . . . ; xKg. It is also convenient to explic-
itly display the dependence of the MF detector’s performance onx1;
namely,

PMF = 21�K

b =�1

Q(x1 + e
t
1R ~Xb): (26)

It should be noted that, except of course ofx1, none of the remaining
quantities in (25) and (26) depends onx1.

Using (24), the fact thatet1Re1 = 1 and the Schwarz inequality we
can show that

1

et
1
(R+ S)�1R(R+ S)�1e1

� 1 (27)

with equality iff

R
1=2

e1 = �R
1=2(R+ S)�1e1 (28)

for some scalar�. It is easy to verify that (28) holds iff�l1 = 0; l =
2; . . . ; K, where�l1 is thelth component of the first column ofR. In
other words, we have equality in (27) iff simultaneously all interfering
users have signature waveforms that are orthogonal to the signature
waveform of User 1. If at least one interfering user does not satisfy this
constraint, then the inequality in (27) is strict.

Now, from (25) and (26), it follows immediately that, with (27) strict
and for all sufficiently largex1; we will havePMMSE > PMF: This

is because each of these error probabilities is dominated in the tails
(of large values ofx1) by the term involving theQ-function with the
smallest argument. If (27) is strict, then for sufficiently largex1 the
smallest such argument ofPMMSE will be smaller than the smallest
such argument inPMF:

As far as the relative performance of the MF and the decorrelator is
concerned, it is known [8, p. 255] that for sufficiently high noise power
the MF outperforms the decorrelator. What our proposition suggests is
that the MF also outperforms the decorrelator when the signal power
of the user of interest is sufficiently high. Indeed, notice that by using
again the Schwarz inequality we can show

1 = e
t
1R
�1=2

R
1=2

e1 � et
1
R�1e1 et

1
Re1 = et

1
R�1e1 (29)

with equality iff�e1 = Re1 for some scalar� or equivalently iff�1l =
0; l = 2; . . . ; K. The rest of the proof goes exactly as in the previous
case.
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