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Abstract. By using a fair comparison method we show that contrary to the general belief the conventional LMS,
when in training mode, does not necessarily outperform the popular blind LMS (BLMS). With the help of a
constrained MMSE criterion we identify the correct trained version which is guaranteed to have uniformly superior
performance over BLMS since it maximizes the SIR over an algorithmic class containing BLMS. Because the
proposed optimum trained version requires knowledge of the amplitude of the user of interest we also present
simple and efficient techniques that estimate the amplitude in question. The resulting algorithm in both modes,
training and decision directed, is significantly superior to BLMS.

1. Introduction

Code division multiple access (CDMA) implemented
with direct sequence (DS) spread spectrum signaling is
a technology applied to a number of important appli-
cations nowadays such as mobile telephony, wireless
networks and personal communications. In these sys-
tems, multiple access interference (MAI) becomes an
intrinsic factor for severe performance degradation that
necessitates the application of signal processing tech-
niques to improve quality. Multiuser detection schemes
developed over the last years, successfully mitigate
MAI achieving at the same time significant capacity
improvement for the corresponding CDMA systems.
Due to their capability to combat MAI, multiuser de-
tection schemes have attracted considerable attention
and currently significant research is devoted in this
direction [1].

Among multiuser detection schemes, the linear
MMSE detector appears to be the most popular one
[2–9]. This popularity mainly stems from its charac-
teristic simplicity which is combined with excellent
performance. Although the MMSE detector is not op-
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timum from a minimum bit error rate (BER) point of
view, it nevertheless optimizes a number of alternative
criteria as asymptotic efficiency and near-far resistance
[10, pages 195–202]. Despite its asymptotic optimal-
ity, the MMSE detector was recently found not to uni-
formly outperform, in the BER sense, the other two
well known linear detectors, namely the conventional
matched filter and the decorrelating detector [11]. This
fact however does not attenuate the significance of this
popular detection scheme since counterexamples seem
to be possible only at extreme signaling conditions.

After its introduction [9], the usefulness of the
MMSE detector was spurred with the appearance of
a blind adaptive realization [12] that does not require
training or knowledge of the interfering users’ sig-
nature waveforms. Following this work a number of
alternative blind techniques were proposed, differing
mainly in the adaptive algorithm used to estimate the
corresponding linear filter [3, 6, 8]. Among these ver-
sions the subspace based adaptations [6, 8], due to the
special structure of the multiuser detection problem,
tend to exhibit superior performance as compared to
the corresponding classical adaptive schemes.

It is often stated in the literature that the most se-
vere drawback of blind schemes is their inferior per-
formance as compared to adaptations that use training
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[3, 12]. The first important result of this paper con-
sists in showing that this widely accepted statement
is in fact FALSE. In order for a trained algorithm to
uniformly outperform its blind counterpart, as we will
show, it is necessary to have also available the infor-
mation of the amplitude of the user of interest. Unfor-
tunately this type of a priori knowledge is difficult to
obtain in practice, we therefore propose a simple adap-
tive algorithm to estimate it. This adaptation combined
with the trained algorithm that estimates the linear fil-
ter, results in almost optimum performance.

The considerable difference in performance between
blind and optimum trained schemes suggests that there
is room for performance improvement of blind adap-
tations. The second main result of this work aims in
this direction. Specifically we show that the decision
directed version of our optimum trained scheme is ex-
tremely efficient with performance that follows closely
the performance of its trained prototype. Since decision
directed algorithms do not require training or knowl-
edge of interfering users’ signatures, they are obviously
blind as well. Due to its excellent performance, the
proposed decision directed scheme can consequently
become a possible alternative to the existing popular
blind algorithm of [12].

2. Signal Model and Background

Consider a K -user synchronous DS-CDMA system
with identical chip waveforms and signaling an-
tipodally through an additive white Gaussian noise
(AWGN) channel. Although the signals appearing in
CDMA systems are continuous in time, the system
we are interested in, can be adequately modeled by
an equivalent discrete time system [10]. Specifically
no information is lost if we limit ourselves to the dis-
crete time output of a chip matched filter applied to the
received analog signal [10, page 310]. The resulting
sequence can be represented as a collection of vectors
r(n) of length N , with N denoting the common spread-
ing factor of all signature waveforms. To be more pre-
cise, if σ 2 denotes the power of the AWGN we can then
write1

r(n) =
K∑

i=1

si ai bi (n) + σn(n) (1)

where si is a unit norm vector denoting the discrete time
version of the signature of User-i , ai the corresponding
amplitude, bi (n) the n-th symbol of User-i and finally

n(n) a white Gaussian noise vector with i.i.d. compo-
nents of zero mean and unit variance that models the
ambient noise. Using matrix notation, Eq. (1) can be
transformed into

r(n) = SAb(n) + σn(n) (2)

where S = [s1 · · · sK ], A = diag{a1, . . . , aK } and
b(n) = [b1(n) · · · bK (n)]t .

A linear detector estimates the i-th user’s transmitted
bits by taking the sign of the inner product of r(n)

with a properly selected vector (filter) c of length N ,
specifically

b̂i (n) = sgn{ct r(n)}. (3)

Three are the most well known linear detectors en-
countered in the literature, namely the conventional
matched filter, the decorrelating detector (or decorrela-
tor) and the MMSE detector which is also equivalent to
the Minimum Output Energy (MOE) detector of [12].
Without loss of generality if we consider User-1 as the
user of interest then the corresponding c filters for the
three detectors take the form

c =




s1 matched filter

SR−1e1 decorrelator

Σ−1
r s1

st
1Σ

−1
r s1

MMSE, MOE,

(4)

where R = St S is the correlation matrix of the sign-
ature waveforms, e1 = [10 · · · 0]t and Σr = E{r(n)

× rt (n)} = SA2St + σ 2I (with I the identity matrix)
is the data covariance matrix. The three detectors are
extensively analyzed in [10] and their relative perfor-
mance considered in [11]. Notice that apart from the
conventional matched filter the other two linear detec-
tors require knowledge of all interfering users’ signa-
tures, while the MMSE requires additional knowledge
of all user and noise powers.

3. A Constrained MMSE Criterion

The MMSE linear detector presented in the previous
section can be obtained by minimizing the MSE be-
tween the output of the filter and the desired bit se-
quence, that is

min
c

E
{(

b1(n) − ct r(n)
)2}

. (5)

Minimizing this criterion yields the following optimum
filter
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co = a1Σ−1
r s1, (6)

which is a scaled version of the filter introduced in
(4). Although the two filters are not equal, they are
equivalent because, when substituted in (3), produce
exactly the same bit estimates. The MOE criterion on
the other hand is defined as

min
c

E{(ct r(n))2}, subject to ct s1 = 1, (7)

and its optimum filter is exactly the one presented in
(4).

Even though the two criteria produce equivalent op-
timum filters, when these filters are estimated adap-
tively, the resulting schemes tend to differ considerably
in nature and in performance. Specifically the MMSE
criterion gives rise to adaptations requiring training [9]
whereas the MOE results in the popular blind version
of [12]. As it was stated in the introduction, contrary
to the general belief, the trained version does not uni-
formly outperform the blind. From the analysis that
follows it will become apparent that it is relatively easy
to generate counterexamples (see for instance Fig. 1).
Consequently this section will be devoted to the iden-
tification of the correct trained version that uniformly
outperforms the blind. To achieve our goal we first need
to introduce a modified MMSE criterion.

Since we detect the bit sequence b1(n) through re-
lation (3) we can conclude that, from a detection point

Figure 1. Performance of CLMS, CLMS-AI, BLMS and conventional LMS for a1 = 0.1, σ 2 = 0.01.

of view, any filter c is equivalent to its scaled version
δc with δ > 0 because

b̂1(n) = sgn{ct r(n)} = sgn{δct r(n)}. (8)

From the above we understand that, as far as detection
is concerned, there is an ambiguity in c which can be
eliminated by imposing a constraint on the filter. We
intend to use the same constraint as the one introduced
in [4], namely

ct s1 = 1. (9)

With (9) we force our filter c to leave unchanged any
information coming from the “direction of interest” s1.
The criterion we now propose is the following

min
c

E
{(

αb1(n) − ct r(n)
)2}

, subject to ct s1 = 1,

(10)

where α is a scalar parameter. In other words we are
interested in minimizing the MSE between the output
of the filter and a scaled version of the bit sequence.
Notice that our criterion reduces to MOE when we
select α = 0.

Using Lagrange multipliers let us transform the
above constrained problem into an equivalent uncon-
strained one. Define the function

φ(c) = 1

2

(
αb1(n) − ct r(n)

)2 − λct s1, (11)
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then the solution to (10) can be obtained by solving

min
c

E{φ(c)}, (12)

with λ the necessary Lagrange multiplier. It is quite
easy to verify that the optimum filter satisfies

co = Σ−1
r s1

st
1Σ

−1
r s1

, (13)

which is an expression independent of the parameter
α and equal to the MMSE and MOE optimum filter
introduced in (4).

3.1. Constrained Adaptations

If the statistics of the processes involved in the min-
imization problem defined in (12) are not known, it
is still possible to obtain the optimum solution using
stochastic gradient techniques. A stochastic gradient
algorithm that solves (12) can be defined by the fol-
lowing recursion [10, pages 306–308]

c(n) = c(n − 1) − µ∇cφ(c(n − 1)), (14)

where µ > 0 a positive constant known as step size and
φ(c) is defined in (11). Using (14) in (11) generates an
LMS like adaptation of the form

ε(n) = αb1(n) − ct (n − 1)r(n) (15)

c(n) = c(n − 1) + µ(ε(n)r(n) + λs1), (16)

that can be generalized to the following richer algorith-
mic class

ε(n) = αb1(n) − ct (n − 1)r(n) (17)

c(n) = c(n − 1) + µQ(n)(ε(n)r(n) + λs1), (18)

with Q(n) a sequence of nonsingular matrices that can
depend on the data. We can now identify the Lagrange
multiplier λ by enforcing validity of the constraint at
every timestepn, that is, st

1c(n) = st
1c(n − 1)= · · · = 1.

Indeed if we multiply (18) from the left by st
1 and re-

quire st
1c(n) = st

1c(n − 1) = 1 we obtain

λ = −ε(n)Q(n)
st

1Q(n)r(n)

st
1Q(n)s1

(19)

which if substituted in (18) yields

ε(n) = αb1(n) − ct (n − 1)r(n) (20)

c(n) = c(n − 1) + µε(n)Q(n)

×
(

r(n) − st
1Q(n)r(n)

st
1Q(n)s1

s1

)
. (21)

When Q(n) = I, the algorithm reduces to a con-
strained LMS version whereas Q(n) =Σ−1

r (n), with
Σr(n) = (1 − µ)Σr(n − 1) + µr(n)rt (n) the (expo-
nentially weighted) sample covariance matrix of the
data, leads to a constrained RLS version.

3.2. Robust Constrained Adaptations

It is known that the recursion defined in (20),
(21) exhibits instability under finite precision (non-
robustness) which eventually results in useless filter
estimates [7, 10, page 320]. In order to correct this
serious handicap, in [7] the original constrained min-
imization problem is transformed into an equivalent
unconstrained one by enforcing (9) directly onto the
filter elements. Then the application of (14) gives rise
to robust adaptations. We would like here to propose
an alternative method which achieves robustness by
slightly modifying the recursion in (21).

If we make a first order perturbation analysis to iden-
tify the error accumulation mechanism in (21) we can
show that, if (21) is stable under infinite precision then,
the linear system that describes the error accumulation
exhibits instability only along s1. By perturbing (21)
we can write

ε(n) = αb1(n) − ct (n − 1)r(n) (22)

c(n) = c(n − 1) + µε(n)Q(n)

×
(

r(n) − st
1Q(n)r(n)

st
1Q(n)s1

s1

)
+ rounding errors (23)

with all operations performed now in infinite precision.
In other words rounding errors are modeled as additive
(white) noise. Multiplying the last equation from the
left by st

1 and subtracting from unity yields

1 − st
1c(n) = 1 − st

1c(n − 1) + rounding errors. (24)

The quantity 1 − st
1c(n) measures the accumulated fi-

nite precision error along direction s1 since it is zero
under infinite precision (because of the constraint). The
divergence of (24) towards infinity is of a random walk
type because, for sufficiently high accuracy, rounding
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Figure 2. Rounding error accumulation along direction s1 for original and modified algorithm.

errors tend to be independent. Of course, due to the
small variance of the rounding errors, the divergence is
in fact be very slow.

Having identified the form of instability in our re-
cursion we can proceed with the modification of the
algorithm in order to correct its non-robustness. If we
return to the identification of the Lagrange multiplier
in (19), we recall that λ was computed by assum-
ing st

1c(n) = st
1c(n − 1) = 1. However, due to rounding

errors, the second equality is clearly false. Taking this
fact into account and recomputing the Lagrange mul-
tiplier we obtain

λ = −ε(n)Q(n)
st

1Q(n)r(n)

st
1Q(n)s1

+ (
1 − st

1c(n − 1)
) 1

µst
1Q(n)s1

. (25)

Substituting in (18) results in the following modified
version

ε(n) = αb1(n) − ct (n − 1)r(n) (26)

c(n) = c(n − 1) + µε(n)Q(n)

×
(

r(n) − st
1Q(n)r(n)

st
1Q(n)s1

s1

)

+ (
1 − st

1c(n − 1)
) Q(n)s1

st
1Q(n)s1

. (27)

Using again first order perturbation analysis one can
verify that 1 − st

1c(n) is no longer accumulating round-
ing errors therefore the proposed modification is robust.

Another notable property of the recursion in (27) is the
fact that, if for some reason the product st

1c(n − 1) dif-
fers significantly from unity, (27) enforces validity of
the constraint in a single step. In Fig. 2 we present
a simulation of the constrained LMS algorithm (i.e.
Q(n) = I, α = 1) with and without the modification.
We observe that the error 1 − st

1c(n) of the original
unmodified algorithm increases continuously whereas
in the modified version it remains bounded. Although
the instability appears to be extremely slow, we should
bear in mind that the simulation was performed with
Matlab’s high accuracy computations. In a less accu-
rate environment this instability would have been more
pronounced.

3.3. Algorithms of Interest

From now on, for simplicity, we will limit our presen-
tation to the LMS like algorithmic class corresponding
to Q(n) = I; generalization to other Q(n) matrices is
straightforward. Let us present the special form of the
LMS like recursion. By substituting Q(n) = I in (27)
and recalling that ‖s1‖ = 1 we obtain

ε(n) = αb1(n) − ct (n − 1)r(n) (28)

c(n) = c(n − 1) + µε(n)
(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (29)

Notice that we initialize the algorithm with the matched
filter. As we will see in the next section this form of
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initialization, combined with the somewhat uncommon
second order statistics of the data, turns out to be the
reason for an unconventional behavior of this algorith-
mic class.

Let us now consider parameter α; we distinguish the
following selections

α = 0: This value generates the well known blind LMS
(BLMS) of [12] (more precisely its robust version).
Notice that BLMS requires the same amount of a
priori information as the conventional matched filter,
namely only the signature of the user of interest.

α = 1: With this selection we generate a constrained
version of LMS (CLMS). This algorithm must be
distinguished from the conventional (unconstrained)
LMS, used in the literature for the same problem [9],
that satisfies the recursion

ε(n) = b1(n) − ct (n − 1)r(n) (30)

c(n) = c(n − 1) + µε(n)r(n), c(0) = s1. (31)

which is known to be robust.
α = α1: Here parameter α is equal to the amplitude of

User-1 (user of interest). This gives rise to a con-
strained LMS with amplitude information (CLMS-
AI). As we show in Section 5, CLMS-AI turns out
to be optimum in a very well defined sense.

4. Performance Measure and Fair Comparisons

The most suitable measure of performance for the mul-
tiuser detection problem is definitely the BER. This
quantity however suffers from serious mathematical
intractability, therefore alternative measures have been
proposed which, at least asymptotically, are equivalent
to BER. One such possibility is the signal to interfer-
ence ratio (SIR) that can also be used to obtain efficient
approximations for BER [5]. To define the SIR let us
recall that detection at time n is performed through (3),
but with c replaced with the filter estimate at time n − 1,
that is,

b̂1(n) = sgn{ct (n − 1)r(n)}. (32)

We can then write

ct (n − 1)r(n) = a1b1(n) + ct (n − 1)r̃(n) (33)

r̃(n) =
K∑

i=2

ai bi (n)si + σn(n)

= S̃Ãb̃(n) + σn(n), (34)

where r̃(n) denotes the interference plus noise part of
the data, b̃(n) = [b2(n) · · · bK (n)]t , S̃ = [s2 · · · sK ] and
Ã = diag{a2, . . . , aK }. For our problem it is more con-
venient to use the inverse SIR (ISIR) which is defined
as

ISIR(n) = a−2
1 E{[ct (n − 1)r̃(n)]2}. (35)

To put this quantity under a more suitable form, let c̄(n)

denote the mean and Σc(n) the covariance matrix of
the filter estimates c(n), that is

c̄(n) = E{c(n)},
(36)

Σc(n) = E{[c(n) − c̄(n)][c(n) − c̄(n)]t }.

Let also Σr̃ = E{r̃(n)r̃t (n)} denote the covariance ma-
trix of the interference plus noise part of the data then,
because of independence between r̃(n) and c(n − 1)

and because for any two matrices D, E of the same
dimensions we have trace{Dt E} = trace{EDt }, we can
write

E{(ct (n − 1)r̃(n))2} = E{(c̄t (n − 1)r̃(n))2}
+ E{([c(n − 1)

− c̄(n − 1)]t r̃(n))2}
= c̄t (n − 1)Σr̃c̄(n − 1)

+ trace{Σc(n − 1)Σr̃}, (37)

which leads to

ISIR(n) = a−2
1

{
ct

oΣr̃co + [
c̄t (n − 1)Σr̃c̄(n − 1)

− ct
oΣr̃co

] + trace{Σc(n − 1)Σr̃}
}
. (38)

We can now make the following observations from (38)
for the three terms comprising ISIR.

• The first term is constant and common to all adaptive
algorithms since it involves the optimum MMSE fil-
ter co. This term would have been our ISIR had we
available the statistics of the data.

• The next two terms are due to the adaptive algorithm.
The second term involves the deterministic sequence
of mean estimates c̄(n), with the first element of this
sequence being s1 (since c(0) = s1) and the limit,
for (asymptotically) unbiased estimators, being the
optimum MMSE filter co. Therefore the second term
in (38) starts from an O(1) (order of a constant) value
and tends to zero as time progresses.
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• The last term in (38) is due to the randomness of our
estimates. This term is initially zero (since c(0) = s1

is deterministic) and converges, at steady state, to
an O(µ) value [13, pages 106–107]. Therefore this
term is always small.

From the above we conclude that the second term is
mainly responsible for the transient phase of the algo-
rithm while the third for its steady state behavior.

Since the first term in (38) is common to all al-
gorithms we will not consider it in our performance
evaluation process. As our final performance measure
we therefore propose the sum of the last two terms in
(38) which are the terms directly related to the adaptive
algorithm. Specifically we propose the following per-
formance measure

J (n) = a−2
1

{
E

{
ct (n)Σr̃c(n)

} − ct
oΣr̃co

}
= a−2

1

{[
c̄t (n)Σr̃c̄(n) − ct

oΣr̃co
]

+ trace{Σc(n)Σr̃}
}
. (39)

It is clear that J (n) expresses excess ISIR due to
adaptation.

4.1. Fair Comparisons of Adaptive Algorithms

A common mistake made in the literature when com-
paring constant step size adaptive algorithms consists
in performing comparisons by selecting the same step
size µ in all algorithms under consideration. As it is
discussed in detail in [14, 15], this selection has no
mathematical grounds and can often lead to erroneous
conclusions. Since the step size µ affects both the con-
vergence rate and the steady state behavior of the algo-
rithm, its correct choice is crucial for the comparison
process.

A fair comparison method proposed in [14] and ex-
tensively analyzed in [15] consists in selecting the step
sizes in such a way that all algorithms attain the same
steady state performance level. Once the selection of
step sizes is completed, the algorithms can be ranked
according to their convergence rate. Alternatively, we
could select the step size in each algorithm so that all
algorithms have the same convergence rate and then
rank the algorithms according to their steady state per-
formance. It is the latter method we find more appro-
priate for our problem; both approaches however are
theoretically equivalent. A last point that needs to be
said here is that, since convergence refers to the tran-
sient phase and this phase is primarily due to the mean

filter estimates c̄(n), it is through this process that the
convergence rate will be defined.

5. Performance Analysis

In this section we will analyze the behavior of the al-
gorithm defined by (28), (29). In particular we are in-
terested in the mean trajectory and the second order
statistics of the corresponding estimates. It turns out
that for our analysis we can discard the last term in
(29) introduced to correct the non-robustness problem.
This is because stability (convergence) and robustness
are two problems that are traditionally considered sep-
arately. Therefore for studying convergence, we will
assume infinite precision, which results in the elimina-
tion of the last term in (29). Consequently the algorithm
we intend to analyze is the following

ε(n) = αb1(n) − ct (n − 1)r(n) (40)

c(n) = c(n − 1) + µε(n)
(
r(n) − st

1r(n)s1
)

= c(n − 1) + µ
(
I − s1st

1

)
ε(n)r(n), c(0) = s1.

(41)

We recall that α = 1 corresponds to CLMS, α = 0 to
BLMS and α = a1 to CLMS-AI.

5.1. Qualitative Analysis of Trained Algorithms

We can now state our first theorem that provides the
necessary statistics for the estimates c(n) of (40), (41).

Theorem 1. The trajectory of the mean filter esti-
mates of the algorithm in (40), (41) satisfies the recur-
sion

c̄(n) = (
I − µ

(
I − s1st

1

)
Σr̃

)
c̄(n − 1), c̄(0) = s1.

(42)

The covariance matrix Σc(n) of the filter estimates can
be written as the sum

Σc(n) = Σx(n) + (α − a1)
2Σy(n) (43)

where Σx(n) and Σy(n) are the covariance matrices
of two vector processes x(n) and y(n) defined by the
recursions

x(n) = (
I − µ

(
I − s1st

1

)
r̃(n)r̃t (n)

)
x(n − 1)

− µ
(
I − s1st

1

)(
r̃(n)r̃t (n) − Σr̃

)
c̄(n − 1),

x(0) = 0 (44)
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y(n) = (
I − µ

(
I − s1st

1

)
r̃(n)r̃t (n)

)
y(n − 1)

+ µ
(
I − s1st

1

)
b1(n)r̃(n), y(0) = 0. (45)

Proof: The proof is presented in the Appendix. ✷

Using Theorem 1 we can now make the following im-
portant remarks.

• Trajectory c̄(n)of the mean filter estimates, i.e. recur-
sion (42), is independent of α. In particular CLMS
(α = 1) has the same mean trajectory with BLMS
(α = 0). This equality does not for example apply
when we compare BLMS to the conventional LMS
defined in (30), (31). An important consequence of
this property is the fact that if we like to compare
algorithms corresponding to different α values with
the fair method described in Subsection 4.1, it is suf-
ficient to select the same step size µ. Indeed this
selection guarantees exactly the same trajectory for
the mean filter estimates and therefore the same con-
vergence rate (remember that the transient phase is
primarily due to mean filter estimates). Again we
should stress that this statement is not true when
comparing any member from our class to the con-
ventional LMS, in this case we do need to select
different step sizes.

• Our performance measure J (n), using (43), can be
written as

J (n) = a−2
1

{[
c̄t (n)Σr̄c̄(n) − ct

oΣr̃co
]

+ trace{Σx(n)Σr̃}
+ (α − α1)

2trace{Σy(n)Σr̃}
}
. (46)

We note that the first two terms are independent of α

and so is trace {Σy(n)Σr̃} in the third term while pa-
rameter α appears only in this last term. Furthermore
this term is nonnegative because

trace{Σy(n)Σr̃} = trace
{
Σ1/2

y (n)Σr̃Σ1/2
y

} ≥ 0,

(47)

the last inequality being true because traces of non-
negative definite matrices are also nonnegative. Due
to (47), from (46) we can now conclude that the al-
gorithm that has the uniformly (at all time instances)
smallest excess ISIR corresponds to α = a1, i.e.
CLMS-AI. Because of its importance let us explic-
itly write the recursion for the optimum algorithm
CLMS-AI, we have

ε(n) = a1b1(n) − ct (n − 1)r(n) (48)

c(n) = c(n − 1) + µε(n)
(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (49)

• Using (46) we can also compare algorithms corre-
sponding to different values of α. In particular if
we like to compare CLMS to BLMS we need to
set respectively α = 1 and α = 0. We can then verify
that CLMS is better than BLMS iff (1−a1)

2 ≤ a2
1 or

equivalently iff a1 ≥ 0.5. This means that although
CLMS uses the exact bits in its adaptation, it does not
necessarily perform better than BLMS which com-
pletely ignores bit information. This fact is also true
when we compare the conventional LMS of (30),
(31) with BLMS. Figure 1 depicts such an example.
The previous conclusion is rather surprising because
in the literature it is widely believed that LMS is
uniformly better than its blind counterpart!

The results of Theorem 1 are exact (there is no ap-
proximation involved in any sense) and no additional
assumptions were used apart the ones we initially made
regarding the statistics of the data. In fact the previous
remarks hold for every time instant, for every µ and
even when the algorithms diverge. So far we were able
to rank the algorithms of interest without quantifying
their relative performance. This is the subject of our
next subsection.

5.2. Quantitative Analysis of Trained Algorithms

In this subsection we are going to use results from
Stochastic Approximation Theory pertinent to the anal-
ysis of constant step size adaptive algorithms [13, 16].
In order for this theory to be applicable we need to as-
sume that the step size µ is small, i.e. 0 < µ � 1, which
is usually the case in practice.

Our goal is to find expressions for the performance
measure J (n) at steady state; this of course presumes
convergence of the algorithms of interest. Convergence
is assured [13] for sufficiently small µ and because
matrix (I − s1st

1)Σr̃ has real nonnegative eigenvalues
(it has the same eigenvalues with Σ1/2

r̃ (I − s1st
1)Σ

1/2
r̃

since the two matrices are related through a similarity
transformation). To estimate J (∞) we need to compute
Σx(∞) and Σy(∞). Although it is possible to find ex-
act expressions for both covariances the results turn out
to be mathematically involved. To simplify our presen-
tation and at the same time gain a realistic feeling of
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the relative performance of the algorithms of interest
we will make, as in [4], the assumption that R ≈ I. In
other words that the correlation matrix of the signa-
ture waveforms is close to the identity, or equivalently
that the signature waveforms are almost orthogonal.
We have now the second theorem that quantifies the
performance of the algorithm in (40), (41).

Theorem 2. Let x(n), y(n) be the processes defined
in (44), (45); if 0 < µ � 1 then, to a first order ap-
proximation in µ, we have that

Σx(n) ≈ (
I − µ

(
I − s1st

1

)
Σr̃

)
Σx(n − 1)

× (
I − µΣr̃

(
I − s1st

1

))
+ µ2

(
I − s1st

1

)
E

{(
r̃(n)r̃t (n) − Σr̃

)
c̄(n − 1)

× c̄t (n − 1)
(
r̃(n)r̃t (n) − Σr̃

)t}(
I − s1st

1

)
(50)

Σy(n) ≈ (
I − µ

(
I − s1st

1

)
Σr̃

)
Σy(n − 1)

× (
I − µΣr̃

(
I − s1st

1

))
+ µ2

(
I − s1st

1

)
Σr̃

(
I − s1st

1

)
, (51)

with initial conditions Σx(0) =Σy(0) = 0. If we fur-
ther assume that the correlation matrix of the signature
waveforms satisfies R ≈ I then at steady state we can
write

J (∞) ≈ µ

2

(
K∑

i=2

a2
i + (N − 1)σ 2

)

× (
a−2

1 σ 2 + a−2
1 (α − α1)

2
)

(52)

Proof: The proof is presented in the Appendix. ✷

Using (52) we can compute the relative performance
of any two algorithms, at steady state, corresponding
to different parameters α1, α2. This takes the following
simple form

J1,2 ≈ σ 2 + (α1 − a1)
2

σ 2 + (α2 − a1)2
. (53)

In particular if we consider the relative performance
of BLMS with respect to the optimum CLMS-AI we
obtain

JBLMS,CLMS−AI ≈ 1 + a2
1

σ 2
= 1 + SNR, (54)

suggesting that the optimum algorithm can be sig-
nificantly better than BLMS in high SNR channels.
Figure 1 depicts a case where BLMS performs better

than CLMS and the conventional LMS but is of course
inferior to the optimum CLMS-AI. We used a1 = 0.1
and σ 2 = 0.01. Although the conventional LMS does
not have the same convergence rate as the remaining
algorithms it is safe to conclude that it is inferior to
BLMS. This is because, at the same time, it has a
smaller convergence rate and a larger steady state ex-
cess ISIR. Consequently, attempting to make its rate
equal to the rate of BLMS (for fair comparison), re-
quires increase of its step size which will further in-
crease its steady state performance. One can also verify
that the relative performance of CLMS, BLMS, CLMS-
AI, is very closely predicted by (53).

5.3. Modes of Convergence

A convergence characteristic that can be observed from
Fig. 1 is the fact that the three algorithms from our
class (CLMS, BLMS, CLMS-AI) exhibit two differ-
ent modes of convergence, namely a fast mode during
the initial transient phase and a subsequent slow drift
toward inferior performance values. This behavior, par-
ticularly apparent when the number of users K is sig-
nificantly smaller than the spreading factor N , is very
uncommon in adaptive algorithms.

To understand why the algorithms behave in such
a way, we recall from (39) that the excess ISIR is the
sum of two components, the first due to mean filter
estimates and the second to the covariance of the esti-
mates. From Eq. (42) we have that the exponential con-
vergence rate of the mean estimates is equal to (minus)
the logarithm of the largest (in amplitude) eigenvalue of
the matrix I − (I − s1st

1)Σr̃ which, for K < N , is equal
to −log(1 − µσ 2) ≈ µσ 2. This rate however is signif-
icantly slower than the one observed in Fig. 1 during
the initial transient phase. After careful consideration
of Eq. (42) one can show by induction that if the mean
filter, at some instant, lies in the signal subspace gen-
erated by the signatures, it remains in this subspace
afterwards (i.e. the mean filter is a linear combination
of the signatures). This is exactly what happens in our
algorithm since the filter estimate is initialized in the
signal subspace (c(0) = s1). Therefore the rate of con-
vergence becomes µ(σ 2 + λmin) with λmin denoting the
smallest nonzero eigenvalue of the rank K − 1 matrix
(I − s1st

1)S̃ Ã2 S̃t . We thus conclude that the first term in
the performance measure starts from an O(1) value and
with an exponential rate equal to 2µ(σ 2 + λmin) (which
is usually significantly larger than 2µσ 2) converges to
zero.
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From Eqs. (50), (51) we can conclude that, because
of the ambient noise, the covariance matrix is not lim-
ited into the signal subspace and has components ly-
ing in the complementary noise subspace (for example
Σy(n) contains a term equal to µ2σ 2I). Therefore the
covariance has a part that is slowly converging with a
rate equal to 2µσ 2. This means that the second term of
our measure, since its initial value is zero (Σc(0) = 0),
increases slowly from zero to its O(µ) steady state
value estimated by (52).

It is now possible to understand the behavior of the
algorithms in Fig. 1. During the transient phase the
leading term of our measure is the first one due to
the mean estimates, which converges very quickly to
zero. The second term, due to the covariance, during
the transient phase has negligible values (since it starts
from zero and increases very slowly). After some point
however the second term becomes the leading one and
this is why we observe this second slowly increasing
mode.

Notice that for fast convergence it is necessary for
the mean estimates to lie completely in the signal sub-
space, because otherwise if there is a component in the
noise subspace this part will exhibit slow convergence
towards zero. When initializing the algorithm with s1,
the mean estimates do lie in the signal subspace. This
is also the case if we have an increase in the number of
users. When however we have a reduction in the num-
ber of users then this property is no longer true. This
is because the component of the filter corresponding to
the signatures of the users that departed lies now inside
the noise subspace and is therefore slowly converging
to zero. We will be able to observe this mode of behav-
ior in Section 6 where we present our simulations.

5.4. Decision Directed Version

It is interesting at this point to introduce the decision
directed version of the optimum algorithm CLMS-AI.
From (48), (49), by replacing b1(n) with the estimate
b̂1(n) = sgn{ct (n − 1)r(n)} we obtain

ε(n) = a1sgn{ct (n − 1)r(n)} − ct (n − 1)r(n) (55)

c(n) = c(n − 1) + µε(n)
(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (56)

Let us call this algorithm decision directed constrained
LMS with amplitude information (DD-CLMS-AI). We
should note that we consider the recursion to be applied

to the data from the first time instant and not after we
have obtained satisfactory filter estimates using some
other scheme (as is usually the case in practice). Due
to the nonlinear function sgn{·} involved in its defini-
tion, the analysis of DD-CLMS-AI is not as simple as
CLMS-AI, neither our results can be of the same gener-
ality. In order to obtain closed form expressions for the
mean field and the second order statistics we will make
the simplifying assumption that the interference plus
noise part of the data can be adequately modeled as
a Gaussian process. Signaling conditions that ensure
efficiency of this approximation are given in [5] (we
basically need validity of the Central Limit Theorem).

Theorem 3. If interference plus noise r̃(n) is
Gaussian N (0,Σr̃) then, for sufficiently small µ and
to a first order approximation in µ, the trajectory of
the mean filter estimates of the algorithm defined by
(55), (56) satisfies

c̄(n) =
(

I − µ
(
I − s1st

1

)
Σr̃ρ

(
a1∥∥Σ1/2

r̃ c̄(n − 1)
∥∥
))

× c̄(n − 1), c̄(0) = s1 (57)

where scalar function ρ(x) is defined as

ρ(x) = 1 −
√

2

π
xe− x2

2 . (58)

If we further assume that R ≈ I, then the excess ISIR
at steady state takes the form

Jdd(∞) ≈ µ

2

(
K∑

i=0

a2
i + (N − 1)σ 2

)

×
(

a−2
1 σ 2 + 4Q

(
a1

σ

)

− 4σ√
2πa1

e−a2
1/2σ 2

)
ρ−1

(
a1

σ

)
(59)

where Q(x) is the complementary Gaussian cumula-
tive distribution function.

Proof: The proof is presented in the Appendix. ✷

From our last theorem we can draw the following
conclusions.

• Comparing the trajectory of the mean estimates
in (57) with the corresponding in (42) we ob-
serve that the difference exists only in the scalar
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Figure 3. Typical relative performance of CLMS-AI, DD-CLMS-AI, CLMS-AE and DD-CLMS-AE.

quantity ρ(·). Although the adaptation in (57) is
nonlinear it has invariant eigenspaces which co-
incide with the eigenspaces of the adaptation in
(42). This facilitates the convergence analysis of
the decision directed version considerably. Notice
that 0.706 ≈ 1 − √

2/π e−1 ≤ ρ(x) ≤ 1, which gu-
rantees convergence of the mean field at a rate at
least 0.706 times the rate of the optimum CLMS-
AI. Furthermore as the algorithm converges, quan-
tity a1/‖Σ1/2

r̃ c̄(n − 1)‖ approaches its limit which,
for R ≈ I, is approximately equal to the square
root of the SNR i.e. a1

σ
. It turns out that even

for moderate SNR values the corresponding value
of ρ(·) is very close to unity. For example for
SNR = 10 db, ρ(

√
10) = 0.983; while for 20 db,

ρ(10) = 1 − 1.54 × 10−21. This suggests that ini-
tially DD-CLMS-AI has a smaller convergence rate
than CLMS-AI however, as time progresses, its rate
approaches that of the optimum algorithm.

• Using (52) with α = a1 and (59) we can compare
the steady state performance of CLMS-AI and DD-
CLMS-AI. If we form the ratio Jdd(∞)/J (∞) then
this quantity is close to unity even for very low SNR.
For example for SNR = 0 db it is equal to 1.2920;
for 10 db, 1.0146; whereas for 20 db it is equal to
unity (with Maltab’s accuracy). This clearly suggests
that DD-CLMS-AI has steady performance which
is extremely close to the optimum, since even for
SNR = 0 db it differs from the optimum slightly more
than 1 db.

Figure 3 presents a typical example of the relative
performance of DD-CLMS-AI and CLMS-AI. We can
see that initially the decision directed version has a
nonlinear behavior, however after some point the two
curves tend to be parallel, meaning that the two con-
vergence rates approach each other. At steady state on
the other hand we have that the two algorithms are
practically indistinguishable, as was predicted by our
analysis.

5.5. Amplitude Estimation Algorithms

So far we have seen that the optimum trained algorithm
in our LMS like class is CLMS-AI, i.e. the constrained
LMS with amplitude information. Furthermore its de-
cision directed version DD-CLMS-AI was seen to be
equally efficient having slightly inferior performance.
As it was stated in our introduction, it is unrealistic to
assume knowledge of the amplitude of the user of inter-
est even in training mode, we therefore need a means to
acquire this information. It is this point we like to an-
swer here by proposing a simple yet efficient adaptive
estimation scheme that is consistent with the algorith-
mic class introduced in Subsection 3.3.

We can verify that for any filter c(n) that satisfies the
constraint ct (n)s1 = 1 we have

a1 = E
{
ct (n − 1)r(n)b1(n)

}
. (60)

If we approximate expectation with sample mean, this
suggests the following simple adaptation
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â1(n) = (1 − ν)â1(n − 1)

+ νct (n − 1)r(n)b1(n), â1(0) = 0. (61)

For ν = 1/n the above algorithm computes the sample
mean of the quantities ct (n − 1)r(n)b1(n). However if
we allow ν to be a positive constant smaller than unity
the algorithm will also be able to adapt to slow varia-
tions in the amplitude a1. The corresponding decision
directed version satisfies

â1(n) = (1 − ν)â1(n − 1)

+ ν|ct (n − 1)r(n)|, â1(0) = 0. (62)

For c(n) we can of course use the filter estimates from
the corresponding trained or decision directed filter es-
timation algorithm.

Estimates â1(n) can now be used to supply the nec-
essary amplitude information to CLMS-AI and DD-
CLMS-AI. The resulting algorithms will be called re-
spectively constrained LMS with amplitude estimation
(CLMS-AE) and decision directed constrained LMS
with amplitude estimation (DD-CLMS-AE). Figure 3
presents a typical example of the relative performance
of CLMS-AI and CLMS-AE as well as their decision
directed versions. As far as CLMS-AE is concerned
we can see that it is extremely close to the optimum
CLMS-AI, whereas DD-CLMS-AE is slightly inferior
to DD-CLMS-AI. The relative performance however
is very much dependent on the signaling conditions, as
we will soon find out in the simulations section.

5.6. Subspace Based Adaptations

For our algorithmic class it is also possible to define
subspace based adaptations similar to [6, 8]. To obtain
the corresponding algorithms it is sufficient to replace
the data vector r(n) with its projection onto the signal
subspace. This will affect the convergence rate of the
covariance matrix Σc(n) and partly the convergence of
the mean filter estimates. In both cases the rate will be
equal to the slowest mode defined on the signal sub-
space. This means that the subspace based algorithms
will not exhibit any annoying slow performance degra-
dation, as the one observed in Fig. 1; furthermore the
mean filter estimates will converge fast even after a re-
duction in the number of users. Finally the steady state
excess ISIR will be smaller since the term (N − 1)σ 2

in (52) will become (K − 1)σ 2.
The above improved characteristics are obtained at

the expense of an increased complexity [8] which needs

to be paid in order to track the signal subspace and
detect changes in its dimension (i.e. changes in the
number of users).

6. Simulations

In this section we present a number of simulations to
compare the relative performance of DD-CLMS-AE,
CLMS-AE and BLMS. A common feature of all three
algorithms is the fact that they are scale invariant. By
this we mean that if we scale our data r(n) by a factor
c then the three algorithms yield exactly the same esti-
mates as with the initial unscaled data provided that we
divide µ with c2 (this property is not true for LMS or
CLMS). We can therefore, without loss of generality,
fix a1 = 1.

In order to obtain algorithms with steady state per-
formance that does not change every time there is a
variation in the number of users or in user and noise
powers, it is convenient to employ a normalized version
of µ. We therefore propose to replace µ by µ = µ̄/β(n)

where

β(n) = (1 − κ)β(n − 1) + κ‖r(n)‖2,
(63)

β(1) = ‖r(1)‖2,

is an estimate of the data power with κ a constant satis-
fying 1 > κ > 0. The final form of the three algorithms
we intend to test is the following

BLMS

ε(n) = −ct (n − 1)r(n) (64)

c(n) = c(n − 1) + µ̄
ε(n)

β(n)

(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (65)

CLMS-AE

â1(n) = (1 − ν)â1(n − 1) + νct (n − 1)r(n)b1(n),

â1(0) = 0 (66)

ε(n) = â1(n)b1(n) − ct (n − 1)r(n) (67)

c(n) = c(n − 1) + µ̄
ε(n)

β(n)

(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (68)

DD-CLMS-AE

â1(n) = (1 − ν)â1(n − 1) + ν|ct (n − 1)r(n)|,
â1(0) = 0 (69)
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Figure 4. Relative performance of DD-CLMS-AE, CLMS-AE, BLMS. Initially there are six 10 db interferers; at n = 10000 a 20 db intereferer
enters the channel and at n = 20000 it exits along with three 10 db intereferers.

ε(n) = â1(n)sgn{ct (n − 1)r(n)}
− ct (n − 1)r(n) (70)

c(n) = c(n − 1) + µ̄
ε(n)

β(n)

(
r(n) − st

1r(n)s1
)

+ (
1 − st

1c(n − 1)
)
s1, c(0) = s1. (71)

It should be noted that DD-CLMS-AE, like BLMS, is
blind since it requires the same a priori information (i.e.
s1) and uses the same data (i.e. r(n)). It is exactly this
version we propose as an alternative to BLMS. Com-
paring also the computational complexity of the two al-
gorithms, we realize that DD-CLMS-AE requires only
an additional constant number of scalar operations as
compared to BLMS. It is therefore equally computa-
tionally efficient.

For our simulations we used a spreading factor
N = 128, with signature waveforms generated ran-
domly but then kept constant during the whole sim-
ulation set. For the user of interest we selected a1 = 1,
while for noise power σ 2 = 0.01 (SNR of 20 db). Step
sizes were selected as follows: µ̄ = 0.1, ν = κ = 0.01.
Our performance measure from (39) takes the form
J (n) = E{ct (n)Σr̃c(n)} − ct

oΣr̃co. Expectations were
estimated by taking the sample mean of 100 indepen-
dent runs, while Σr̃ and co were computed using the ex-
act signatures and user and noise powers. Since CLMS-
AE has almost optimum performance it was regarded

as a point of reference and BLMS and DD-CLMS-AE
were compared against it.

In the first example, we initially have the user of in-
terest with six interfering users of power 10 db; at time
10000 a 20 db interferer enters the channel, and at time
20000 this interferer exits along with three more 10 db
interfering users. This example was selected in order
to observe the behavior of the algorithms under signal-
ing condition that do not favor validity of the Gaussian
assumption of the signal plus noise data part (because
of small K ). Figure 4 depicts the outcome of our sim-
ulation. We can see that DD-CLMS-AE follows very
closely CLMS-AE. Notice the slow convergence, after
the second change, that was predicted by our analysis
for the case of users exiting the channel.

The second example consists in comparing the be-
havior of the algorithms when power control is em-
ployed (i.e. all ai = 1). Initially we have thirty users; at
time 10000 the number of users increases to thirty five
while at 20000 it is reduced to twenty five. Notice from
Fig. 5 that the decision directed version follows again
very closely CLMS-AE.

The third and final example contains rather extreme
signaling conditions. We start with thirty users, only
now the interferers have power equal to 10 db. At
time 10000 five 20 db interferers enter, while at time
20000 all five 20 db along with five 10 db interferes
exit the channel. In Fig. 6 we can observe that the ini-
tial nonlinear behavior of DD-CLMS-AE is now more
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Figure 5. Relative performance of DD-CLMS-AE, CLMS-AE, BLMS under perfect power control. Initially there are 30 users; at n = 10000
five additional intereferers enter the channel and at n = 20000 ten interferers exit the channel.

pronounced. However the algorithm, very quickly, es-
tablishes a convergence rate that is similar to CLMS-
AE. The steady state behavior of the two algorithms on
the other hand is indistinguishable.

In all three examples we observe that the steady state
excess ISIR for BLMS is approximately equal to 13 db
whereas that of DD-CLMS-AE, to 30 db. To translate

Figure 6. Relative performance of DD-CLMS-AE, CLMS-AE, BLMS. Initially there are twenty nine 10 db interferers; at n = 10000 five 20 db
intereferers enter the channel while at n = 20000 all five 20 db along with five 10 db interferers exit the channel.

these numbers into actual BER we use the estimates
BER ≈ Q(

√
SIR) [5] and ct

oΣr̃co ≈ σ 2. We then obtain
that the BER of BLMS is of the order of 10−5 whereas
that of DD-CLMS-AE is 10−20.

Finally we should mention that under extreme in-
terference conditions it is possible that DD-CLMS-AE
exhibits divergence. This is because the algorithm is
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unable to obtain, quickly enough, satisfactory estimates
of the amplitude a1 and therefore provides erroneous
amplitude estimates to the filter estimation part result-
ing in divergence. In such cases it is advisable to run
BLMS in parallel with DD-CLMS-AE and use its filter
estimates in (69) to estimate the amplitude a1 (BLMS
tends to be more robust to extreme signaling condi-
tions). Once convergence has been established we can
use the filter estimates of DD-CLMS-AE in (69) and
discard completely BLMS.

7. Conclusion

We presented a constrained class of adaptive linear mul-
tiuser detection algorithms that constitutes an extension
to the popular blind LMS algorithm of [12]. Applying
a detailed analysis to the proposed class we showed
that the conventional LMS and its constrained version,
under training, do not necessarily outperform the blind
LMS. In order for this property to be true it is necessary
to incorporate the information of amplitude of the user
of interest in the trained algorithm. Simple and efficient
adaptations that estimate the required amplitude were
proposed which, when combined with the filter estima-
tion algorithm result in both modes, trained and deci-
sion directed, in nearly optimum performance. Since
the proposed decision directed version is also blind, it
is clear that, it could constitute a serious alternative to
the popular blind LMS.

Appendix

Proof of Theorem 1: By using the constraint
ct (n − 1)s1 = 1 and the fact that (I − s1st

1)s1 = 0 we
can write (40), (41) as follows

ε(n) = αb1(n) − ct (n − 1)r(n)

= (α − a1)b1(n) − ct (n − 1)r̃(n) (72)

c(n) = c(n − 1) + µ
(
I − s1st

1

)
ε(n)r(n)

= c(n − 1) + µ
(
I − s1st

1

)
ε(n)r̃(n), c(0) = s1,

(73)

Taking expectation in (73) and using the indepen-
dence between data r(n) and c(n − 1) as well as in-
dependence between data bits and noise, we can easily
show (42).

To show (43), notice first that by subtracting (42)
from (41) and combining (44) with (45), we can show
that c(n) − c̄(n) satisfies exactly the same recursion
as x(n) + (α − a1)y(n), therefore c(n) − c̄(n) = x(n)

+ (α − a1)y(n). Now notice that if col{Σc(n)} denotes

the column vector that we obtain by stacking the
columns of Σc(n) one after the other then

col{Σc(n)} = E{(c(n) − c̄(n)) ⊗ (c(n) − c̄(n))}
= E{(x(n) + (α − a1)y(n))

⊗ (x(n) + (α − a1)y(n))} (74)

where “⊗” denotes Kronecker product. Using the in-
dependence of the processes involved in the recur-
sions and induction we can show that vector processes
x(n), y(n) are zero mean and uncorrelated. This in turn
can help us to prove that col{Σc(n)} satisfies exactly the
same recursion as col{Σx(n)} + (α − a1)

2col{Σx(n)}.
This concludes the proof. ✷

Proof of Theorem 2: The easiest way to show (50),
(51) is to consider the column version of the corre-
sponding covariance matrices. Let us for simplicity
show only (51), in the same way we can show (50).
We have

col{Σy(n)} = E
{(

I − µ
(
I − s1st

1

)
r̃(n)r̃t (n)

)
⊗ (

I − µ
(
I − s1st

1

)
r̃(n)r̃t (n)

)}
× col{Σy(n − 1)} + µ2

(
I − s1st

1

)
⊗ (

I − s1st
1

)
col{Σr̃} (75)

Now notice that, to a first order approximation in µ,
we can write

E
{(

I − µ
(
I − s1st

1

)
r̃(n)r̃t (n)

)
⊗ (

I − µ
(
I − s1st

1

)
r̃(n)r̃t (n)

)}
= I − µ

(
I − s1st

1

)
Σr̃ ⊗ I − µI

⊗ (
I − s1st

1

)
Σr̃ + O(µ2)

≈ I − µ
(
I − s1st

1

)
Σr̃ ⊗ I − µI ⊗ (

I − s1st
1

)
Σr̃

+ µ2
(
I − s1st

1

)
Σr̃ ⊗ +(

I − s1st
1

)
Σr̃

= (
I − µ

(
I − s1st

1

)
Σr̃

) ⊗ (
I − µ

(
I − s1st

1

)
Σr̃

)
.

(76)

Since O(µ2) terms do not contribute in approxima-
tions up to order µ we replaced in one of the previous
equations the O(µ2) term with another, suitable to our
goal, O(µ2) expression. Substituting the above into
(75) yields the column version of (51).

To show (52) we have from (46) that, at steady state

J (∞) = a−2
1

{
trace{Σx(∞)Σr̃}

+ (α − a1)
2trace{Σy(∞)Σr̃}

}
. (77)
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Consider now (50) at steady state, we have the follow-
ing Lyapunov equation that defines Σx(∞) to a first
order approximation in µ

(
I − s1st

1

)
Σr̃Σx(∞) + Σx(∞)Σr̃

(
I − s1st

1

)
≈ µ

(
I − s1st

1

)
E

{(
r̃(n)r̃t (n) − Σr̃

)
× coct

o

(
r̃(n)r̃t (n) − Σr̃

)t} (
I − s1st

1

)
. (78)

From (50) we can show by induction that Σx(n)s1 = 0
which suggests that

trace
{
Σx(∞)Σr̃

(
I − s1st

1

)}
= trace

{(
I − s1st

1

)
Σx(∞)Σr̃

} = trace{Σx(∞)Σr̃}.
(79)

With the assumption R ≈ I we conclude that co ≈ s1

which means that

Σr̃co ≈ σ 2s1, r̃t (n)co ≈ σnt (n)s1. (80)

Taking traces in (78), using (79), (80) and the fact that
(I − s1st

1)s1 = 0, yields

trace{Σx(∞)Σr̃} ≈ µ

2
trace

{(
I − s1st

1

)(
σ 2S̃Ã2S̃t

+ σ 4
E

{
n(n)nt (n)

(
nt (n)s1

)2})
× (

I − s1st
1

)}
= µ

2
trace

{(
I − s1st

1

)(
σ 2S̃Ã2S̃t+ σ 4I

)
× (

I − s1st
1

)}
= µ

2

(
σ 2

K∑
i=2

a2
i + σ 4(N − 1)

)
.

(81)

In a similar way we can show that

trace{Σy(∞)Σr̃} ≈ µ

2

(
K∑

i=2

a2
i + σ 2(N − 1)

)
. (82)

Substituting in (77) yields the desired result. ✷

Proof of Theorem 3: To show the theorem, as in the
trained case, we will disregard the last part of the recur-
sion introduced to correct the non-robustness problem.
Since we will use results from Stochastic Approxima-
tion Theory contained in [13, Pages 104–108], let us

define certain quantities according to the notation used
in this reference

H(c, r(n)) = (
I − s1st

1

)(
a1sgn{ct r(n)} − ct r(n)

)
r(n)

(83)
h(c) = Er{H(c, r(n))} (84)

R(c) = Er{H(c, r(n))H t (c, r(n))}. (85)

where c is a deterministic vector and Er{·} denotes ex-
pectation with respect to the data vector r(n).

In order to proceed we need a number of identities
that we present without proof. Let z be a random vari-
able and z a random vector that are both zero mean and
jointly Gaussian and γ a constant, then

E{sgn{γ + z}z} = E{zz}
σz

√
2

π
e−γ 2/2σ 2

z (86)

E{|γ + z|zzt } = ωE{zz}E{zzt }
+

{
γ

(
1 − 2Q

(
γ

σz

))

+ σz

√
2

π
e−γ 2/2σ 2

z

}
Σz (87)

E{z2zzt } = σ 2
z Σz + 2E{zz}E{zzt }, (88)

where σ 2
z = E{z2}, Σz = E{zzt } and ω is a scalar quan-

tity whose exact form is unimportant. Using (86) we
can now compute h(c) and we obtain

h(c) = −ρ

(
a1√

ctΣr̃c

)(
I − s1st

1

)
Σr̃c. (89)

From [13] we then have that the mean trajectory satis-
fies the recursion

c̄(n) = c̄(n − 1) + µh(c̄(n − 1)) (90)

which is exactly (57).
To compute the steady state covariance matrix we

need to find R(co). Again using the identities (86), (87),
(88), assuming that R ≈ I, which yields co ≈ s1 and
Σr̃s1 ≈ σ 2s1, we have that

R(co) ≈ (
I − s1st

1

)(
2a2

1Σr̃ − 2a1E
{∣∣a1b1(n)

+ st
1r̃(n)

∣∣r̃(n)r̃t (n)
}

+ E
{(

st
1r̃(n)

)2
r̃(n)r̃t (n)

})(
I − s1st

1

)
=

(
σ 2 + 4Q

(
a1

σ

)
− 4√

2π
a1σe−a2

1/2σ 2

)
× (

I − s1st
1

)
Σr̃

(
I − s1st

1

)
(91)
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Furthermore we need to compute

hc(co) ≈ ∇ch(c)|c=s1 = −(
I − s1st

1

)
×

{
ρ

(
a1

σ

)
Σr̃ + Σr̃s1

(∇cρ(·)|c=s1

)t
}

= −(
I − s1st

1

)
ρ

(
a1

σ

)
Σr̃ (92)

Substituting in the Lyapunov equation that determines
the steady state covariance matrix of the estimates [13,
page 107]

hc(co)Σc(∞) + Σc(∞) j t
c(co) + µR(co) = 0, (93)

and taking traces yields (59). ✷

Note

1. With lower case letters we denote scalars, with bold face lower-
case, vectors and with boldface upper case, matrices.
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