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Adaptive Power Techniques for Blind Channel
Estimation in CDMA Systems
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Abstract—The problem of blind adaptive channel estimation in
code-division multiple access (CDMA) systems is considered. Mo-
tivated by the iterative power method, which is used in numerical
analysis for estimating singular values and singular vectors, we de-
velop recursive least squares (RLS) and least mean squares (LMS)
subspace-based adaptive algorithms in order to identify the im-
pulse response of the multipath channel. The schemes proposed
in this paper use only the spreading code of the user of interest
and the received data and are therefore blind. Both versions (RLS
and LMS) exhibit rapid convergence combined with low compu-
tational complexity. With the help of simulations, we demonstrate
the improved performance of our methods as compared with the
already-existing techniques in the literature.

Index Terms—Blind adaptive algorithms, CDMA, channel esti-
mation, LMS, RLS.

I. INTRODUCTION

CODE-DIVISION multiple-access (CDMA) implemented
with direct-sequence (DS) spread spectrum constitutes

one of the most important emerging technologies in wireless
communications. It is well known that CDMA has been se-
lected as the base for the third-generation mobile telephone
systems. In a CDMA system, users are capable of simultane-
ously transmitting in time, while occupying the same frequency
band, by using a unique signature waveform assigned to each
one of them. This important advantage also constitutes its
principal weakness, since it is the main source of performance
degradation. Indeed for every user, all other users play the role
of (multiuser) interference.

When no multipath is present, numerous offline as well as
adaptive detection schemes have been proposed and extensively
analyzed in the literature [1]–[5]. These detectors, in order to be
practically implementable, require at least knowledge of the sig-
nature waveform of the user of interest. Assuming availability of
this information is, in fact, quite reasonable. Whenever CDMA
signals propagate through a multipath environment, the received
signal has the same form as in the nondispersive case, except
that, in place of the signatures, we now have their convolution
with the channel impulse response (also known as composite
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signature). This remarkable property allows for the employment
of exactly the same detection structures cited above after simply
replacing the initial signature of the user of interest with its cor-
responding composite signature. Of course, for this to be pos-
sible, we need knowledge or efficient estimates of the channel
impulse response.

Due to their self-sufficiency with respect to training, blind es-
timation methods tend nowadays to be the most frequent candi-
dates for channel estimation. The blind channel estimation lit-
erature for CDMA is rather limited. In [6] and [7], the (practi-
cally offline) methods that are proposed involve a large singular
value decomposition (SVD) for estimating the noise subspace
of the received data. This part is computationally intense, not
to mention the fact that SVD presents no particular repetitive
structure suitable for online processing. In [8], we proposed an
alternative offline scheme that replaces the SVD with a simple
matrix power. This resulted in a substantial computational gain,
compared with the previous two methods, without any signifi-
cant performance loss. Another advantage of the method in [8]
is the fact that it does not require knowledge (or estimates) of
the signal subspace rank in contrast with [6] and [7], where such
information is indispensable. A similar approach was presented
independently in [9], emphasizing its close connection to the
subspace method of [6].

Blind adaptive channel estimation techniques were proposed
in [9]–[11]. Specifically, in [10], based on the analytic results
offered in [12], recursive least squares (RLS) and least mean
squares (LMS) type versions were developed that will serve for
comparison against our schemes in the simulations section. A
variant of the work in [10], which is reported in [11], consists of
using higher order cumulants. This approach, however, suffers
from slow convergence even for small codes, whereas its suc-
cess relies on the Gaussian noise assumption and, in particular,
the fact that higher order cumulants of Gaussian random vari-
ables are zero. Finally, in [9], an RLS algorithm is proposed for
the adaptive implementation of the power method suggested in
[8] and [9]. We should also mention that in [9], the channel es-
timates are obtained through an SVD of the size of the channel
impulse response.

In this work, we are going to extend the power method pro-
posed in [8] and use it to develop RLS and, more importantly,
LMS adaptive algorithms. In particular, we are going to intro-
duce two versions of the power method suitably tuned to the
CDMA channel-estimation problem. With this theory at hand,
we will then develop RLS and LMS type adaptive algorithms
that are characterized by high performance, even under very
difficult signaling conditions. Although our RLS version resem-
bles the one proposed in [9], there is a significant difference. We
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will be able to completely eliminate the SVD of the size of the
channel needed in [9] by replacing it with a simple matrix-vector
multiplication of the same size. This will result in the reduction
of the corresponding computational complexity by one order of
magnitude. As far as our LMS scheme is concerned, when it is
compared with the corresponding version of [10], it can perform
orders of magnitude better, at a similar computational cost level.

The rest of the paper is organized as follows. In Section II,
we introduce the signal model for DS-CDMA in the presence
of multipath, whereas in Section III, we present two subspace
problems that constitute the heart of the blind channel estima-
tion problem, along with a brief discussion on issues concerning
identifiability. Section IV contains the power method and, in
particular, two variants that are suitable for the solution of the
two subspace problems introduced in Section III. In Section V,
we develop blind adaptive RLS and LMS algorithms for the
channel estimation problem. Simulations and comparisons are
provided in Section VI, and finally, Section VII concludes our
work.

II. SYSTEM MODEL

Consider a -user CDMA system with identical chip wave-
forms and signaling antipodally through a multipath channel in
the presence of additive white (but not necessarily Gaussian)
noise (AWN). Although CDMA systems are continuous in time,
they can be adequately modeled by an equivalent discrete time
system. Specifically, no information is lost if we limit ourselves
to the output of a chip matched filter applied to the received
analog signal and sampled at the chip rate [5].

Let be the processing gain of the code and the
length of the channel impulse response. Moreover, let

be the length normal-
ized signature waveform of User- (i.e., ), and denote
by the sequence corresponding to this signature waveform
zero-padded from both ends toward infinity. The transmitted
signal due to User- is given by

(1)

where is the amplitude of User- , the corresponding bit
sequence, and the initial delay that can take any value in the
set . The signal propagates through a multi-
path AWN channel with impulse response

, and let be the com-
posite signature waveform of User- , i.e. , where
“ ” denotes convolution. Then, the received signal can be
written as

(2)

where is the sequence corresponding to the composite sig-
nature waveform of User- zero-padded from both ends toward

infinity, and is a unit variance i.i.d. noise sequence with
denoting its power.

The model given in (2) fully describes the uplink (mobile to
base station) scenario of a multipath CDMA system. For the
downlink, we simply need to select and

(since all users propagate through the
same multipath channel and are completely synchronized). Al-
though next we will consider the downlink case, we should keep
in mind that with almost no modification, our methodology can
be applied to the uplink as well in order to estimate the different
channels one-by-one.

Without loss of generality, throughout this paper, we will as-
sume that the user of interest is User-1. We will also assume
that the initial delay is known, and therefore, we have exact
synchronization with the user of interest. A simple synchroniza-
tion technique, based on the same power method principle that
we are going to use here, can be found in [13]. For the presenta-
tion of our method, it is more convenient to express the received
signal in blocks of data. In particular, we are interested in blocks
of size , where is a positive integer. Consequently,
let us consider the block

(3)

which, as we said, is assumed to be synchronized with the user
of interest. Notice that due to synchronization, the block
contains entire copies of the composite signature of the user
of interest. Specifically, can be decomposed as follows:

ISI (4)

We observe in (4) that the sum of the first terms involves the
entire composite signature of the user of interest, then the multi-
access interference (MAI) part that contains terms similar to the
first sum but coming from interfering users, and this is followed
by the part that includes the intersymbol interference (ISI) of all
users; finally, the last term is the AWN vector. All terms in (4),
except the last one, are of the form , where are
deterministic vectors corresponding to shifted versions of com-
posite signatures coming from the user of interest or MAI or
shifted sections of composite signatures coming from ISI;
are binary data that are mutually independent and independent
from the noise vector.

One final point we should make, before proceeding with the
presentation of the two subspace problems, is the fact that the
composite signature of User-1 can be written as

(5)
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where is a convolution matrix of size ,
corresponding to the initial signature of User-1 and defined as

...
. . .

...
...

. . .

. . .
...

...
. . .

...

(6)

III. TWO SUBSPACE PROBLEMS

Let us first identify the channel impulse response , assuming
availability of the data autocorrelation matrix and the initial sig-
nature waveform of the user of interest, i.e. . The data auto-
correlation matrix satisfies

(7)

where

(8)

is a symmetric, non-negative definite matrix, of dimensions
, formed by the vectors introduced in the signal

model.
By applying an SVD on , we can write

(9)

where and are orthonormal bases for the signal and
noise subspace, respectively. In particular, we should note that

spans the noise subspace, which corresponds to the smallest
singular value of (being equal to ). Due to the orthogonality
of the two subspaces, for any vector in the signal subspace,
we have

(10)

As we can see from our signal model in (4), our data block
contains shifted copies of the composite signature of the user
of interest that have the form

(11)

Since these vectors lie in the signal subspace, they satisfy the
orthogonality condition (10), and moreover, the same property
holds for their sum as well. The latter fact can be expressed with
the following equation:

(12)

with

(13)

and where we have used (5). is a known matrix with a par-
ticularly simple structure. It is a convolution matrix as in (6),
but of dimensions , with the first column
containing the signature repeated times, i.e., of the form

. We should note that when , then

reduces to . From (12), we can now conclude that

(14)

Equation (14) suggests the recovery of as the singular vector
corresponding, again, to the smallest singular value (which here
is equal to zero) of the matrix .

As it becomes clear from the preceding discussion, there are
two subspace problems involved in (14). The first concerns the
estimation of and the second the recovery of the channel
impulse response . Let us present these two problems more
explicitly.

Problem 1: If satisfies the decomposition in (9), we are
interested in estimating the projection , where is an
orthonormal basis for the (noise) subspace corresponding to the
smallest singular value of .

Problem 2: If and are as in Problem 1 and the ma-
trix defined in (13), we are interested in estimating the singular
vector corresponding to the smallest singular value of the ma-
trix

(15)

In [6], both problems are solved by direct SVD, whereas in
[7], the first is solved with SVD and the second with QR de-
composition, which consitutes an orthogonal triangularization
process of a matrix [15]. It is clear that applying SVD on
(or more accurately to its estimate) to recover is computa-
tionally intense and disqualifies these methods from online pro-
cessing. We should also mention the need of these approaches
in knowing the noise subspace rank. It turns out [8] that even
slight errors in the estimate of this parameter can produce sig-
nificant performance degradation in the schemes proposed in [6]
and [7]. In [8] and [9], a power method was proposed to replace
the large SVD of Problem 1 used in [6] and [7]. This idea will be
fully exploited in the next section in a direction that is suitable
for both subspace problems introduced previously, but before
raising this issue, let us first briefly discuss the consistency of
the estimates provided by (14).

A. Consistency

Let and denote the signal and noise subspace ranks,
respectively; then, the matrix in (15) is of dimensions

. If is the exact noise subspace then, due to (12), we
conclude that the column rank of can at most be equal
to . In order for (14) to have a unique solution (modulo a
multiplicative constant-ambiguity), the column rank of
must be exactly equal to . Since the column rank of a
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Fig. 1. Representation of the vectors composing the signal subspace.

matrix is equal to its row rank (and also equal to the rank of the
matrix) in order to have a row rank equal to , a necessary
condition is to have at least rows, that is, .
Since , this yields

(16)

Let us now specify, more precisely, the signal subspace rank.
Notice that the number of columns of is equal to . In fact,

is an orthonormal basis for the subspace spanned by the vec-
tors introduced in (8). For the sake of clarity, we present these
vectors in Fig. 1 for the downlink scenario. We recall that in this
case, all users are synchronized. As we can see, there are
big rectangles of dimensions containing the en-
tire composite signatures of all users. The first such rectangle
corresponds to the th user-bits, whereas the last correspond to
the st. The two smaller rectangles, of dimensions

, contain ISI coming from the st and th
user-bits, respectively. Each rectangle has a rank that cannot ex-
ceed its smallest dimension. Assuming that the number of users

is smaller than the processing gain , we conclude that

(17)

We therefore deduce that if we select such that
, then the validity of the necessary

condition (16) is guaranteed. This yields the following estimate
for the number of blocks :

(18)

Equivalently, for a given number of blocks , we can obtain an
upper bound for the maximum load of the system

(19)

If we wish to follow the same analysis for the uplink scenario
then, due to lack of synchronization, (17) becomes

, yielding

or (20)

as a possible estimate for (for given ) or an upper bound for
(for given ). We must stress that the bounds introduced in

(18) and (19) are by no means strict and must therefore be used
with caution. We recall that they simply ensure validity of the
necessary condition (16) and, thus, are not sufficient for identifi-
ability. In numerous simulations, however, they turned out to be
very accurate. In other words, whenever they were satisfied, the
channel estimation was correct, whereas in the opposite case,
examples appeared where identification failed. Unfortunately,
we were not able to prove their sufficiency.

Finally, in a situation where the channel length is not avail-
able, we can assume that plays the role of a known upper
bound for the true parameter. In such a case, similarly to [14],
an additional necessary condition for identifiability is needed.
Specifically, the difference between the upper bound and the
true filter length must be strictly less than the processing gain

, i.e., . This is so because in the opposite case,
one can easily produce two different solutions for (14), namely,

and , where is the true
channel impulse response, and is its corresponding length.
Since any linear combination of these two solutions is also a
solution of (14), we conclude that there is an infinite number of
candidates for the role of the channel impulse response.

IV. POWER METHOD VARIANTS

The power method [15] is an iterative technique that is used to
provide estimates of the subspace corresponding to the largest
singular value of a matrix. Let us present two variants of this
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method that are appropriate for solving the two subspace prob-
lems of interest that will also serve as a starting point for devel-
oping our adaptive algorithms.

Lemma 1: Let be as in (7) with an SVD as in (9) and
a nonnegative scalar. We then have

(21)

Proof: The proof is straightforward. Using the decompo-
sition of defined in (9), we have the following limit as

:

(22)

with the last limit being true since is a diagonal
matrix with diagonal elements strictly greater than unity.

It is clear that Lemma 1 contributes to the solution of the first
subspace problem, i.e., the estimation of the product
required in (14). The form of the power method stated in (21) is
slightly more general (due to the existence of the parameter )
than the one used in [8] and [9]; the latter corresponds to .
The extra degree of freedom provided by will turn out to be
very helpful in the development of our adaptive algorithms. To
analyze the behavior of this more generalized form of the power
method, we can apply the results contained in [9], replacing
with .

As seen from (14), the channel vector is the singular vector
corresponding to the smallest singular value (zero in the ideal
case) of ; consequently, we can again apply the power method
for its estimation. We propose the following variant.

Lemma 2: Let be the matrix defined in (15); suppose that
the vector , which satisfies (14), is unique and of unit norm;
then, with tr , the sequence of vectors defined
by the recursion

(23)

converges to the channel impulse response (modulo a sign
ambiguity), provided that is not orthogonal to .

Proof: Again, the proof presents no particular difficulty.
Using induction, we can show that

(24)

Since , this means that is a singular vector for the
matrix corresponding to the unit singular value (which
is the largest since is non-negative definite with all singular
values smaller than unity). Using SVD, as in Lemma 1, we can
show that

(25)

which yields

sgn (26)

This concludes the proof.
Lemma 2 contributes to the solution of the second subspace

problem and will provide the necessary channel impulse re-
sponse estimates. From (23), we realize that this time, we did not
apply the power method to the inverse of , but rather to its dif-
ference from the identity matrix. With this idea, we reduced the
corresponding computational complexity by an order of mag-
nitude since inversion requires operations, whereas the
proposed scheme requires . As we will see later, this sim-
plification exhibits no significant performance loss when com-
pared to direct SVD methods. At this point, we can make the
following important remarks.

Remark 1: In Lemma 1, the convergence in (22) is exponen-
tial, and we observe that the corresponding rate is maximized
when . Regardless of this fact, the employment of a
in the scheme will turn out to be particularly useful in the case
of the LMS version since it will allow the algorithm to forget
past data much more rapidly than the usual LMS with .
In the exponentially windowed RLS version, on the other hand,
we can select since RLS has the inherent capability of
forgetting past data through the forgetting factor.

Remark 2: A subtle and very important remark regarding
Lemma 1 concerns the power . Notice that the limit is correct,
i.e., we obtain the projection only when the singular
values corresponding to the noise subspace are exactly equal.
Unfortunately, in a realistic situation, when only estimates of

are available, this is rarely the case. This has a grave conse-
quence since the corresponding limit instead of being the de-
sired product will just become the rank-one matrix , where

is the singular vector corresponding to the smallest singular
value of the estimate of . This in turn will make a rank-one
matrix as well, and thus, will no longer be the only vector sat-
isfying (14).

Fortunately, for CDMA signals, there is a simple remedy to
this problem. In [8], it was observed that for offline processing, it
was sufficient to use powers up to and practically match
the performance of the direct SVD-based techniques. We are
going to follow the same idea here. In other words, we propose
to approximate the product as follows:

(27)

Remark 3: Our final remark concerns the usage of (27). No-
tice that in approximating this way, we do not need any
knowledge of the noise subspace rank. This is particularly con-
venient since the slightest erroneous rank estimate can produce
drastic performance degradation in direct SVD methods [8].

We are now ready to proceed with the presentation of our
blind adaptive schemes.

V. BLIND ADAPTATIONS FOR CHANNEL ESTIMATION

As stated in Problem 2, the channel impulse response can be
recovered as the singular vector corresponding to the smallest
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singular value of the matrix . Using the
approximation proposed in (27), we have the following estimate
for this matrix:

(28)

where we have discarded the scalar quantity since it
does not affect the subspace determination problem.

When the autocorrelation matrix is not available, we are
interested in producing adaptive estimates of the matrix

defined in (28). There are different possibilities that we ex-
ploit next. Notice, however, that with the help of any such esti-
mate , the power method presented in Lemma 2 (which
provides the final channel impulse response estimates) can be
modified as follows:

(29)

where tr . In other words, at every time step,
we first apply a time adaptation of and then a single it-
eration of the power method. Let us now examine what possi-
bilities exist for the estimate .

A. Channel Estimation via RLS

As was mentioned previously, here, we select , and for
the adaptive estimate of the matrix , we propose

(30)

where , and is the exponentially win-
dowed sample autocorrelation matrix of the data , i.e.,

, with : a forgetting
factor. We recall the well-known RLS adaptation for

(31)

(32)

(33)

that has an overall complexity of
(counting together multiplications and additions).

If we now compute as

(34)

then this part requires
operations. Finally, once is available, the adapta-

tion in (29) requires operations. It is clear
that the most computationally intense part is the computation of

in (34).
We should mention that our RLS version is similar to the

adaptive algorithm presented in [9], and when , it is similar
to the RLS version of [10]. The advantage here is that we avoid
the SVD on proposed in [9] and [10] since we replace
it with one iteration of the power recursion (29). As far as the
RLS version of [10] is concerned, we are going to see in our
simulations that higher values of the power can ameliorate
performance significantly.

B. Channel Estimation via Leakage LMS

This is the most practically important part of our work. The
LMS scheme we are going to present is computationally simple
with performance that can be orders of magnitude better than
the corresponding LMS adaptation of [10].

An alternative means to generate estimates for consists
of writing

(35)

where

(36)

and produce estimates for . It turns out that LMS is
particularly suited for this task. Consider first , and define
the recursion

(37)

where is a leakage factor. By taking expectations
and evoking the Independence Assumption, i.e., assuming that

is independent from the data vector , we can
verify that

(38)

which is exactly (36) with and . Estimates
for higher powers can be obtained with the following time and
order recursion

(39)
for , where . With our next
theorem, we analyze the mean behavior of the recursion in (39),
thus generalizing (38).

Theorem 1: Let , be as in (39), define
, and let be the expression

defined in (36) corresponding to the power ; then, under the
Independence Assumption, we have for

(40)
Proof: The proof can be found in the Appendix.

Although the Independence Assumption, strictly speaking, is
erroneous, it has become a popular tool for analyzing adaptive
algorithms. It turns out that the conclusions obtained by using
it are correct at least up to a second-order approximation in the
step size , this being true for a great variety of adaptive algo-
rithms (including LMS and Leakage LMS) and rich classes of
data models [16], [17].

From Theorem 1, we observe that due to the term
, we have an exponential convergence of to-

ward the desired quantity . In fact, the
speed of convergence is governed by the largest eigenvalue of
the matrix , which is equal to . Notice that
by using the Leakage LMS recursion in (39) with ,
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we assure an exponential convergence with a factor that is at
least equal to , independently of the SNR level. If, on the
other hand, one uses the regular LMS with , the cor-
responding factor becomes , which can induce an ex-
tremely small convergence rate in medium to high SNR. In the
latter case, we cannot ameliorate the LMS convergence speed
by simply increasing the step size (as it is the usual practice
in adaptive algorithms). The reason is that when we increase

, LMS becomes unstable well before we can reach any satis-
factory convergence rate levels. It is therefore through Leakage
LMS that we can bypass this serious handicap of the classical
LMS algorithm.

Since, with Theorem 1, we have established that the recursion
in (39) can provide proper estimates for using , we
can now obtain estimates for following (35) as

(41)

Finally, we apply one iteration of the power method in (29) to
obtain the estimate of the channel impulse response.

The computational complexity of the proposed scheme is as
follows. We need operations for the
adaptation in (39); for the compu-
tation of and, finally,
operations for the iteration in (29). As in the case of RLS, the
most computationally heavy part is the one needed for .
It turns out that we can reduce this complexity by a factor that
can be important. If we multiply the recursion in (39) from the
left by , we obtain a time and order recursion for ,

(42)

Since all vectors are available from (39), we
only need to compute once and then form the ma-
trices appearing in (42). The total com-
plexity for computing with this scheme is

operations, which should be compared
to required by (41). Since, usually,

, this can result in a non-negligible computational gain.
The price we pay for using (42) is the need to store the matrices

, . This is clearly unnecessary when we use
(41).

VI. SIMULATIONS—COMPARISONS

In this section, we provide several simulation results to
demonstrate the performance of the blind adaptive schemes
developed previously. In particular, we compare our RLS
and LMS implementations with the corresponding schemes
proposed in [10]. Before getting into our simulations, we must
point out that we are going to examine the behavior of our
algorithms under diverse signaling conditions with the received
signal exhibiting drastic changes in its power. In such cases,
it is advisable to use a normalized version of the data in order
to account for signal power changes and obtain an algorithm

that is relatively insensitive to them. We propose the following
simple modification of (39):

(43)

where is an estimate of the received signal power. A pos-
sible adaptive scheme for is

(44)

where , and . We can now proceed
with our simulations.

Randomly generated sequences of length are used
as spreading codes. Once generated, the codes are kept constant
for the whole simulation set. Moreover, all graphs presented
in the figures are the result of an average of 100 independent
runs. In each run, we apply three different abrupt changes in
order to observe the ability of the corresponding algorithms to
follow them. Specifically, at bit 5000, we change the channel,
and at bits 10 000 and 15 000, we change the number of users.
For the multipath channel, we start with the length 3 “difficult”
channel (containing a deep null) ,
and at 5000, we switch to the length 10 “easy” channel

,
which were both proposed in [18]. For our estimation, on the
other hand, we assume that we have available only an upper
bound for the channel length, which is . In other words
even the length 3 channel is identified as being of length 10. We
use only one data block, that is, .

The signaling conditions are as follows: We start with
users, under perfect power control. At bit 10 000, ten addi-

tional users enter the channel, five of them having power equal to
the user of interest and the remaining five being 10 dB stronger.
Finally, at bit 15 000, the last ten users along with five more exit
the channel. As we can verify, the constraint in (19) is always
satisfied. Finally, for ambient additive noise, we used zero-mean
white Gaussian noise.

In our simulations, we have also included the direct SVD ap-
proach, that is, the solution of both subspace problems through
direct SVD, where we have used the exact value of the noise
subspace rank. This approach can be clearly regarded as a point
of reference for all adaptive methods under comparison. How-
ever, due to its exceedingly large computational complexity, it
was performed only once every 500 bits. We used the following
parameter values in our algorithms: , ,
and .

Fig. 2 depicts the mean square channel estimation error of the
RLS schemes when the SNR of the user of interest is equal to
20 dB. We can see that our version practically matches
the RLS of [10] without needing an SVD on the matrix
at each step. By employing higher powers ,3, there is
a slight performance improvement only in the beginning. After
the channel changes at bit 5000, all RLS algorithms converge
quickly to their new steady state. Moreover, the behavior of the
RLS schemes is not affected by changes in the number of users
(i.e. bits 10 000 and 15 000). It is clear that in this high SNR
environment, selecting is sufficient. We can also see that
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Fig. 2. Performance of the proposed RLS channel estimation scheme and the
RLS version of [10]; noise power 20 dB.

Fig. 3. Performance of the proposed LMS channel estimation scheme and the
LMS version of [10]; noise power 20 dB.

our RLS with practically matches the performance of the
direct SVD approach at a significantly lower computational cost
and without the need of knowledge of the noise subspace rank.

We continue with the presentation of the LMS schemes. In
fact, we apply the LMS adaptation in (43) as well as the LMS al-
gorithm of [10] after selecting its step size so that its steady-state
performance matches our version. Fig. 3 depicts the per-
formance of all competing LMS schemes. The LMS algorithm
of [10], as we can see, has similar performance to our ver-
sion but exhibits a smaller robustness to abrupt changes in the
number of users. Furthermore, in contrast to RLS, here, we ob-
tain substantial performance gains by employing higher powers
in . The difference between our version and our
version (and therefore the LMS version of [10]) reaches almost
20 dB at steady state. Clearly, our LMS with presents a
slightly inferior performance as compared with its RLS coun-
terpart or the direct SVD method, which ranges from 0 to 5 dB.

Next, we consider the same signaling scenario but with a sig-
nificantly lower SNR. Specifically, we set the desired user’s

Fig. 4. Performance of the proposed RLS channel estimation scheme and the
RLS version of [10]; noise power 10 dB.

Fig. 5. Performance of the proposed LMS channel estimation scheme and the
LMS version of [10]; noise power 10 dB.

SNR to 10 dB. The performance of the RLS schemes is pre-
sented in Fig. 4. Again, the method of [10] is identical to our
RLS version. Here, however, in this low SNR environ-
ment, employing higher values of ameliorates the overall RLS
performance significantly, especially in the initial part, i.e., the
case of the “difficult” channel. On the other hand, our ver-
sion again matches the performance of the direct SVD method.
In Fig. 5, we have the corresponding LMS schemes. We observe
that the LMS algorithm of [10] has similar performance to our
LMS version with . As in the previous case, our
version outperforms our version and, consequently, the
LMS algorithm of [10], by more than 10 dB.

The next two figures (Figs. 6 and 7) concern the same scenario
as in the previous two simulations, only here, the channel im-
pulse response also experiences slow fading. At the beginning
and at time instant 5000, the channels are initialized with the
values and , respectively; then, we use the Jakes-like model
proposed in [19] in order to simulate a slowly fading multipath
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Fig. 6. Performance of the proposed RLS channel estimation scheme and the
RLS version of [10] in a slowly fading environment; noise power 10 dB.

Fig. 7. Performance of the proposed LMS channel estimation scheme and the
LMS version of [10] in a slowly fading environment; noise power 10 dB.

channel. The parameters of this model are communication fre-
quency carrier at 900 MHz, 15 scatterers for every channel co-
efficient (scatterers for different channel taps are independent),
data rate of 2 Mbits/s, and SNR of 10 dB. Fig. 6 depicts the RLS
versions and Fig. 7 the corresponding LMS. We can see that both
proposed versions are capable of efficiently following variations
in the channel impulse response. Again, our RLS algo-
rithm is very close to the direct SVD method. Compared with
the nonfading case, we observe that all algorithms exhibit a 2-dB
performance reduction due to tracking.

Comparing the RLS with the LMS schemes, we clearly ob-
serve the considerably more robust behavior of the former to
changes in the number of users. This performance, unfortu-
nately, comes at an increased computational cost.

A. Other Comparisons

Let us now compare the recursion in (43) for
(Leakage LMS) with the case (normal LMS). The sig-
naling scenario depicted in Fig. 8 is similar to our first example.
We start with the “difficult” channel , and at bit 25 000, we

Fig. 8. Convergence characteristics of Leakage LMS (solid) and normal LMS
(dashed) after an abrupt change in the channel; noise power 20 dB.

Fig. 9. Performance of the proposed RLS scheme versus the RLS of [9]; power
parameter k = 3; noise power 20 dB.

switch to the “easy” one . We run the simulation long enough
to allow both algorithms to converge. We present only the case

. The parameters of the algorithms are as before: ;
leakage factor ; ; and SNR level equal to 20
dB. The noticeable difference in convergence speed between the
two versions is accompanied by an equivalent difference (in the
opposite sense) in the steady-state behavior. As was mentioned
previously, it is not possible to trade between steady-state per-
formance and convergence speed in the usual LMS
algorithm by simply changing the step size . In fact, the value

used here is rather limiting since any slight increase in
this parameter leads LMS to instability. Consequently, the per-
formance of LMS depicted in Fig. 8 is the best this algorithm
can offer, as far as convergence speed is concerned. It is through
Leakage LMS that we can therefore obtain an improvement in
the convergence speed of the algorithm with the analogous, of
course, loss in steady-state behavior.

Finally, in Fig. 9, we depict the channel estimates of the pro-
posed RLS scheme versus the RLS of [9], both with the power
parameter set to . The dashed line corresponds to the
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method of [9] that applies an SVD at every time step on the ma-
trix , whereas the solid line corresponds to our method,
where we apply the iteration in (29) only once. We can see
that the corresponding channel estimates become indistinguish-
able after very few steps, with our method requiring an order of
magnitude less operations than the direct SVD ( versus

). This was the reason why the method of [9] was not in-
cluded in our RLS simulations.

VII. CONCLUSION

In this work, we examined the blind adaptive channel esti-
mation problem for CDMA in multipath additive white noise
channels and considered a two-step methodology for its solu-
tion that is similar to [6] and [7]. The novelty of our approach
consists of specifying two subspace problems, which we solve
via two different variants of the power method. RLS and LMS
algorithms are subsequently developed that implement adap-
tively the two power method variants providing efficient esti-
mates for the channel impulse response. With a number of sim-
ulations, we demonstrate the satisfactory performance of our
adaptive schemes in a dynamic environment that exhibits abrupt
changes in the channel impulse response and the number of
users. Compared with the adaptive methods proposed in [10],
our schemes offer substantial performance gains at similar com-
putational cost. Finally, the adaptive scheme of [9], although it
is similar to our RLS version, still requires an SVD of the size of
the channel length. In our case, this part is replaced by a single
iteration of the power method that has an order-of-magnitude
smaller computational complexity.

APPENDIX

PROOF OF THEOREM 1

We will prove the validity of (40) by induction in the power .
Let us first show that (40) is true for . Taking expectation
in (39), using the independence assumption, and recalling that

, we obtain the following recursion:

(45)

which readily leads to

(46)
Using the fact that , the pre-
vious equality becomes

(47)

which is exactly (40) for .
Let us now assume that (40) is true for , that is

(48)

where is defined as

(49)

We will then prove that it is also true for . Consider
the recursion in (39) for . After taking expectation
and applying the independence assumption, i.e., that

is independent from the received data , we obtain the
recursion

(50)
which yields

(51)

Substituting with its equal from (48), we have

(52)

The sum of the last two terms in (52), using the fact that
, is equal to

(53)

Furthermore, changing the order of summation in (52), using the
property that and changing variables

, the double summation in (52) yields

(54)

By adding this to (53), we obtain the desired result.
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