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Blind Adaptive Channel Estimation in
OFDM Systems

Xenofon G. Doukopoulos, Student Member, IEEE, and George V. Moustakides, Senior Member, IEEE

Abstract— We consider the problem of blind channel esti-
mation in zero padding OFDM systems, and propose blind
adaptive algorithms in order to identify the impulse response
of the multipath channel. In particular, we develop RLS and
LMS schemes that exhibit rapid convergence combined with low
computational complexity and numerical stability. Both versions
are obtained by properly modifying the orthogonal iteration
method used in Numerical Analysis for the computation of
singular vectors. With a number of simulation experiments
we demonstrate the satisfactory performance of our adaptive
schemes under diverse signaling conditions.

Index Terms— OFDM, Blind channel estimation, Adaptive
algorithms, Power iteration, Orthogonal iteration, Zero padding.

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing
(OFDM) constitutes a promising technology for

high speed transmission in frequency selective fading
environment [1]. OFDM presents several important
advantages, some of which are: high spectral efficiency;
simple implementation (with IDFT/DFT pairs); mitigation of
intersymbol interference (ISI) and robustness to frequency
selective fading environments. Inevitably, these desirable
characteristics contribute towards a continuously rising
interest for OFDM. We should mention that OFDM has been
chosen for the European standard of digital audio and video
broadcasting (DAB, DVB), digital subscriber line modems
(DSL) and several wireless local area networks (LANs).

In practice OFDM systems operate over a dispersive chan-
nel and therefore a guard interval, no smaller than the antici-
pated channel spread, is inserted in the transmitted sequence.
As far as this guard period is concerned, two alternative
schemes have been proposed. The first, known as cyclic prefix
(CP), consists in re-transmitting inside the guard interval either
the initial or the last portion of the transmitted sequence,
depending on the positioning of the guard interval. The
second, known as zero padding (ZP), as it is evident from
its name, transmits no information during the same interval.

In this work we mainly focus on the ZP-OFDM model.
The ZP approach is very appealing [2] and has started gaining
popularity mainly because of its simplicity. Its strongest point
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consists in the complete elimination of the inter-block interfer-
ence (IBI), which allows for a number of interesting detection
structures. A detailed comparison between CP-OFDM and ZP-
OFDM receivers and several other merits of the ZP model are
offered in [2].

In coherent detection and adaptive loading, knowledge of
the channel impulse response is imperative. Since the channel
impulse response is usually unknown to the receiver, it needs
to be efficiently estimated. Channel estimation techniques can
be divided into two major categories the supervised or trained
and the unsupervised or blind. The first requires training/pilot
sequences whereas the latter uses only the received data. Due
of course to their self-sufficiency in training, blind techniques
are considered more attractive than their trained counterparts;
they tend however to be heavier from a computational com-
plexity point of view. As far as adaptive implementations are
concerned, although one can find numerous trained methods in
the literature, this is not the case for blind approaches. Existing
blind OFDM channel identification methods are mainly off-
line1.

The majority of articles dealing with the problem of super-
vised channel estimation in OFDM systems uses pilot tones
or training sequences [3], [4]. In [5], a comparative study of
non-blind methods can be found. The pilot-aided literature is
rich, however, since our main interest lies with blind methods,
we will not pursue its presentation any further. Regarding
blind techniques, in [6] channel identification is performed by
exploiting the cyclostationarity present in CP-OFDM. In [7]
a subspace approach is proposed that takes advantage of the
redundancy existing in CP-OFDM. An alternative subspace
approach is presented in [8], which extends the previous idea
by incorporating virtual carriers inside the OFDM transmitted
block. A similar method is presented by the same authors in
[9], for OFDM systems without cyclic prefix. This approach
however, relies on oversampling or receiver diversity (i.e. more
than one receive antennae). Other subspace based approaches
can be found in [10], [11]. The aforementioned blind methods
require singular value decomposition (SVD) of the received
data autocorrelation matrix and are therefore characterized by
high computational cost. It is also known that SVD lacks a
repetitive structure that could lead to efficient adaptive imple-
mentations and is therefore unsuitable for on-line processing.

An interesting blind method based on a-posteriori probabil-
ity computation is introduced in [12]. The estimated channel
vector is completely recovered with no phase ambiguity and

1A method is characterized as off-line if its computational complexity
does not allow for real time implementation. For example, a blind channel
estimation scheme that applies an SVD at every time step, has a computational
complexity of the order of O(N3) and is therefore considered off-line.
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without requiring any pilot symbols. For this to be possible,
the modulation scheme requires an asymmetrical constellation
capable of inducing a unique solution to the phase recovery
problem. The same is also achieved in [13] where, in order for
the complex ambiguity to be removed, adjacent subcarriers use
different modulation schemes. This idea is further extended in
[14].

A novel blind approach for channel estimation in OFDM
systems is introduced in [15], which is based on the fact that
the finite data constellation will be known to the receiver.
However, its computational complexity O(JN ) is excessively
high, where J is a number depending on the constellation
used. Another disadvantage of [15] is an irreducible error
floor that manifests itself in medium to high SNR levels (for
example it is present even for SNR=15 dB). In [16] a scheme
that uses the knowledge of error control codes in order to
estimate the channel vector is presented. But when this method
is operating in blind mode, it suffers from convergence to local
minima.

Concentrating on adaptive implementations, the schemes
that have been proposed so far follow a decision-directed
logic. However, with such approaches, convergence towards
the true channel vector is not guaranteed and much attention
should be paid to the initialization procedure. In [17] a semi-
blind channel estimation method is presented. This approach
requires knowledge of the noise variance and makes use of
an initial channel estimate, which is achieved by using pilot
symbols. In [18] an alternative decision-directed method is
proposed in order to estimate the channel in MIMO-OFDM
systems. This method is initialized by a subspace approach,
before passing to the decision-directed mode and presents an
irreducible error floor in high SNR. It becomes evident that for
the two latter schemes, in case of an abrupt channel change,
convergence is not guaranteed.

In this work, we exploit the subspace method in order to
develop adaptive algorithms for blind channel identification in
ZP-OFDM systems. To our knowledge, this is the first time
such schemes are proposed for OFDM systems. Specifically,
we are going to develop recursive least squares (RLS) and least
mean squares (LMS) type algorithms that can efficiently solve
the blind channel estimation problem. Both versions have
significantly lower computational complexity as compared to
the direct SVD approaches of [7], [8]. In particular, our LMS
version is extremely simple with a computational complexity
that is almost two orders of magnitude smaller than the direct
SVD approach.

We would like to stress that our LMS adaptive scheme
is based on a novel adaptive subspace tracking algorithm
introduced here for the first time. Although there exists
an abundance of such techniques in the literature, they are
mostly focused on estimating the signal subspace and not the
noise subspace required here. The algorithm we are going to
introduce relies on the orthogonal iteration method [19] and
is characterized by extreme simplicity and numerical stabil-
ity. This latter characteristic is not enjoyed by any existing
noise subspace tracking algorithm of similar computational
complexity, since the existing schemes are either unstable or
non-robust.

The rest of the paper is organized as follows. In Section II

Fig. 1. Discrete time block ZP-OFDM transmitter.

we introduce the signal model for a ZP-OFDM system. We
continue in Section III with the definition of two subspace
problems that constitute the heart of the blind channel estima-
tion methodology. Section IV contains the orthogonal iteration
and two of its variants that are suitably tuned to the solution of
the two subspace problems introduced in Section III. Addition-
ally, in the same section we provide adaptive implementations
of the two orthogonal iteration variants, which are used in
Section V to develop blind adaptive RLS and LMS algorithms
for the identification of the channel impulse response. In
Section V we also consider the phase and amplitude ambiguity
problem, encountered in the majority of blind techniques, and
propose a simple remedy for its resolution. Simulation results
are offered in Section VI and finally Section VII contains our
concluding remarks.

II. SYSTEM MODEL

OFDM modulation has the characteristic of multiplexing
data symbols over a large number of orthogonal carriers.
Consider an OFDM system where the guard interval con-
sists of a zero padded sequence. Fig. 1 depicts the baseband
discrete-time block equivalent model of a standard ZP-OFDM
transmitter.

Let each information block be comprised of N symbols and
denote by L the length of the ZP. The n-th length-N symbol
block b(n) = [b1(n) . . . bN (n)]t passes through a serial to
parallel converter and is then being modulated by IDFT. Next,
a sequence of L zeros (zero padding) is inserted between two
consecutive blocks to form the transmitted vector x(n). The
latter is of length N +L, and can be put under the following
form

x(n) =
[

FH

0L×N

]
b(n), (1)

where F stands for the DFT matrix

F =
1√
N

⎡
⎢⎢⎢⎣
1 1 1 · · · 1
1 WN W 2

N · · · WN−1
N

...
...

... · · · ...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)(N−1)
N

⎤
⎥⎥⎥⎦ ,
(2)

with WN = e−j
2π
N . The superscript “H” denotes conjugate-

transpose and 0L×N is a zero matrix of dimensions L×N .
The parallel block x(n) is finally transformed into a serial
sequence in order to be transmitted through the channel.

The transmitted signal propagates through a multipath ad-
ditive white noise (AWN), not necessarily Gaussian, channel
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with impulse response h = [h0 . . . hL]t. Here we have
assumed that the channel has a finite impulse response of
length at most L+ 1 not exceeding the ZP length (plus one).
Such an assumption is very common in OFDM systems and
constitutes the main reason for introducing the guard interval
in the great majority of OFDM models.

Throughout this work, we assume synchronization with the
transmitted sequence and perfect carrier recovery, which ac-
tually means that no inter-carrier interference (ICI) is present.
Whenever ZP is employed, the n-th received data block y(n)
of length N + L can be expressed as

y(n) = HFHb(n) + w(n). (3)

In the above relation H is a convolution matrix of dimensions
(N + L) ×N defined as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0
... h0

. . .
...

hL
...

. . . 0

0 hL
. . . h0

...
...

. . .
...

0 0 · · · hL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (4)

where we recall that b(n) is the n-th block of transmitted sym-
bols and w(n) is an AWN vector of length N +L with zero-
mean independent and identically distributed (i.i.d.) elements
that are also independent of the transmitted symbols. From
(3) it is possible to verify the very interesting property of the
ZP-OFDM model stated in the Introduction, namely its ability
to completely eliminate the IBI between consecutive blocks.
This is evident from the fact that the received data block
y(n) depends only on b(n) and not on any other previous
or following symbol block. In order for a similar property to
be enjoyed by the CP-OFDM model, it is necessary, in each
received data block of size N +L, to discard the first L data
samples, thus eliminating useful information.

III. CHANNEL IDENTIFICATION

In this section we will attempt to solve the channel iden-
tification problem after assuming that the received data auto-
correlation matrix is available. As it is almost always the case
with subspace techniques, the key idea consists in properly
decomposing the data into the signal and noise subspace and
then defining suitable subspace determination problems that
will lead to the final estimate of the channel impulse response.

A. A Subspace Approach

Consider the autocorrelation matrix R of the received data
vector y(n) defined in (3). Assuming that the elements of
b(n) are i.i.d. and of unit norm, using the fact that the DFT
matrix F defined in (2) is orthonormal, we conclude that

R
�
= E{y(n)yH(n)} = HHH + σ2IN+L, (5)

where σ2 is the noise power and IK denotes the identity
matrix of size K . The matrix HHH is Hermitian, nonnegative
definite and of dimensions (N + L) × (N + L). From (3)

it is clear that the signal subspace is formed by linearly
combining the columns of H; therefore these columns belong
to the signal subspace (in fact they span it). Assuming that
the channel impulse response h is not identically zero, since
H is a convolution matrix, it is also of full column rank. This
suggests that the signal subspace has rank equal to N and
therefore its complement, the noise subspace, rank equal to
L.

Taking into account the previous observation, if we apply
an SVD on R we can then write

R = [Us Uw ]
[
Λs + σ2IN 0

0 σ2IL

]
[Us Uw]H , (6)

where Us,Uw are orthonormal bases for the signal and noise
subspace respectively and Λs is a diagonal matrix of size N ,
with positive elements. It is important to point out that Uw

involves the singular vectors of the matrix R that correspond
to its smallest singular value (which is equal to σ2).

Since UH
wUs = 0 and Us, Uw are bases for the signal and

noise subspace respectively, any vector in the noise subspace
will be orthogonal to any other vector in the signal subspace.
Notice that the columns of H are vectors in the signal
subspace, therefore for any vector v = [v1 · · · vN+L]t of
length N + L in the noise subspace, we have vHH = 0.
Because of the Toeplitz form of H, depicted in (4), the vector-
matrix product vHH can also be written as

vHH = htV� = 0, (7)

where the superscript “�” denotes complex conjugate and V
is a Hankel matrix of dimensions (L+1)×N , made up from
the elements of the vector v as follows

V =

⎡
⎢⎢⎢⎣
v1 v2 · · · vN
v2 v3 · · · vN+1

...
...

...
vL+1 vL+2 · · · vN+L

⎤
⎥⎥⎥⎦ . (8)

By taking the complex conjugate of the relation in (7) we
conclude

hHV = 0 ⇒ hHVVHh = 0. (9)

Since (9) holds for every vector v in the noise subspace, if
v1, . . . ,vL is a collection of L such vectors, we also have

hHWh = 0, (10)

with

W =
L∑
i=1

ViVH
i , (11)

where Vi, i = 1, . . . , L are the corresponding Hankel matrix
versions of the vectors vi, i = 1, . . . , L, formed according to
(8).

Relation (10) constitutes the key equation for recovering the
impulse response. Indeed, from (10), we have that h is the
singular vector corresponding to the zero, and therefore the
smallest, singular value of W. The first step, of course, in
estimating h through the subspace problem defined in (10)
is the formation of the matrix W. As we can see from
(11), this is possible if we have available a collection of
L vectors vi, i = 1, . . . , L, that lie in the noise subspace.
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Ideal candidates for these vectors constitute the columns of
the matrix Uw, since they span the whole noise subspace and
contain no redundant information (because of orthonormality).

If we estimate h as the singular vector corresponding to
the smallest singular value of W then this will introduce an
amplitude and phase ambiguity. This is because if h satisfies
(10) so does αh, where α any complex number. In order to
limit this ambiguity let us consider a normalized version hb
of the channel impulse response that satisfies ‖hb‖ = 1. Then
the true channel impulse response is related to hb through

h = αhb, (12)

where α a complex scalar. It becomes evident that the
subspace-based blind approach is basically capable of provid-
ing estimates for hb. To be able to resolve the ambiguity due
to α, as we are going to see in Section V, it will be necessary
to introduce some additional information besides the received
data signal vectors {y(n)}.

From the preceding discussion we conclude that, in order to
estimate the (normalized) channel impulse response we need
to solve the following two subspace identification problems:
Subspace Problem 1: The first step in identifying hb is the
determination of a noise subspace basis Uw. This matrix is
of size (N + L) × L and its columns are singular vectors
corresponding to the L-times (multiple) smallest singular
value of the received data autocorrelation matrix R.
Subspace Problem 2: The L columns of the matrix Uw

obtained from the first subspace problem constitute the col-
lection of L vectors vi required to form the matrix W using
(8) and (11). Once W is computed, the normalized channel
impulse response hb can be obtained as the singular vector
corresponding to the smallest singular value of W.

Both problems involve the determination of subspaces cor-
responding to the smallest singular value of a matrix. As
we can see, the proposed method is based solely on the
received data process {y(n)}, therefore it is clearly blind.
Although similar methodology has been developed for channel
estimation in CDMA, there exists a major difference that
distinguishes the current setting from the one used in CDMA.
Here we know exactly the noise subspace rank while this
is not the case in CDMA where this parameter is variable,
depending on the number of users in the channel [20], [21].
Due to this extra knowledge it will be possible to develop
adaptive algorithms for OFDM that are totally different than
their CDMA counterparts.

B. Consistency

Let us now briefly discuss the problem of consistency2 of
the proposed method. We have the following theorem that
addresses this issue.

Theorem 1: Let vi, i = 1, . . . , L, be the L columns of a
basis Uw of the noise subspace, with Vi their corresponding
Hankel versions and define W according to (11). Then the
channel impulse response h is the unique vector (modulo a
multiplicative complex scalar ambiguity) that satisfies eq. (10).

2With this term we refer to the uniqueness of the channel impulse response
estimated via the subspace approach proposed in the previous subsection.

Proof: The proof is presented in the Appendix. From
the proof we can also conclude that consistency is possible
even if we use a single vector vi to form W, provided
that the corresponding Hankel matrix Vi is of full row rank
(this property actually holds with probability one). Although,
theoretically, using all vectors vi does not contribute to the
consistency, it does however ameliorate (considerably) the
convergence properties [22, Pages 104-105] of the adaptive
schemes we are going to present in the sequel.

IV. ORTHOGONAL ITERATION AND VARIANTS

The orthogonal iteration [19], is a simple iterative technique
that can be used to compute the singular vectors corresponding
to the L largest singular values of a symmetric nonnegative
definite matrix. Let us summarize the method in the following
lemma.

Lemma 1: Consider a symmetric, positive definite matrix
Q of size K and let s1 ≥ . . . ≥ sL > sL+1 ≥ . . . ≥
sK > 0 be its singular values and f1, . . . , fK the corresponding
singular vectors. Consider the sequence of matrices {Z(k)} of
dimensions K × L, defined by the iteration

Z(k) = orthonormalize{QZ(k − 1)}, k = 1, 2, . . . (13)

where “orthonormalize” stands for orthonormalization using
QR decomposition, then

lim
k→∞

Z(k) = [f1 · · · fL], (14)

provided that the matrix ZH(0)[f1 · · · fL] is not singular.
Proof: The proof can be found in [19, Page 354].

A number of remarks are necessary at this point.
Remark 1: If certain of the L largest singular values coincide,
then the singular vectors corresponding to the multiple singu-
lar values are not unique. In this case the orthogonal iteration
converges to a basis in the corresponding subspace.
Remark 2: For the orthogonal iteration to converge, it is
imperative that sL > sL+1. In fact, one can show [19, Page
354] that the convergence is exponential with rate sL+1/sL.
Remark 3: If instead of QR we use any other orthonor-
malization procedure, the sequence {Z(k)} converges to an
orthonormal basis in the space spanned by the first L singular
vectors. The latter is unimportant in the case where the L
largest singular values are all equal (since in this case the
singular vectors are not unique).
Remark 4: If L = 1 then the orthonormalization process is re-
duced to a simple vector normalization and the corresponding
iteration is known as the power method [19].

As we have seen in the previous subsection, in both sub-
space problems the goal is to find the subspace corresponding
to the smallest singular value. There are two interesting
variants of the orthogonal iteration that can provide such
estimates. We present them in the form of a lemma.

Lemma 2: Let Q be a symmetric positive definite matrix
of size K , with singular values s1 ≥ s2 ≥ · · · ≥ sK−L >
sK−L+1 ≥ · · · ≥ sK > 0 and fi, i = 1, . . . ,K the
corresponding singular vectors. If the sequence {Z(k)} of
matrices of dimensions K × L is defined by either of the
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two iterations for k = 1, 2, . . .

Z(k) = orthonormalize{Q−1Z(k − 1)}, (15)

Z(k) = orthonormalize{(I − μQ)Z(k − 1)} , (16)

where 0 < μ < 1/s1 and I is the identity matrix, then

lim
k→∞

Z(k) = [fK · · · fK−L+1], (17)

provided that the matrix ZH(0)[fK · · · fK−L+1] is not singular.
Proof: The proof is an immediate application of

Lemma 1 and the fact that the matrices Q−1, I − μQ have
singular values 1

si
and 1 − μsi, i = 1, . . . ,K respectively

and exactly the same singular vectors as the matrix Q. In
other words Q−1 and I − μQ constitute two possible ways
to map the smallest singular values into the largest ones,
without altering the corresponding subspaces, and then apply
the orthogonal iteration. The constraint 0 < μ < 1/s1 is
required in order for the matrix I−μQ to be positive definite.

A. Adaptive Implementations

We are now interested in the application of the orthogonal
iteration, and in particular of its two variants introduced in
Lemma 2, under an adaptive setting. Let us therefore assume
that Q is no longer available; instead we have a sequence of
random matrices {Q(n)} with expectation equal to Q, that is,
E{Q(n)} = Q. We distinguish two cases.

Case A: E{‖Q(n)− Q‖2} � ‖Q‖2. In this case the ran-
dom matrices {Q(n)} constitute efficient estimates of the
matrix Q since the error power is considered significantly
smaller than the power of Q. Here we can apply both iterations
(15) and (16) modified as follows

Z(n) = orthonormalize{Q−1(n)Z(n− 1)}, (18)

Z(n) = orthonormalize{[I− μQ(n)]Z(n− 1)} , (19)

where 0 < μ < 1/s1.
Case B: E{‖Q(n)− Q‖2} ∼ ‖Q‖2. In this case the ran-

dom matrices {Q(n)} constitute crude estimates of the matrix
Q because the error power is comparable to the power of the
matrix Q. Here we can apply only (16) as it is modified in
(19), but with 0 < μ� 1/s1.

The reason we distinguish the two cases is because we will
propose an adaptive algorithm based on RLS that produces
efficient estimates of the matrix we would like to decompose
(Case A); and an alternative algorithm of gradient (LMS) type
that approximates the desired matrix by instantaneous rank-
one vector outer products (Case B). The former will have an
excellent performance but at an increased computational cost,
whereas the later will have a slightly inferior performance but
with a very interesting computational complexity.

Unfortunately a formal proof of the stochastic convergence
capabilities of the two adaptive algorithms proposed in (18)
and (19), requires considerable space and effort (see for
example [23]) and is therefore omitted. Instead we are going
to give an intuitive explanation as to why these adaptations
can work. Case A is rather clear. Indeed if Q(n) = Q+E(n)
where E(n) are small random perturbations, then we can write
Q−1(n) = Q−1 + E′(n) and I − μQ(n) = I− μQ + E′′(n)

where E′(n) and E′′(n) are both small random perturbation
matrices. These small perturbations will in turn produce small
random perturbations in the adaptation (18) or (19) thus
yielding efficient singular vector estimates.

In Case B, on the other hand, the initial perturbations E(n)
are considered important, therefore E′(n) and E′′(n) will be
important as well. This in turn will result in “noisy” singular
vector estimates in (18) or in (19) when μ is not small.
Therefore, both adaptations should be avoided. When however
in (19) we select a small step size, then stochastic averaging
effects take place and one can show (see [23]) that the mean
trajectory of (19) satisfies

E{Z(n)}≈ orthonormalize{(I−μE{Q(n)})E{Z(n−1)}}
≈ orthonormalize{(I−μQ)E{Z(n−1)}} (20)

which is the variant in (16). This means that the mean trajec-
tory will converge to the desired singular vectors. Furthermore,
at steady state, the estimation error power, as it is always
the case in adaptive algorithms with small step size, will be
of the order of μ and therefore small. In other words, when
0 < μ � 1/s1, (19) will provide efficient estimates of the
singular vectors.

V. BLIND ADAPTIVE CHANNEL ESTIMATION

In this section our goal is to develop adaptive solutions
for the two subspace problems introduced in Section III. We
recall that a straightforward (non-adaptive) solution consists in
applying an SVD in both problems. The direct SVD technique
is unfortunately characterized by an excessively high compu-
tational cost which is of the order of O((N + L)3) and is
therefore considered unsuitable for on-line implementations.
Let us now see how we can use the material presented in the
previous section in order to obtain computationally efficient
blind adaptive methods.

A. Adaptive Solutions for the First Subspace Problem

We are given sequentially the data blocks y(n) of length
N + L and we are interested in estimating a matrix Uw

of size (N + L) × L, containing the L singular vectors of
the noise subspace. Depending on the estimates we use for
the data autocorrelation matrix R we can obtain alternative
adaptations. There exist two interesting choices that we present
in the sequel.

RLS Adaptation. Let R(n) be the exponentially windowed
sample data autocorrelation matrix defined recursively as
follows

R(n) = λR(n− 1) + (1 − λ)y(n)yH (n), (21)

where 0 < λ < 1 is a forgetting factor. This case corresponds
to an efficient estimate of R when λ is close to 1, since
E{‖R(n) − R‖2} = O(1 − λ). Consequently we can apply
(18) that involves the inverse matrix P(n) = R−1(n). It
should be mentioned here that RLS computes directly P(n)
with a computational complexity O((N + L)2). To present
the complete adaptation let us assume that at time n − 1
we have available the inverse P(n − 1) of the data sample
autocorrelation matrix and an estimate Uw(n−1) of the noise



DOUKOPOULOS AND MOUSTAKIDES: BLIND ADAPTIVE CHANNEL ESTIMATION IN OFDM SYSTEMS 1721

subspace basis. When the new data block y(n) is available we
apply

K(n) = P(n− 1)y(n) (22)

γ(n) =
1 − λ

λ+ (1 − λ)yH(n)K(n)
(23)

P(n) =
1
λ

(
P(n− 1) − γ(n)K(n)KH(n)

)
(24)

Uw(n) = orthonormalize{P(n)Uw(n− 1)}. (25)

In the first three equations we recognize the RLS algorithm,
while in the last we identify the variant of the orthogonal
adaptation proposed in (18). The computational complexity
of the scheme is O((N + L)2) for RLS; O((N + L)2L)
to form the product P(n)Uw(n − 1) and O((N + L)L2)
for the orthonormalization part (see [24]). Thus the leading
complexity is O((N + L)2L), which is almost an order of
magnitude smaller than the complexity of the direct SVD
approach.

LMS Adaptation. Here we propose a crude estimate for R,
namely R(n) = y(n)yH (n); we therefore need to apply (19)
with a small step size μ. Since the size of μ is relative to the
largest singular value s1 of the matrix R, we propose the use
of a normalized step size of the form μ = μ̄/trace{R(n)}.
We know that trace{R} ≥ s1, however most of the time we
have trace{R} 	 s1, therefore selecting μ̄ even close to unity
results in μ� 1/s1. Since here trace{R(n)} = ‖y(n)‖2, the
corresponding algorithm takes the following form

s(n) = UH
w (n− 1)y(n) (26)

T(n) = Uw(n− 1) − μ̄

‖y(n)‖2
y(n)sH(n) (27)

Uw(n) = orthonormalize{T(n)}. (28)

The first two relations have computational complexityO((N+
L)L) and the last, as in the RLS algorithm, O((N + L)L2).
The latter is also the leading complexity in this LMS version.

Both algorithmic schemes first appeared in [25] as a means
to perform adaptive subspace tracking. We should mention
that the subspace tracking literature is particularly rich offering
numerous algorithms for adaptively estimating (and tracking)
subspaces. In fact, there even exist versions with complexity
(translated to our terminology)O((N+L)L), which is smaller
than the one enjoyed by our LMS scheme. However, we
would like to point out that these low complexity algorithms
are primarily applied for estimating subspaces corresponding
to the largest singular values. As a matter of fact, very
few schemes providing estimates for the smallest singular
values have been developed and can be found in [26]–[29].
Unfortunately, as it is reported in [28], the schemes in [26]–
[28] exhibit numerical instability, while the same can be shown
for the one proposed in [29].

It turns out that for the special algorithm proposed in (26)
and (27) we can develop an orthonormalization procedure with
complexityO((N+L)L), thus reducing the overall complexity
to this level. More specifically, (28) must be replaced by the

following set of equations:

a(n) = s(n) − ‖s(n)‖e1 (29)

T̂(n) = T(n) − 1
sH(n)a(n)

[T(n)a(n)]aH (n) (30)

Uw(n) = normalize{T̂(n)}, (31)

where e1 = [1 0 . . . 0]t and “normalize” stands for normaliza-
tion of the columns of the matrix T̂(n). The corresponding
complexity is O((N+L)L) since the normalization of a vector
of length N +L requires O(N +L) operations. Compared to
the complexity O((N + L)2L) of RLS we have gained an
order of magnitude.

The strong point of our algorithm is its numerical sta-
bility, that is, even if orthonormality is lost, the adaptation
converges rapidly to an orthonormal matrix. Furthermore the
algorithm is simple having only a single parameter (the step
size μ̄) to be specified. The numerical stability, as well as
the analysis of the transient, steady state and convergence-
towards-orthonormality behavior of the algorithm are detailed
in [30] (limited information can also be found in [22]). In the
same article the algorithm is compared against all well known
subspace tracking schemes of similar complexity.

Regarding now the initialization of both versions, we pro-
pose the following common scheme. We apply a QR decom-
position on the matrix

∑N+L
n=1 y(n)yH (n) and use the last L

orthonormal vectors, to initialize Uw(n).

B. Adaptive Solution for the Second Subspace Problem

Once we have available the estimates Uw(n) of the noise
subspace basis, either through the RLS: (22)-(25) or the LMS:
(26), (27), (29)-(31) adaptation, we can then proceed with
the estimate of the matrix W. If [v1(n) · · ·vL(n)] are the L
columns of the matrix Uw(n) we then transform each column
vi(n) into the corresponding Hankel version Vi(n) according
to (8) and finally compute W(n) according to (11).

Notice that the vectors vi(n) constitute efficient estimates
of the singular vectors of the noise subspace, therefore W(n)
is also an efficient estimate of W. Because of this fact the
singular vector corresponding to the smallest singular value of
W can be estimated using either (18) or (19). We propose the
use of (19) since it has complexityO(L2) as opposed to O(L3)
for (18) (due to the matrix inversion). Adopting, as in the first
problem, a normalized step size, that is, μ = μ̄/trace{W(n)},
with 0 < μ̄ ≤ 1, we propose μ̄ = 1. Thus, the final channel
adaptation becomes

hb(n) = normalize

{
hb(n− 1)

− 1
trace{W(n)}W(n)hb(n− 1)

}
.(32)

The computational complexity of the second subspace prob-
lem is as follows. For the computation of the matrix W(n) we
need O(NL2). This complexity is attainable if we carefully
exploit the Hankel structure of the matrices Vi(n) (see [22]).
Finally, as it was pointed out, (32) requires O(L2) operations.
Therefore, the leading complexity of the proposed solution for
the second subspace problem is equal to O(NL2).



1722 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 7, JULY 2006

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−35

−30

−25

−20

−15

−10

−5

0

R
el

at
iv

e 
ch

an
ne

l e
st

im
at

io
n 

er
ro

r p
ow

er
 (i

n 
dB

)

Number of symbols

RLS 1 pilot
RLS 4 pilots
LMS 1 pilot
LMS 4 pilots
SVD

Fig. 2. Performance of RLS, LMS and Direct SVD for SNR=20 dB; no
fading.

C. Phase and Amplitude Ambiguity Removal

The true channel impulse response h is related to the
normalized version hb through eq. (12), where the complex
parameter α expresses the phase and amplitude ambiguity. It
is possible to recover α by inserting pilot symbols in the
symbol blocks b(n). Even a single pilot symbol (in every
symbol block) is sufficient to eliminate this ambiguity. We
should mention that pilot symbols are included in all current
standards.

Let us first estimate α assuming that a normalized chan-
nel impulse response hb and the statistics of the processes
involved are available. We can verify from (3) that if ωi =
i 2πN , i = 0, . . . , N − 1, is the i-th subcarrier frequency, then

[1 e−jωi · · · e−j(N+L−1)ωi ]y(n) =
= H(ωi)[1 e−jωi · · · e−j(N−1)ωi ]FHb(n) + wi(n) (33)

= H(ωi)[1 W i
N · · ·W i(N−1)

N ]FHb(n) + wi(n) (34)

=
√
N H(ωi)bi(n) + wi(n). (35)

The last equality is due to the orthonormality of F. In the
previous expressions

H(ωi) =
L∑
k=0

e−jkωihk = [1 e−jωi · · · e−jLωi ]h (36)

is the channel frequency response at ωi; bi(n) is the i-th
symbol in the b(n) symbol block and finally wi(n) is a noise
term.

If p pilot symbols are available at the i1, i2, . . . , ip positions
of the block b(n), let us consider the following matrix of
dimensions p×K

ΦK =

⎡
⎢⎣

1 e−jωi1 · · · e−j(K−1)ωi1

...
... · · · ...

1 e−jωip · · · e−j(K−1)ωip

⎤
⎥⎦ . (37)
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Fig. 3. Performance of RLS, LMS and Direct SVD for SNR=10 dB; no
fading.

Because of (35), (36) and (12) we can then write

ΦN+Ly(n) =

=
√
N diag{bp(n)}[H(ωi1) · · ·H(ωip)]t+wp(n) (38)

=
√
N diag{bp(n)}ΦL+1h + wp(n) (39)

= α
√
N diag{bp(n)}ΦL+1hb + wp(n), (40)

where bp(n) = [bi1(n) · · · bip(n)]t is a vector containing the
pilot symbols and wp(n) is a noise vector. Since the symbols
bi(n) are of unit norm and independent from the noise term
wp(n), we conclude that

α =
hHb ΦH

L+1E
{
diag{b�p(n)}ΦN+Ly(n)

}
√
N hHb ΦH

L+1ΦL+1hb
. (41)

This suggests the following simple adaptation for the scalar
parameter α

α(n) = ν α(n− 1)

+ (1 − ν)
hHb (n)ΦH

L+1diag{b∗
p(n)}ΦN+Ly(n)√

N hHb (n)ΦH
L+1ΦL+1hb(n)

,
(42)

where 0 < ν < 1 is a forgetting factor and hb(n) is available
from the blind subspace part, that is, adaptation (32). Notice
that (42) involves only known quantities.

VI. SIMULATIONS

Let us now present several simulation examples. Following
the HIPERLAN/2 standard, we consider N = 64 with a zero
padding of length L = 16. Inside each symbol block there are
p = 4 pilot symbols at the positions i1 = 0, i2 = 16, i3 = 32
and i4 = 48, while a BPSK modulation scheme is used. The
OFDM symbol duration is 32μsec and the carrier spacing is
approximately 0.4μsec. For the RLS algorithm we select λ =
0.997 when SNR=20 dB and λ = 0.9985 when SNR=10 db.
For LMS we select μ̄ = 1 when SNR=20 dB and μ̄ = 0.8
when SNR=10 dB. Finally for the adaptation in (42) we select
ν = 0.99. The reason we change our parameters with SNR is
to be able to produce graphs that allow for fair comparisons.
This can be achieved by following two alternative paths: either
we assure the same steady state error for all schemes and
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Fig. 4. BER performance of RLS, LMS and Direct SVD versus the ideal
known channel case.

select the fastest converging as the optimum; or the same
convergence speed and select the one with the smallest steady
state error as the optimum. Here we follow the first approach.
The type of additive noise used in all simulations is Gaussian.

In addition to the RLS and LMS version we also simulate
the direct SVD approach. This consists in applying, at each
time step, an SVD on the matrix P(n) provided by RLS, to
obtain Uw(n). We then form W(n) and then apply an SVD
on this matrix to obtain hb(n). Once hb(n) is available we
adapt α(n) using (42).

We provide results for two different simulation scenarios. In
the first, the algorithms are tested under a stationary environ-
ment exhibiting abrupt changes; while in the second the more
realistic case of a slowly fading environment is considered.
In all cases we plot the ratio E{‖h − α(n)hb(n)‖2}/‖h‖2,
in dB, which corresponds to the relative channel estimation
error power. Expectation is approximated using average of 100
independent runs.

A. Stationary Environment

Figs. 2 & 3 depict the performance of the algorithms under
a non-fading channel. We start with a channel that has impulse
response ht=[0.555 0.160 0.141 0.316]+ j[0.214 0.636 0.290
-0.114] and at time 5001 we abruptly switch to ht=[-0.189
-0.284 0.127 -0.045]+j[0.427 0.698 0.432 0.091]. Time is
measured in OFDM symbols and the channel during the
intervals [0 5000], [5001 10000] remains static. The goal of
this simulation is to test the capability of the algorithms to
converge to the new channel impulse response. We should
mention that the two channels strongly attenuate certain fre-
quency regions (for details see [9]). Although they are both
of length 4 we estimate them as being of maximum length
L+ 1 = 17.

Fig. 2 presents the results for SNR=20 dB and Fig. 3 for
SNR=10 dB. In both cases RLS is very close to the direct
SVD approach but at a computational level almost an order
of magnitude smaller. The LMS version, on the other hand,
has performance that compares very favorably with the other
two algorithms but with a very appealing computational com-
plexity. In Fig. 2 we also plot the performance of the adaptive

algorithms using just one pilot symbol. As we can see, the
difference is less than 0.5 dB in steady state for both RLS and
LMS.

Let us now briefly explain why in Fig. 3 the performance
of RLS and direct SVD exhibits a slight degradation after
time 7000. In adaptive algorithms, there are two quantities
that contribute to the estimation error power. There is first the
error due to the mean trajectory of the algorithm and second
the variance around the value of the mean trajectory. The
mean trajectory error starts from a large value and decreases
exponentially to zero, while the variance starts from zero
and increases exponentially to an O(μ) value. These two
components are added together to produce the final error
power. When the convergence speed of the mean trajectory
towards zero is more pronounced than the corresponding speed
of the variance, then it is possible to observe an initial fast
reduction in the error power which consequently increases
slowly due to the slow increase of the variance, exactly as it is
depicted in Fig. 3. Similar behavior has already been observed
in other adaptive algorithms as well (see [32] for details).

In the last simulation example, depicted in Fig. 4, we present
the bit error rate (BER) of the RLS, LMS and direct SVD
versus a scheme with perfect channel knowledge, for different
values of the SNR. A zero forcing detector with no coding
has been implemented. The BER of the adaptive schemes is
computed after the algorithms have converged to their steady
state. We observe an indistinguishable performance of the
adaptive schemes as compared to the one with perfect channel
knowledge.

B. Fading Environment

Here we examine our algorithms under a more realistic
scenario involving a fading channel. We consider NLOS (Non-
Line Of Sight) Rayleigh fading. More specifically, we use a
Jakes-like model, proposed in [31], to simulate fading. The
parameters of the model are: communication frequency carrier
at 5Ghz; data rate at 2Mbits/sec; Doppler-frequency 100Hz;
receiver speed 3m/sec and 15 scatterers per channel coefficient
(scatterers for different channel taps are independent). More
information about the channel generation mechanism can be
found in [22, App. D] and [31].

Figs. 5 & 6 present the performance of the three algorithms
for SNR=20 dB and SNR=10 dB respectively. Similarly to the
previous two cases, the same abrupt change of the channel
response is imposed at time instant 5001. As we can see RLS
continues to follow closely the direct SVD approach. However
what is remarkable here is that LMS can outperform both
algorithms. Even though this fact might seem extraordinary we
should point out that similar performance for LMS has already
been observed in conventional adaptive system identification
[32, Page 651] for time varying system. Comparing Figs. 5 &
6 the superiority of LMS over RLS is reduced from 5 dB to
1.5 dB. This is due to the drastic increase in noise level which
degrades the performance of both algorithms considerably.

VII. CONCLUSION

In this article, we have considered the problem of blind
adaptive channel estimation in ZP-OFDM systems. By defin-
ing two subspace problems we were able to determine the
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Fig. 5. Performance of RLS, LMS and Direct SVD for SNR=20 dB; fading
channel.
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Fig. 6. Performance of RLS, LMS and Direct SVD for SNR=10 dB; fading
channel.

channel impulse response modulo a phase and amplitude am-
biguity. Motivated by the orthogonal iteration method, known
from Numerical Analysis for the computation of singular
vectors, RLS and LMS schemes were developed capable of
providing blind adaptive channel estimates. As far as the LMS
version is concerned it was based on a novel, low complexity
and numerically stable subspace tracking algorithm proposed
here for the first time. Both versions were also extended to
take into account the existence of pilot symbols in order
to eliminate the ambiguity which is intrinsic in most blind
techniques. The proposed algorithms were tested under diverse
signaling conditions involving medium and high SNR levels in
stationary and slowly fading channels that also exhibit abrupt
changes. In all cases convergence was rapid matching the
performance of the non adaptive and computationally intense,
direct SVD approach.

APPENDIX

Proof of Theorem 1: Let h = [h0 · · ·hL]t be the true channel
coefficients. Define the polynomial h(z) = h0 + zh1 + · · · +
zLhL and suppose for simplicity that h(z) has L distinct

roots zi, i = 1, . . . , L. Consider now the vectors zi =
[1 z�i · · · (z�i )N+L−1]t, i = 1, . . . , L. These L vectors span
the noise subspace because, as we can verify, HHHzi = 0
and they are linearly independent. From this we conclude that
any vector v in the noise subspace can be written as a linear
combination of the vectors zi. Because Uw spans also the
noise subspace we can write

Uw = [v1 · · ·vL] = [z1 · · · zL]A, (43)

where A = [a1 · · ·aL] is a full rank (thus invertible) matrix
of dimensions L× L.

If h̃ is a vector satisfying (9), then due to the nonnegative
definiteness of the terms ViVH

i that compose W, we also
have that

VH
i h̃ = 0, i = 1, . . . , L. (44)

Now we recall that Vi is the Hankel version of vi, which
is the i-th column of Uw. From (43) we have that vi =
[z1 · · · zL]ai =

∑L
l=1 ailzl where ai = [ai1 · · ·aiL]t. This

means that Vi =
∑L

l=1 ailZl, where Zl is the Hankel version
of zl. The latter, due to the special form of zl, can be written as
Zl = [1 z�l · · · (z�l )L]t[1 z�l · · · (z�l )N−1]. Due to this property,
if we define the matrices

B =

⎡
⎢⎢⎢⎣

1 · · · 1
z1 · · · zL
...

...
...

zN−1
1 · · · zN−1

L

⎤
⎥⎥⎥⎦,C =

⎡
⎢⎣

1 z1 · · · zL1
...

...
...

1 zL · · · zLL

⎤
⎥⎦, (45)

we can then see that we can write Vi more compactly as
follows

VH
i = B diag{ai}C. (46)

Because B is Vandermonde and the zl are distinct, when N ≥
L then B is of full column rank. This, using (44), allows us
to write

B diag{ai}Ch̃ = 0 ⇒ diag{ai}Ch̃ = diag{Ch̃}ai = 0,
(47)

for i = 1, . . . , L. We can now combine the L equations
diag{Ch̃}ai = 0, i = 1, . . . , L into diag{Ch̃}A = 0, from
which we obtain diag{Ch̃} = 0, thanks to the invertibility of
A. The latter is also equivalent to

Ch̃ = 0. (48)

We should note that the same conclusion can be drawn directly
from (47) and in particular from diag{ai}Ch̃ = 0. Indeed
if the vector ai of a single vi has all its elements different
than zero, then we can also conclude that Ch̃ = 0. From
(46) we have that the vector ai has nonzero elements iff the
corresponding Vi is of full row rank. The interesting point is
that if we randomly select a vector v in the noise subspace
then the probability that this vector will have a Hankel version
V which is not of full row rank is zero.

From (48) and because of the special form of C, depicted
in (45), we deduce that the zi, i = 1, . . . , L, are the L roots of
the polynomial that has as coefficients the elements of h̃. But
this polynomial is uniquely defined (modulo a multiplicative
parameter) through its roots. Therefore h̃ = αh, and this
concludes the proof.
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