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The widespread deployment of wireless networks and hot spots that employ the IEEE 802.11 tech-
nology has forced network designers to put emphasis on the importance of ensuring efficient and
fair use of network resources. In this work we propose a novel framework for detection of intelli-
gent adaptive adversaries in the IEEE 802.11 MAC by addressing the problem of detection of the
worst-case scenario attacks. Utilizing the nature of this protocol we employ sequential detection
methods for detecting greedy behavior and illustrate their performance for detection of least favor-
able attacks. By using robust statistics in our problem formulation, we attempt to utilize the pre-
cision given by parametric tests, while avoiding the specification of the adversarial distribution.
This approach establishes the lowest performance bound of a given Intrusion Detection System
(IDS) in terms of detection delay and is applicable in online detection systems where users who
pay for their services want to obtain the information about the best and the worst case scenarios
and performance bounds of the system. This framework is meaningful for studying misbehavior
due to the fact that it does not focus on specific adversarial strategies and therefore is applicable
to a wide class of adversarial strategies.

Categories and Subject Descriptors: C.2.0 [Computers-Communication Networks]: General-
Security and Protection

General Terms: Design, Security

This research was supported in part by the U.S. Army Research Office under CIP URI grant No.
DAAD19-01-1-0494.
S. Radosavac is now affiliated with DoCoMo Labs USA.
Author’s address: S. Radosavac (corresponding author); email: radosavac@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credits is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 1094-9224/2008/07-ART19 $5.00 DOI: 10.1145/1380564.1380567. http://doi.acm.org/

10.1145/1380564.1380567.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 19, Pub. date: July 2008.



19: 2 · S. Radosavac et. al.

Additional Key Words and Phrases: Wireless networks, MAC layer, min-max robust detection,
protocol misbehavior

ACM Reference Format:

Radosavac, S., Moustakides, G., Baras, J. S., and Koutsopoulos, I. 2008. An analytic framework
for modeling and detecting access layer misbehavior in wireless networks. ACM Trans. Inf. Syst.
Secur. 11, 4, Article 19 (July 2008), 28 pages. DOI = 10.1145/1380564.1380567. http://doi.acm.org/
10.1145/1380564.1380567.

1. INTRODUCTION

Deviation from legitimate protocol operation in wireless networks has received
considerable attention from the research community in recent years. The per-
vasive nature of wireless networks with devices that are gradually becoming
essential components in our lifestyle justifies the rising interest on that is-
sue. In addition, the architectural organization of wireless networks in distrib-
uted secluded user communities raises issues of compliance with protocol rules.
More often than not, users are clustered in communities that are defined on
the basis of proximity, common service or some other common interest. Since
such communities are bound to operate without a central supervising entity,
no notion of trust can be presupposed.

Furthermore, the increased level of sophistication in the design of proto-
col components, together with the requirement for flexible and readily recon-
figurable protocols has led to the extreme where wireless network adapters
and devices have become easily programmable. As a result, it is feasible for
a network peer to tamper with software and firmware, modify its wireless in-
terface and network parameters, and ultimately abuse the protocol. This sit-
uation is referred to as protocol misbehavior. The goals of a misbehaving peer
range from exploitation of available network resources for its own benefit up
to network disruption. The solution to the problem is the timely and reliable
detection of such misbehavior instances, which would eventually lead to net-
work defense and response mechanisms and isolation of the misbehaving peer.
However, two difficulties arise: the random nature of some protocols (such as
the IEEE 802.11 medium access control one) and the nature of the wireless
medium with its inherent volatility. Therefore, it is not easy to distinguish
between a peer misbehavior and an occasional protocol malfunction due to a
wireless link impairment.

Protocol misbehavior has been studied in various scenarios in different com-
munication layers and under several mathematical frameworks. The authors
in Raya et al. [2004] focus on MAC layer misbehavior in wireless hot-spot
communities. They propose a sequence of conditions on some available ob-
servations for testing the extent to which MAC protocol parameters have been
manipulated. The advantage of the scheme is its simplicity and ease of im-
plementation, although in some cases the method can be deceived by cheating
peers, as the authors point out. A different line of thought is followed by the
authors in Kyasanur and Vaidya [2003], where a modification to the IEEE
802.11 MAC protocol is proposed to facilitate the detection of selfish and mis-
behaving nodes. The approach presupposes a trustworthy receiver, since the
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latter assigns to the sender the back-off value to be used. The receiver can
readily detect potential misbehavior of the sender and accordingly penalize it
by providing less favorable access conditions through higher back-off values
for subsequent transmissions. A decision about protocol deviation is reached if
the observed number of idle slots of the sender is smaller than a pre-specified
fraction of the allocated back-off. The sender is labeled as misbehaving if it
turns out to deviate continuously based on a cumulative metric over a sliding
window. This work also presents techniques for handling potential false pos-
itives due to the hidden terminal problem and the different channel quality
perceived by the sender and the receiver. The work in Cárdenas et al. [2004]
attempts to prevent scenarios of colluding sender-receiver pairs by ensuring
randomness in the course of MAC protocol.

A game-theoretic framework for the same problem at the MAC layer is pro-
vided in Čagalj et al. [2005]. Using a dynamic game model, the authors derive
the strategy that each node should follow in terms of controlling channel ac-
cess probability by adjustment of the contention window, so that the network
reaches its equilibrium. They also provide conditions under which the Nash
equilibrium of the network with several misbehaving nodes is Pareto optimal
for each node as well. The underlying assumption is that all nodes are within
wireless range of each other so as to avoid the hidden terminal problem.

Misbehavior detection has been studied at the network layer for routing
protocols as well. The work in Marti et al. [2000] presents the watchdog mech-
anism, which detects nodes that do not forward packets destined for other
nodes. The pathrater mechanism evaluates the paths in terms of trustwor-
thiness and helps in avoiding paths with untrusted nodes. The technique pre-
sented in Buchegger and Boudec [2002] aims at detecting malicious nodes by
means of neighborhood behavior monitoring and reporting from other nodes.
A trust manager, a reputation manager, and a path manager aid in informa-
tion circulation through the network, evaluation of appropriateness of paths,
and establishment of routes that avoid misbehaving nodes. Detection, isola-
tion, and penalization of misbehaving nodes are also attained by the technique
above.

Node misbehavior can be viewed as a special case of denial-of-service (DoS)
attack or equivalently a DoS attack can be considered as an extreme instance
of misbehavior. DoS attacks at the MAC layer are a significant threat to avail-
ability of network services. This threat is intensified in the presence of the
open wireless medium. In Gupta et al. [2002], the authors study simple DoS
attacks at the MAC layer, show their dependence on attacker traffic patterns,
and deduce that the use of MAC layer fairness can mitigate the effect of such
attacks. In Bellardo and Savage [2003] the focus is also on DoS attacks against
the 802.11 MAC protocol. They describe vulnerabilities of 802.11 and show
ways of exploiting them by tampering with the normal operation of device
firmware.

The nature of wireless networks operation dictates that decisions about the
occurrence or not of misbehavior should be taken online as observations are
revealed and not in a fixed observation interval. This gives rise to the sequen-
tial detection problem. A sequential decision rule consists of a stopping time

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 19, Pub. date: July 2008.



19: 4 · S. Radosavac et. al.

which indicates when to stop observing and a final decision rule that indicates
which hypothesis (i.e., occurrence or not of misbehavior) should be selected. A
sequential decision rule is efficient if it can provide reliable decision as fast as
possible. It has been shown by Wald [1947] that the decision rule that mini-
mizes the expected number of required observations to reach a decision over
all sequential and nonsequential decision rules is the sequential probability
ratio test (SPRT).

The basic feature of attack and misbehavior strategies is that they are en-
tirely unpredictable. In the presence of such uncertainty, it is meaningful to
seek models and decision rules that are robust, namely they perform well for
a wide range of uncertainty conditions. One useful design philosophy is to
apply a min-max formulation and identify the rule that optimizes worst-case
performance over the class of allowed uncertainty conditions. The min-max
design principle has been successfully applied in signal processing and control
systems, where the goal is to design receiver filters of optimal performance
with respect to a certain measure (e.g., signal-to-noise-ratio) in the presence of
system modeling uncertainties and background noise [Kassam and Poor 1985;
Verdu and Poor 1984].

In a wireless network, information about the behavior of nodes can be-
come readily available to immediate neighbors through direct observation
measurements. If these measurements are compared with their counterparts
for normal protocol operation, it is then contingent upon the detection rule to
decide whether the protocol is normally executed or not. A min-max formu-
lation translates to finding the detection rule with the minimum required
number of observations to reach a decision for the worst instance of misbehav-
ior. Clearly, such a scheme would guarantee a minimum level of performance
which is the best minimum level possible over all classes of attacks. In this
work, we address the problem of MAC protocol misbehavior detection at a fun-
damental level and cast it as a min-max robust detection problem. Our work
contributes to the current literature by: (1) formulating the misbehavior prob-
lem at hand as a min-max robust sequential detection problem that essentially
encompasses the case of a sophisticated attacker, (2) quantifying performance
losses incurred by an attack and defining an uncertainty class such that the
focus is only on attacks that incur “large enough” performance losses, (3) ob-
taining an analytical expression for the worst-case attack and the number of
required observations, (4) establishing an upper bound on number of required
samples for detection of any of the attacks of interest, and (5) extending the ba-
sic model to scenarios with interference due to concurrent transmissions. Our
work constitutes a first step towards understanding the structure of the prob-
lem, obtaining bounds on achievable performance, and characterizing the im-
pact of different system parameters on it. Although we do mention the impact
of interference on the performance of the IDS and perform initial evaluation to
illustrate its impact on detection delay, we do not perform extensive analysis
and performance evaluation of the system in the presence of interference in
the remainder of this article.

Compared to our preliminary work in Radosavac et al. [2005], in this work
we introduce a more sophisticated adversary model that captures the behavior
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of an adversary in the IEEE 802.11 MAC in a more precise manner. Namely,
the work in Radosavac et al. [2005] assumed that the back-off counters never
freeze due to a perceived busy channel. However, according to the IEEE 802.11
MAC specification, each node freezes its back-off counter when the channel
is busy. Consequently, the above assumption lead to a heavily approximated
adversarial model. In this work, we improved the adversary model from Ra-
dosavac et al. [2005] by assuming that the back-off counters freeze due to a
perceived busy channel. More specifically, we used asymptotic theory to de-
rive an expression of the attacker percentage of channel access and to define
the attack classes of interest. We also extend this framework and general-
ize our treatment for multiple competing nodes and assess the performance
of both the detection scheme and the adversary for such scenario. In particu-
lar, we incorporated terminology and derivations that apply to quickest change
detection theory. The improved and precise version for the worst-case adver-
sarial strategy enabled us to provide rigorous proofs for the structure of the
optimal attack and for the properties of the saddle point of the IDS-attacker
game. In order to provide a more sophisticated and realistic simulation sce-
nario, we implemented a misbehaving node model in the network simulator
Opnet and evaluated the performance of both the adversary and the IDS in
terms of trade-off between the expected time to False Alarm and the expected
time to detection.

The rest of the article is organized as follows. In Section 2.1, we discuss
the issue of misbehavior in IEEE 802.11 MAC protocol. In Section 3 we in-
troduce the min-max robust detection model with the underlying assumptions
and present our main results regarding misbehavior detection. Further issues
are discussed in Section 4, Section 5 contains a number of numerical results,
and we conclude our study in Section 6.

In subsequent discussion, the terms “misbehavior” and “attack,” as well as
“misbehaving node” and “attacker” will be used interchangeably.

2. IEEE 802.11 MAC DCF: OVERVIEW OF THE PROTOCOL

The most frequently used MAC protocol for wireless networks is the IEEE
802.11 MAC protocol, which uses a distributed contention resolution mecha-
nism for sharing the wireless channel. Its design attempts to ensure a rela-
tively fair access to the medium for all participants of the protocol. In order
to avoid collisions, the nodes follow a binary exponential back-off scheme that
favors the last winner among the contending nodes.

In Distributed Coordinating Function (DCF) of the IEEE 802.11 MAC proto-
col, coordination of channel access for contending nodes is achieved with Car-
rier Sense Multiple Access with Collision Avoidance (CSMA/CA) [IEEE 1999].
A node with a packet to transmit selects a random back-off value b uniformly
from the set {0, 1, . . . , W − 1}, where W is the (fixed) size of the contention win-
dow. The random back-off selected corresponds to the number of slots a sta-
tion needs to wait in addition to the mandatory Distributed Interframe Space
(DIFS) interval before attempting to transmit. The back-off counter decreases
by one at each time slot that is sensed to be idle and the node transmits after
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Fig. 1. Nodes A and C contend for accessing node B. In the first attempt A reserves the channel
followed by successful access by node C.

b idle slots. In case the channel is perceived to be busy in one slot, the back-off
counter stops momentarily. After the back-off counter is decreased to zero, the
transmitter can reserve the channel for the duration of data transfer. First,
it sends a Request-To-Send (RTS) packet to the receiver, which responds with
a Clear-To-Send (CTS) packet. Thus, the channel is reserved for the trans-
mission. Both RTS and CTS messages contain the intended duration of data
transmission in the duration field. Other hosts overhearing either the RTS
or the CTS are required to adjust their Network Allocation Vector (NAV) that
indicates the duration for which they will defer transmission. This duration in-
cludes the Short Interframe Space (SIFS) intervals, data packets and acknowl-
edgment (ACK) frame following the transmitted data frame. An unsuccessful
transmission instance due to collision or interference is denoted by lack of CTS
or ACK for the data sent and causes the value of contention window to double.
If the transmission is successful, the host resets its contention window to the
minimum value W .

Figure 1 illustrates the scenario of contending nodes using the protocol. In
this specific scenario nodes A and C contend for accessing node B. In the first
attempt, after waiting for the fixed interval DIFS, node A senses the channel
idle and sends an RTS to node B. Consequently, node C overhears the RTS,
which also contains the duration of the intended data exchange between A
and B (d), and defers its transmission for the time interval equal to d (i.e.,
sets its NAV to d). After waiting for SIFS, node B senses the channel idle and
responds with an CTS. After successfully exchanging the data, all participating
stations wait for a fixed interval equal to DIFS followed by a back-off interval
b , uniformly chosen within the interval [0, W]. In this scenario, node C chooses
smaller back-off value and accesses the channel, forcing node A to defer its
transmission. Typical parameter values for the MAC protocol depend on the
physical layer that IEEE 802.11 uses. Table I shows the parameters used when
the physical layer is using direct sequence spread spectrum (DSSS).

2.1 Misbehavior in the IEEE 802.11 MAC Protocol

The scenario provided in Figure 1 illustrated the the IEEE 802.11 DCF favors
the node that selects the smallest back-off value among a set of contending
nodes. This opens space for misbehavior of protocol participants if no detection
system is employed. More specifically, a malicious or selfish node may choose
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Table I. Parameters for DSSS

DIFS 50µs

SIFS 10µs

SlotTime 20µs

ACK 112bits+PHY header=203µs

RTS 160bits+PHY header=207µs

CTS 112bits+PHY header=203µs

DATA MAC header (30b)+DATA(0-2312b)+FCS(4b)

Timeouts 300-350µs

CWmin 32 time slots

CWmax 1024 time slots

not to comply to protocol rules by selecting small back-off intervals, thereby
gaining significant advantage in channel sharing over regularly behaving, hon-
est nodes. Due to the exponential increase of the contention window after each
unsuccessful transmission, nonmalicious nodes are forced to select their future
back-offs from larger intervals after every access failure. Therefore the chance
of their accessing the channel becomes even smaller. Apart from intentional
selection of small back-off values, a node can deviate from the MAC protocol
in other ways as well. He can choose a smaller size of contention window or
he may wait for shorter interval than Distributed Interframe Space (DIFS),
or reserve the channel for larger interval than the maximum allowed network
allocation vector (NAV) duration. In this work, we will adhere to protocol de-
viations that occur due to manipulation of the back-off value.

The nodes that are instructed by the protocol to defer transmission are able
to overhear transmissions from nodes whose transmission range they reside
in. Therefore, silenced nodes can observe the behavior of transmitting nodes.
The question that arises is whether there exists a way to take advantage of this
observation capability and use it to identify potential misbehavior instances.
If observations indicate a misbehavior event, the observer nodes should no-
tify the rest of the network about this situation or launch a response action in
order to isolate the misbehaving nodes. Detecting misbehavior is not straight-
forward even in the simplest case, namely that of unobstructed observations.
The difficulty stems primarily from the nondeterministic nature of the access
protocol that does not lead to a straightforward way of distinguishing between
a legitimate sender, that happens to select small back-offs, and a misbehav-
ing node that maliciously selects small back-offs. The open wireless medium
and the different perceived channel conditions at different locations add to the
difficulty of the problem. Additional challenges arise in the presence of inter-
ference due to ongoing concurrent transmissions.

Figure 2 depicts a scenario where node A or B is malicious. At this stage,
we assume that A is the only misbehaving node and that no other node in its
vicinity transmits. We defer discussion about the collusion between nodes A
and B for a subsequent section. We assume that nodes have clocks that are
synchronized through the use of GPS devices. Additional issues arising from
errors in clock synchronization will be investigated elsewhere. Node A accesses
the channel by using a randomly selected back-off value within its contention
window. When the back-off counter decreases to zero, A sends an RTS to B,

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 19, Pub. date: July 2008.



19: 8 · S. Radosavac et. al.

Fig. 2. Observer nodes and effect of interference due to concurrent transmissions.

which replies with a CTS. Node A’s RTS message silences nodes 1 to 7, which
are in A’s transmission radius. Similarly, node B’s CTS silences nodes 4 to
10. Following the RTS-CTS handshake, A sends a data segment to B. After
the transmission is over, A attempts to access the channel anew by selecting
a back-off value again and the procedure repeats. Nodes 1-10 can hear the
transmissions of nodes A or B, or of both, depending on whose transmission
radius they reside in. Consider the i-th transmission of node A. A node in its
transmission range finds time point ti of RTS packet reception from

ti = Ti−1 + TDIFS + b i, i > 1, (1)

where Ti−1 denotes the end time point of reception of the previous data seg-
ment and b i is the random back-off value. Thus, the back-off values can be
easily derived. Note that the back-off value before transmission of the first
data segment cannot be found since there does not exist any previous refer-
ence point to compare it to. A node within transmission range of B can also
compute the back-off used by A by using as a reference the time point of recep-
tion of the overheard ACK from node B for the previous data segment. Then,
a node can measure time point t′i of CTS packet reception and compute the
back-off of node A by using

t′i = TACK,i−1
+ TDIFS + b i + TRTS + TSIFS, i > 1. (2)

Similarly with the RTS, the first back-off value cannot be found. Clearly, the
entire sequence of back-offs of node A is observable in this fashion. It should
also be noted that the identity of the node who uses those back-offs (which
could be potentially a misbehaving one) is revealed in the corresponding fields
of RTS or CTS messages.

We now proceed to describe two scenarios in which observations of nodes 1-3
and 8-9 are hindered by interference and hence correctness of observations is
influenced.

(1) Interference due to concurrent transmissions. Assume that node C has ob-
tained access to the channel and therefore node 2 is silenced. Node C is
in the process of transmitting data packets to node D. If observer node 2
is within transmission range of C, C’s transmission is overheard by node
2. Clearly, the ongoing transmission of C is experienced as interference
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at node 2 and obstructs node 2’s observations. In case of significant in-
terference level, node 2 may not be able to obtain the timing of received
RTS of node A and find the back-off value. Additional ongoing trans-
missions increase the perceived interference level. Evidently, obstructed
measurements due to interference create additional problems in detecting
misbehavior, as will be seen in the sequel. The extent to which observa-
tions of node 2 are influenced by interference depends on the relative prox-
imity of 2 to node A and to the interfering nodes, since the received signal
strength of the RTS packet and the interference is a function of signal
strength decay with distance.

(2) Interference due to simultaneous channel access. Node 2 that is silenced
by A’s RTS observes the sequence of back-offs of node A. If node 2 is in
the interference range of node C and C is out of the interference range
of A, C may attempt to access the channel at the same time. If the RTS
packets from nodes A and C overlap in time when received at node 2, node
2 receives a garbled packet and cannot distinguish neither the transmitter
identity nor the packet reception time.

Interference from concurrent data transmissions and simultaneous channel
access also affects measurements of nodes within the transmission range of
node B. Both types of impairments lead to difficulties in misbehavior detection
because they cause corruption of measurements. The probability of the sec-
ond type of impairment is admittedly much lower than that of the first type,
since it requires that nodes A and C access the channel almost at the same
time. Although this problem is different from the first one, we will elaborate
on obstruction of observations owing only to the first scenario.

A comment about the effect of misbehavior in a network-wide scale is in
place here. Each node within transmission range of a malicious node increases
its contention window exponentially after each unsuccessful transmission at-
tempt. The same holds for nodes which are located out of the transmitter’s
range but are able to transmit to nodes that are silenced by the transmitter (in
our case, nodes C and E). They may constantly attempt to communicate with
silenced nodes and consequently increase their contention windows. In that
respect, the effect of a malicious node spreads in an area much larger than
their transmission range and may affect channel access of nodes throughout
that area.

Another arising issue is the notification of the rest of the network about the
misbehavior. Although all nodes within transmission range of nodes A and
B above can deduce potential misbehavior, the nature of IEEE 802.11 MAC
protocol prohibits them from obtaining access to the channel and transmit-
ting notification information. In a subsequent section, we present a practical
method to achieve this goal.

3. MIN-MAX ROBUST MISBEHAVIOR DETECTION

In this section we present our approach for misbehavior detection when obser-
vations are not obstructed by interference. In Section 4, we analyze the sce-
nario in the presence of interference due to ongoing concurrent transmissions.
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3.1 Problem Motivation and Sequential Detection

We focus on monitoring the behavior of node A for the single-hop communica-
tion with node B in Figure 2. Our work assumes a stationary network where
the node relative positions do not change with time. We assume that any node
within the transmission range of A or B observes the same sequence of mea-
surements of back-off values used by A. Since the sequence of observations is
the same, the procedure that will be described in the sequel can take place in
any of these observer nodes. Since the back-off measurements are enhanced
by an additional sample each time A attempts to access the channel, an online
sequential scheme is suitable for the nature of the problem. The basis of such a
scheme is a sequential detection test that is implemented at an observer node.
The objective of the detection test is to derive a decision as to whether or not a
misbehavior occurs as fast as possible, namely with the least possible number
of observation samples. Since the observation samples are random variables,
the number of required samples for taking a decision is a random variable
as well.

A sequential detection test is therefore a procedure which with every new
information that arrives asks the question whether it should stop receiving
more samples or continue sampling. If the answer to the first question is to
stop (because sufficient information has been accumulated) then it proceeds
to the phase of making a decision on the nature of the data. It is therefore
clear that there are two quantities involved: a stopping time N which is a ran-
dom variable taking positive integer values and denoting the time we decide
to stop getting more data, and a decision rule dN which at the time of stopping
N decides between the two hypotheses H0, H1,where H0 denotes legitimate be-
havior and H1 denotes selfish behavior, and therefore assumes the values 0,1.
For simplicity let us denote with D the combination D = (N, dN) of the stopping
time N and the decision rule dN.

The probability of false alarm and the probability of missed detection con-
stitute inherent tradeoffs in a detection scheme. Clearly we can obtain small
values for both of these two decision error probabilities by accumulating more
information, that is, at the expense of larger detection delay. A logical com-
promise would therefore be to prescribe some maximal allowable values for
the two error probabilities, and attempt to minimize the expected detection
delay. Expressing this problem under a more formal setting, we are interested
in finding a sequential test D = (N, dN) that solves the following constraint
optimization problem

inf
N,dN

E1[N], under the constraints P0[dN = 1] ≤ α; P1[dN = 0] ≤ β; (3)

where Pi, Ei denote probability and expectation under hypothesis Hi, i = 0, 1,
and 0 < α, β < 1 are the prescribed values for the probability of false alarm
and miss respectively.

This interesting mathematical setup was first proposed by Wald [1947]
where he also introduced the Sequential Probability Ratio Test (SPRT)
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for its solution. The SPRT test is defined in terms of the log-likelihood
ratio Sn

Sn = ln
f1(x1, . . . , xn)

f0(x1, . . . , xn)
, (4)

of the two joint probability density functions fi(x1, . . . , xn) of the data
{x1, . . . , xn} under hypothesis Hi, i = 0, 1. The corresponding stopping time
N and decision rule dN are then given by

N = inf
n

{n : Sn /∈ [A , B]} (5)

dN =

{

1 if SN ≥ B

0 if SN ≤ A ,
(6)

where A < 0 < B thresholds selected so as SPRT satisfies the two decision
error probability constraints with equality. We can see that the SPRT test
continues sampling as long as the log-likelihood ratio takes values within the
interval (A , B) and stops taking more samples the first time it exceeds it. Once
stopped, the decision function dN decides in favor of hypothesis H1 when SN

exceeds the largest threshold and in favor of H0 when SN is below the smallest
threshold. If in particular the data are independent and identically distributed
(IID) under both hypotheses then the log-likelihood ratio Sn takes the following
simple form

Sn =

n
∑

k=1

ln
f1(xk)

f0(xk)
= Sn−1 + ln

f1(xn)

f0(xn)
, S0 = 0. (7)

Here fi(x) is the common probability density function (pdf) of the samples
under hypothesis Hi, i = 0, 1. Notice that the recurrent relation in the right-
hand side of Equation (7) allows for an efficient computation of the statistics
Sn which requires only constant number of operations per time step and fi-
nite memory (we only need to store Sn as opposed to the whole sequence
{xn, . . . , x1}).

Optimality of SPRT in the sense described in Equation (3) is assured only

when the data are IID under both hypotheses [Wald and Wolfowitz 1948]. For
other data models there exists a very rich literature referring to asymptotic op-
timality results (see for example [Dragalin et al. 1999]). Concluding, we should
also mention that the actual optimality of SPRT is significantly stronger than
the one mentioned in Equation (3). The SPRT not only minimizes the aver-
age delay under H1 but also simultaneously minimizes the alternative aver-
age delay E0[N]. This double optimality property is rather remarkable and not
encountered in any other detection scheme.

It is clear from the previous discussion that our intention is to follow a se-
quential approach for the detection of attacks. Notice, however, that in order
to be able to use the SPRT test it is necessary to specify both probability den-
sity functions fi(x), i = 0, 1 under the two hypotheses. Although the pdf f0(x)
of a legitimate node is known, this is not the case for an attacker. Further-
more, specifying a candidate density f1(x) for an attacker without some proper
analysis may result in serious performance degradation if the attacker’s strat-
egy diverges from our selection.
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In order to be able to propose a specific detection rule we need to clarify and
mathematically formulate the notion of an “attack.” We should however place
our main emphasis to attacks that incur large gains for the attacker (result
in higher chances of channel access). An attack will then have devastating
effects for the network, in the sense that it would deny channel access to the
other nodes and would lead to unfair sharing of the channel. Besides, if we
assume that the detection of an attack is followed by communication of the
attack event further in the network so as to launch a network response, it
would be rather inefficient for the algorithm to consider less significant (and
potentially more frequent) attacks and initiate responses for them. Instead,
it is meaningful for the detection system to focus on encountering the most
significant attacks and at the same time not to consume resources of any kind
(processor power, energy, time, or bandwidth) for dealing with attacks whose
effect on performance is rather marginal.

3.2 Min-Max Robust Detection Approach: Definition of Uncertainty Class

Previously, we stressed the sequential nature of our approach and the implicit
need to consider most significant attacks. The approach should also cope with
the encountered (statistically) uncertain operational environment of a wireless
network, namely the random nature of protocols and the unpredictable misbe-
havior or attack instances. Hence, it is desirable to rely on robust detection
rules that would perform well regardless of uncertain conditions. In this work,
we adopt the min-max robust detection approach where the goal is to optimize
performance for the worst-case instance of uncertainty. More specifically, the
goal is to identify the least favorable operating point of a system in the pres-
ence of uncertainty and subsequently find the strategy the optimizes system
performance when operating in that point. In our case, the least favorable
operating point corresponds to the worst-case instance of an attack and the op-
timal strategy amounts to the optimal detection rule. System performance is
measured in terms of number of required observation samples needed to derive
a decision.

A basic notion in min-max approaches is that of a saddle point. A strat-
egy (detection rule) D⋆ = (N⋆, d⋆

N) and an operating point (attack) f ⋆
1 in the

uncertainty class form a saddle point if:

(1) For the attack f ⋆
1 , any detection rule D other than D⋆ has worse perfor-

mance. Namely D⋆ is the optimal detection rule for attack f ⋆
1 in terms of

minimum (average) number of required observations.

(2) For the detection rule D⋆, any attack f1 from the uncertainty class, other
than f ⋆

1 gives better performance. Namely, detection rule D⋆ has its worst
performance for attack f ⋆

1 .

Implicit in the min-max approach is the assumption that the attacker has
full knowledge of the employed detection rule. Thus, it can create a misbehav-
ior strategy that maximizes the number of required samples for misbehavior
detection delaying the detection as much as possible. Therefore, our approach
refers to the case of an intelligent attacker that can adapt its misbehavior
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policy so as to avoid detection. One issue that needs to be clarified is the struc-
ture of this attack strategy. Subsequently, by deriving the detection rule and
the performance for that case, we can obtain an (attainable) upper bound on
performance over all possible attacks.

According to the IEEE 802.11 MAC standard, the back-off for each legit-
imate node is selected from a set of values in a contention window interval
based on uniform distribution. The length of contention window is 2iW for the
ith retransmission attempt, where W is the minimum contention window. In
general, some back-off values will be selected uniformly from [0, W] and others
will be selected uniformly from intervals [0, 2iW], for i = 1, . . . , Imax where
Imax is the maximum number of retransmission attempts. Without loss of
generality, we can scale down a back-off value that is selected uniformly in
[0, 2iW] by a factor of 2i, so that all back-offs can be considered to be uniformly
selected from [0, W]. This scaling property emerges from the linear cumula-
tive distribution function of the uniform distribution. An attack strategy is
mapped to a probability density function based on which the attacker selects
the back-off value. Although the possible back-off values are discrete, for math-
ematical simplicity, we consider continuous distributions to represent attacks.
The analysis for the discrete value case is very similar and is therefore omit-
ted. We consider continuously back-logged nodes that always have packets to
send. Thus, the gain of the attacker is signified by the percentage of time in
which it obtains access to the medium. This in turn depends directly on the rel-
ative values of back-offs used by the attacker and by the legitimate nodes. In
particular, the attacker competes with the node that has selected the smallest
back-off value out of all nodes.

Let us first compute the probability P1 of the attacker to access the chan-
nel as a function of the pdfs f1 and f0. Following the IEEE 802.11 protocol,
the back-off counter of any node freezes during the transmissions and reacti-
vates during free periods. Therefore let us observe the back-off times during
a fixed period T that does not include transmission intervals. Consider first
the case of one misbehaving and one legitimate node and assume that within
the time period T, we observe X1, . . . , X N, N samples of the attacker’s back-
off and Y1, . . . , YM, M samples of the legitimate node’s back-offs. It is then
clear that the attacker’s percentage of accessing the channel during the period
T is N/(N + M). In order to obtain the desired probability we simply need to
compute the limit of this ratio as T → ∞. Notice that

X1 + · · · + X N ≤ T < X1 + · · · + X N+1

Y1 + · · · + YM ≤ T < Y1 + · · · + YM+1,

which yields

N
X1+···+X N

N
N+1

N+1
X1+···+X N+1

+ M
M+1

M+1
Y1+···+YM+1

≥

N
T

N
T

+ M
T

≥

N
N+1

N+1
X1+···+X N+1

N
X1+···+X N

+ M
Y1+···+YM

. (8)
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Letting T → ∞ results in N, M → ∞ and from the previous double inequality,
by applying the Law of Large Numbers, we conclude that

P1 = lim
N,M→∞

N

N + M
=

1
E1[X ]

1
E1[X ]

+ 1
E0[Y ]

. (9)

Using exactly similar reasoning the probability P1, for the case of one misbe-
having node against n legitimate ones, takes the form

P1 =

1
E1[X ]

1
E1[X ]

+ n
E0[Y ]

=
1

1 + nE1[X ]
E0[Y ]

=
1

1 + n2E1[X ]
W

, (10)

where in the last equality we have used the fact that the average back-off of a
legitimate node is W/2 (because f0 is uniform in [0, W]).

If the attacker were legitimate then E1[X ] = E0[Y ] and his probability of
accessing the channel, from Equation (10), would have been 1/(n + 1). It is
therefore clear that whenever

E1[X ] = ǫE0[Y ], with ǫ ∈ (0, 1) (11)

the attacker enjoys a gain as compared to any legitimate node since then

P1 = η
1

n + 1
>

1

n + 1
, where η =

1 + n

1 + ǫn
∈ (1, n + 1). (12)

In other words his probability of accessing the channel is greater than the
corresponding probability of any legitimate node by a factor η > 1.

Using the simple modeling introduced in the previous paragraph we are now
able to quantify the notion of an “attack.” Let η be a quantity that satisfies
1 < η < n + 1 and consider the class Fη of all pdf ’s that induce a probability P1

of accessing the channel that is no less than η/(n + 1). Using (11) and (12) the
class Fη can be explicitly defined as

Fη =

{

f1(x) :

∫ W

0

xf1(x) dx ≤
1 −

η

n+1

n η

n+1

W

2

}

, 1 < η < n + 1. (13)

This class includes all possible attacks for which the incurred relative gain ex-
ceeds the legitimate one by (η−1)×100%. The class Fη is the uncertainty class
of the robust approach and η is a tunable parameter. Notice from Equation (12)
that since P1 is a probability the gain factor η must not exceed n + 1 in order
for the previous inequality to produce a nonempty class Fη.

By defining the class Fη, we imply that the detection scheme should focus
on attacks with larger impact to system performance and not on small-scale or
short-term attacks. We define the severity of the attack by changing the gain
factor η. Values of η larger but close to 1 are equivalent to low-impact attacks
whereas values significantly larger than 1 are equivalent to DoS attacks.

3.3 Min-Max Robust Detection Approach: Derivation of the Worst-Case Attack

Hypothesis H0 concerns legitimate operation and thus the corresponding pdf
f0(x), as was mentioned before, is the uniform one. Hypothesis H1 corresponds
to misbehavior with unknown pdf f1(x) ∈ Fη.
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The objective of a detection rule is to minimize the number of the required
observation samples N so as to derive a decision regarding the existence or
not of misbehavior. The performance of a detection scheme is quantified by the
average number of samples E1[N] needed until a decision is reached, where
the average is taken with respect to the distribution f1(x) employed by the
attacker. This expectation is clearly a function of the adopted detection rule D

and the pdf f1(x), that is,

E1[N] = φ(D, f1). (14)

Let Tα,β denote the class of all sequential tests for which the false alarm
and missed detection probabilities do not exceed some specified levels α and β

respectively. Consider also the class Fη of densities f1(x) as in Equation (13)
for some prescribed gain factor η > 1. In the context of the min-max robust
detection framework, the goal is to optimize performance in the presence of
worst-case attack, that is, solve the following min-max problem

inf
D∈Tα,β

sup
f1∈Fη

φ(D, f1). (15)

Solving a min-max problem is usually complicated, unless one can obtain a
saddle point solution.

Definition 1. A pair (D⋆, f ⋆
1 ) is called a saddle point of the function φ if

φ(D⋆, f1) ≤ φ(D⋆, f ⋆
1 ) ≤ φ(D, f ⋆

1 ); ∀D ∈ Tα,β , ∀ f1 ∈ Fη. (16)

As we can see a saddle point (D⋆, f ⋆
1 ) of φ consists of a detection scheme D⋆ and

an attack distribution f ⋆
1 . Equation (16) is a formal statement of properties

1 and 2 that were mentioned in Section 3.2. The property that is important
here in connection to the min-max problem in Equation (15) is the fact that
the saddle point pair (D⋆, f ⋆

1 ) also solves the min-max problem, since one can
prove that [Bertsekas 2003]

inf
D∈Tα,β

sup
f1∈Fη

φ(D, f1) ≥ sup
f1∈Fη

φ(D⋆, f1) = φ(D⋆, f ⋆
1 ). (17)

Saddle point solutions are much easier to obtain than their min-max counter-
parts. Unfortunately saddle point solutions do not always exist. In view of
Equation (17), instead of solving Equation (15) it is sufficient to find the saddle
point that solves Equation (16). The saddle point pair (D⋆, f ⋆

1 ) is specified in
the next theorem.

THEOREM 1. Let the gain factor η ∈ (1, n + 1) and the maximal allowable

decision error probabilities α, β be given. Then the pair (D⋆, f ⋆
1 ) which asymp-

totically (for small values of α, β) solves the saddle point problem defined in

Equation (16) is the following

f ⋆
1 (x) =

µ

W

eµ(1− x
W

)

eµ − 1
, (18)
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where µ > 0 is the solution to the following equation in µ

2

(

1

µ
−

1

eµ − 1

)

=
1 −

η

n+1

n η

n+1

. (19)

The corresponding decision rule D⋆ = (N⋆, dN⋆ ) is the SPRT test that discrimi-

nates between f ⋆
1 (x) and f0(x)(the uniform density) and is given by

S⋆
n = S⋆

n−1 + ln
f ⋆
1 (xn)

f0(xn)

= S⋆
n−1 + µ

(

1 −
xn

W

)

+ ln

(

µ

eµ − 1

)

; S⋆
0 = 0. (20)

N⋆ = inf
n

{n : S⋆
n /∈ [A , B]} (21)

dN⋆ =

{

1 if S⋆
N ≥ B

0 if S⋆
N ≤ A .

(22)

PROOF. We first note that Equation (19) is equivalent to
∫ W

0

xf ⋆
1 (x) dx =

1 −
η

n+1

n η

n+1

W

2
(23)

which assures that f ⋆
1 (x) defined in Equation (18) is a member of the uncer-

tainty class Fη. Let us now demonstrate that for any gain factor η ∈ (1, n + 1)
there always exists µ ∈ (0,∞) so that Equation (19) is true. Notice that for
η ∈ (1, n + 1) we have that 1/(n + 1) < η/(n + 1) < 1. If we now call 8(µ) =

2
(

1
µ

− 1
eµ−1

)

then 8(µ) is a continuous function of µ. Furthermore we observe

that 8(0) = 1 > η/(n+ 1); while one can show that limµ→∞ 8(µ) = 0 < η/(n+ 1).
Since we can find two values of µ one yielding a smaller and another a larger
value than η/(n + 1), due to continuity, we can argue that there exists µ > 0
such that the equality in Equation (19) is assured. In fact this µ is unique
since it is also possible to show that 8(µ) is strictly decreasing.

Let us now proceed to the saddle point problem in Equation (16). We observe
that the right hand side inequality suggests that D⋆ must be the optimum de-
tection structure for f ⋆

1 (x). Indeed this is how D⋆ is defined, since it is selected
as the SPRT test that optimally discriminates between f ⋆

1 (x) and the uniform
f0(x).

In order to show that the left hand side is also true, we adopt an asymp-
totic approach. By considering that the two maximal error probabilities α, β

are small, it is possible to use efficient approximations for the two thresholds
A , B and the average detection delay function φ(D⋆, f1). Specifically from Wald
[1947] we have that A , B can be approximated as

A = ln
β

1 − α
, B = ln

1 − β

α
, (24)

and the expected delay by the expression

φ(D⋆, f1) =
Aβ + B(1 − β)

∫ W

0 ln
f ⋆
1 (x)

f0(x) f1(x) dx
. (25)
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In fact these formulas become exact if the SPRT statistics S⋆
n hits exactly (does

not overshoot) the two thresholds A , B at the time of stopping. For example,
this happens in continuous-time and continuous-path processes.

Since the numerator in the previous formula is constant, the left hand side
inequality in Equation (16) is true if the denominator in Equation (25) is min-
imized for f1(x) = f ⋆

1 (x). Because we consider f1(x) ∈ Fη, inequality Equa-
tion (13) applies, therefore we can write

∫ W

0

ln
f ⋆
1 (x)

f0(x)
f1(x) dx = µ

∫ W

0

(

1 −
x

W

)

f1(x) dx + ln

(

µ

eµ − 1

)

≥ µ

(

1 −
1 + n − η

2nη

)

+ ln

(

µ

eµ − 1

)

= µ

∫ W

0

(

1 −
x

W

)

f ⋆
1 (x) dx + ln

(

µ

eµ − 1

)

=

∫ W

0

ln
f ⋆
1 (x)

f0(x)
f ⋆
1 (x) dx, (26)

where for the first inequality we used Equation (13) and for the last two equal-
ities we used Equations (18) and (23). This concludes the proof.

Regarding Theorem 1 we would like to point out that our selection of f ⋆
1 (x)

was in fact the outcome of a rigorous analysis. We basically used the additional
property enjoyed by the saddle point solution to solve not only the min-max
problem in (15) but also its max-min version

sup
f1∈Fη

inf
D∈Tα,β

φ(D, f1). (27)

It turns out that this latter problem can be solved directly (using standard
variational techniques), thus providing us with a suitable candidate pdf f ⋆

1 (x)
for the saddle point problem in Equation (17). Of course we then need to
go through the preceding proof in order to establish that f ⋆

1 (x) is indeed the
correct pdf.

As was mentioned above, the min-max robust detection approach captures
the case of an intelligent adaptive attacker. The SPRT algorithm is part of
the intrusion detection system module that resides at an observer node. With
the method outlined in Section 2, an observer node monitors the behavior of
another node with the objective to derive a decision as fast as possible. In other
words the observer (and hence the system) attempts to minimize the number
of required samples so as to improve its payoff in terms of improved chances
for channel access. On the other hand, an intelligent attacker that knows the
detection algorithm attempts to delay this decision as much as possible so as to
increase his own benefit in terms of chances for channel access. The attacker
aims at a strategy that causes performance degradation for other nodes by
remaining undetected.
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4. FURTHER ISSUES

4.1 Colluding Nodes

The problem treatment above assumed the existence of a single attacker and
did not include the scenario of colluding nodes. In the communication scenario
of Figure 2, nodes A and B may collude if node B receives the RTS messages
from attacker A and it intentionally delays the CTS message by some amount
of time. This scenario exploits the nature of exponential back-off by choos-
ing small back-off values and additionally breaks the protocol rules by waiting
longer than SIFS between RTS and CTS signals. In this case, the observer
nodes within transmission range of B perceive erroneous, higher back-off val-
ues from node A. As a result, they cannot detect potential misbehavior of A.
They also cannot determine the maliciousness of receiver B. However, the re-
maining observes that can overhear both A and B can detect misbehavior with
higher probability since it is not allowed to wait for periods that are longer
than SIFS between RTS and CTS control signals.

In this fashion, a colluding node B decreases the number of observer nodes
that can provide correct measurements. Misbehavior of node A can thus be
observed only by nodes within transmission range of A. On the other hand, only
observers residing within range of both A and B can monitor both A and B and
therefore detect collusion of A and B by using a detection scheme similar to the
one outlined in previous sections. The detection method can have two separate
tests: one acting on the observed back-offs of A and one for measuring timing
delays from the receiver in issuing CTS messages. The latter test should be a
threshold rule, since normally the delay before issuing a CTS is deterministic.
The decision about collusion is taken after combining results from both tests.
However, note that in the event of collusion the mechanism of the previous
subsection cannot help in network notification.

4.2 Inaccurate Measurements Due to Interference

The underlying assumption of our approach was that the back-off value ob-
servations were collected in the absence of interference from ongoing concur-
rent transmissions. However, observations are affected by interference due to
transmission of nodes that are located out of range of the attacker, but within
range of an observer. For example, in Figure 2, transmission of node C ob-
structs observations of 2. The presence of interference may corrupt some mea-
surements, and thus it is anticipated to increase the number of observation
samples needed to derive a decision.

Since interference is caused due to ongoing data transmissions that are of
much longer duration than that of an observed RTS or CTS packet, we can as-
sume that the level of interference due to one such transmission remains con-
stant for the duration of an observed RTS or CTS packet. Recall that RTS and
CTS packets are sent with the lowest modulation level and coding rate. To en-
able analytical tractability, we consider an uncoded transmission and assume
the use of BPSK (which is the lowest modulation level in 802.11a) in RTS/CTS
transmission. The interference conditions during an RTS or CTS observed
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packet are captured by the signal-to-interference and noise ratio (SINR) γ . For
fixed transmit power levels and certain variance of Gaussian noise at the re-
ceiver, this ratio depends on the relative proximity of the observer node to the
transmitter of RTS or CTS message as well as to the interferers. The packet
start point can be distinguished if the packet is received correctly. The bit error
rate (BER) in the received RTS or CTS packet is given by BER = Q(

√

2γ ) for
BPSK modulation, where Q(·) denotes the Q-function. The probability of RTS
or CTS packet error is the RTS-CTS packet error rate (PER) as

PER = 1 − (1 − BER)8m
, (28)

where m is the number of bytes of the RTS and CTS packets and is 20 and 14
respectively. Since PER gives the percentage of observed packets received in
error, the number of required observations to derive a decision is PER% higher
than the corresponding number without interference. This PER value holds
for uncoded transmission and thus it is an upper bound on PER when a coding
scheme is used.

5. NUMERICAL EXAMPLES

The goal of our examples is to assess the performance of our approach and
identify the relative impact of different system parameters on it. The perfor-
mance is measured in terms of the average required number of observation
samples, E[N] in order to derive a decision, which essentially denotes the de-
lay in detecting a misbehavior instance. In addition to that, we investigate
the influence of the number of regular participants on the form of the least
favorable distribution f ∗

1 (x). In particular, we evaluate the performance with
respect to the following parameters:

—Specified values of P fa and Pm (or probability of detection, Pd = 1 − Pm).

—Perceived interference conditions, reflected in SINR γ .

—The tunable system parameter η.

Parameter η defines the class of attacks of interest since it specifies the
incurred relative gain of the attacker in terms of the probability of channel
access. In that sense, η can be interpreted as a sensitivity parameter of the
detection scheme with respect to attacks, which is determined according to the
IDS requirements. IEEE 802.11 MAC is implemented and MATLAB is used to
evaluate the performance of our scheme, taking into account the sequence of
observed back-offs.

In Figure 3 we present the form of the least favorable attack pdf f ⋆
1 (x) as a

function of the gain factor η and the number of legitimate nodes n.
Figure 3a depicts the form of the density for n = 2 legitimate nodes compet-

ing with one attacker for values of the gain factor η = 1, 1.5, 2, 2.5. We observe
that as η → 3 (the maximum possible gain for n = 2) the density tends to a
Dirac delta function at x = 0 which corresponds to DoS attack, representing
the extreme case of misbehavior where the attacker consumes all the available
resources.
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Fig. 3. Form of least favorable pdf f ⋆
1 (x): (a) number of legitimate nodes n = 2, 1 malicious node

and gain factor η = 1, 1.5, 2, 2.5; (b) gain factor η = 1.5 and number of legitimate nodes n =
1, 2, 5,∞; and (c) absolute gain η

n+1 = 1
2 and number of legitimate nodes n = 1, 2, 5, 10,20.

In Figure 3b we fix the gain factor to η = 1.5 (the attacker enjoys 50% more
access to the channel than a legitimate node) and plot f ⋆

1 (x) for number of
legitimate nodes n = 1, 2, 5,∞. We observe that as the number n of legitimate
nodes increases, the attacker converges towards a less aggressive strategy. The
interesting point is that the least favorable pdf converges very quickly to a
limiting function as the number of legitimate nodes increases. This example
confirms that it is possible to detect an attacker even if there is a large number
of legitimate nodes present, since the attacker in order to maintain his relative
gain must use a pdf which differs from the nominal uniform.

Instead of fixing the attacker’s gain relatively to the gain of a legitimate
node, let us examine what happens when the attacker follows a more aggres-
sive policy and demands channel access for a constant percentage of time, re-
gardless of the number of existing nodes. To achieve this goal, the gain factor
η must be selected so that η 1

n+1 is a constant. Figure 3c depicts this specific

scenario for η

n+1
= 1

2
. In other words, the attacker has access to the channel

50% of the time, regardless of the number of competing nodes. We can see that
when n = 1 the attacker behaves legitimately, but as the number n of legiti-
mate nodes increases, the attacker quickly resorts to the strategies that are
of DoS type in order to maintain this fixed access percentage. This is evident
from the fact that the least favorable pdf tends to accumulate all its probability
mass at small back-off values.
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Fig. 4. Average Detection Delay E[N] as a function of (a) gain factor η; and (b) absolute gain
η

n+1 for α = β = 0.01.

In order to obtain some intuition from our results, we consider the case of
one attacker competing with n ≥ 1 legitimate nodes. In Figure 4a we depict
the average required number of observation samples as a function of the para-
meter η. We fix the probability of detection and the probability of false alarm
to 0.99 and 0.01 respectively and measure the Average Detection Delay E[N]
for 1 < η < n + 1. The graph shows that low values of η prolong the detection
procedure, since in that case the attacker does not deviate significantly from
the protocol. On the other hand, a large η signifies a class of increasingly ag-
gressive attacks for which the detection is achieved with very small delay. Due
to the fact that the value of η is limited with the number of legitimate nodes, we
cannot compare the performance of the system for different values of n unless
the absolute gain η

n+1
is used. In Figure 4b we depict E[N] as a function of the

absolute gain. It can be seen that detection becomes more efficient as the num-
ber of participating legitimate nodes increases. For example, for an absolute
gain of 0.6, the IDS will require 10 times less samples to detect misbehavior
for n = 5, than for the case of n = 1.

The results above provide useful insights about the response of the system
with respect to the attack. A more aggressive attack policy brings significant
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Fig. 5. Average detection delay for different values of SNR and n = 1, 3, 10.

benefits each time the attacker accesses the channel, but it allows limited
number of channel uses before it is detected. On the other hand, a milder
attack incurs lower benefit for each channel use but it enables the attacker
to access the channel more times before it is detected. If the policy of a fixed
gain is followed, the attacker’s behavior converges towards the DoS attack as n

increases. The solution to this problem from the attackers point of view is
offered in Section 6.

We now proceed to quantify the impact of interference on performance.
Depending on interference conditions, a percentage of the back-off samples
collected by the observer nodes are corrupted. In that case, the RTS or CTS
PER indicates the amount of additional measurements required for reaching a
decision, depending on whether the observer node resides within range of the
attacker or the receiver of the attack. Figure 5 shows the average required
number of samples needed for detection of an optimal attacker for different
intensity of interference, with respect to the absolute gain η 1

n+1 . System per-
formance is evaluated for n = 1, 3 and 10. For large values of Pd it can be
observed that intense interference conditions (reflected in the SINR values of
3-4 dB) can increase the number of required samples by 85%−120% compared
to the case of no interference. It is also worth mentioning that as the aggres-
siveness of an attacker increases, the number of samples needed for detec-
tion significantly decreases, regardless of the SINR values. More specifically,
for SINR> 8dB, the performance is not affected significantly by interference.
Hence, interference can be viewed as providing additional benefit to the at-
tacker in the sense that it prolongs detection. Due to different lengths of RTS
and CTS messages, the number of samples needed to detect misbehavior is
lower when CTS messages are used in measurements. For example, for SINR
values of 3-4 dB, α = β = 0.01, we observe an increase of 85 − 100% in the
number of required samples compared to that with no interference. Therefore,
when assigning observer roles to nodes, emphasis should be given to those
nodes that are located within range of the receiver. The amount of additional
measurements needed for detection expressed in the form of PER for different
values of SINR is presented in Figure 6.
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Fig. 6. PER[%] as a function of SINR for RTS and CTS messages.

Finally, we implement the worst-case attack pdf characterized by
Equation (18) in the network simulator Opnet. We take advantage of the ex-
perimental setup and perform evaluation as a tradeoff between the average
time to detection, Td, and the average time to false alarm, T f a, a quantity that
is more meaningful and intuitive in practice. It is important to emphasize
that the realistic false alarm rate used by actual intrusion detection systems
is much lower than α = 0.01 used in the theoretical analysis. We claim that
this false alarm rate leads to an accurate estimate of the false alarm rates
that need to be satisfied in actual anomaly detection systems [Cárdenas et al.
2006; Axelsson 1999]. Due to that fact we set β = 0.01 and vary α from 10−2

up to 10−10 (where α = 10−10 corresponds to one false alarm during the whole
simulation period). The back-off distribution of an optimal attacker was imple-
mented in the network simulator Opnet and tests were performed for various
levels of false alarms. The backlogged environment in Opnet was created by
employing a relatively high packet arrival rate per unit of time: the results
were collected for the exponential (0.01) packet arrival rate and the packet
size was 2048 bytes. The results for both legitimate and malicious behavior
were collected over a fixed period of 1.5min. We note that the simulations were
performed with nodes that followed the standard IEEE 802.11 access proto-
col (with exponential back-off). The system’s performance was evaluated for
three values of absolute gain: 0.5, 0.6 and 0.8 and the results are presented
in Figure 7. By observing the tradeoff curves in Figure 7 we conclude that
the system’s detection delay decreases significantly as the attacker’s absolute
gain increases. To illustrate this claim, we observe the best case system per-
formance, i.e., one false alarm over the whole simulation period of 1.5 min, and
note that the detection delay for the absolute gain of 80% is approximately 3.5
times shorter than in the case when the absolute gain is 50%. This again con-
firms the efficiency of our proposed detection system against most aggressive
worst-case optimal attacks. In order to illustrate the influence of the number of
legitimate competing nodes on the detection time, we compare the performance
of the detection system for the case when n = 2 and n = 5. In order to obtain
fair comparison, we use the same value of absolute gain, η

n+1
= 0.5. The results

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 19, Pub. date: July 2008.



19: 24 · S. Radosavac et. al.

Fig. 7. Tradeoff curves for η

n+1 = 0.5, 0.6, 0.8 and n = 2.

Fig. 8. Tradeoff curve for η

n+1 = 0.5 and n = 2, 5.

are presented in Figure 8. As expected, all nodes experience higher number
of collisions in the congested environment, resulting in delayed detection. It is
important to note that the traffic generation rate used in Figure 8 is lower than
the one used in Figure 7. By observing the curves for η

n+1
= 0.5 in both figures,

we note that the detection system experiences larger delay when lower traffic
rates are used, which is logical since all nodes access channel less frequently,
generating smaller number of back-off samples within the same time interval.

Finally, it is important to address the issue of overhead of the proposed de-
tection algorithm. The SPRT is highly efficient since no observation vectors
need to be stored. The only storage complexity is the one needed for the pdfs
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f ⋆
1 and f0, the thresholds “a” and “b” and the current statistic Sn. In addi-

tion to that, the SPRT algorithm is also time-efficient, since in order to com-
pute the log-likelihood we only need to compute the ratio of two functions ( f ⋆

1

and f0, which are very simple to evaluate) and add this value to the current
statistic Sn. Therefore, the overhead of the proposed algorithm is low and can
be obtained by adding the two previously mentioned values.

6. DISCUSSION

In this work, we presented a framework of study for the problem of MAC
misbehavior detection. Our approach encompasses the case of an intelligent
attacker that adapts its misbehavior strategy with the objective to remain un-
detected as long as possible. We cast the problem within a min-max robust
detection framework, characterize the worst-case misbehavior strategy show-
ing that the optimal detection rule is SPRT. Clearly, if the attacker is ignorant
of the detection mechanism, the number of required observations to detect it
under the same values of P fa and Pd is lower than the corresponding value for
the adaptive attacker. Our results can thus shed light in the characterization
of fundamental performance limits in terms of accuracy or detection delay for
misbehavior detection. They can also serve as benchmarks for performance
evaluation of other detection policies and can provide useful insights about the
effect of interference on performance. Finally, we provided an instance of a
case when cross-layer interaction offers a solution to the issue of notifying the
network about the misbehavior.

Our work constitutes the first step towards building a theoretical frame-
work for studying the structure of such misbehavior problems. The model can
be extended to include obstruction of observations due to simultaneous chan-
nel access attempts. We now mention some issues for further study. A first
issue concerns the exploitation of observations from several observers in or-
der to improve performance. This amounts to the scenario where observers
pass their measurements to a fusion center which then combines them ap-
propriately and derives a decision as to the occurrence or not of attack. Due
to different perceived channel conditions at different locations of observer
nodes, the amount of interference at their receivers differs. If observers ob-
tain the same sequence of measurements, different samples of the sequence
are corrupted due to interference. The task of the fusion center is then sim-
ply to combine the received sequences of measurements in a fashion very
similar to that of diversity combining. Given that there exists a certain cost
(e.g., consumed energy) in passing measurements to a fusion center, an in-
teresting issue pertains to the minimum number of observers that are neces-
sary to achieve a certain level of performance in terms of detection delay or
accuracy.

A far more challenging problem arises if each observer does not measure
back-offs accurately but it obtains a sequence of distorted values. This situ-
ation may arise in case of occasional loss of synchronization between nodes
or due to hardware (e.g., counter) malfunction. Another instance in which
observers may have distorted back-off sequences is the following. At the
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i > 1 transmission, node A selects a back-off b and starts decrementing his
counter. If the medium is sensed busy, the counter freezes (suppose for dura-
tion d) and restarts again when the medium is idle. When the counter reaches
zero, the RTS message is sent. In that case, the observers perceive a back-off
b̂ = b + d.

The results provided in Section 5 confirm the necessity of collaboration
among the attackers if a significant impact on the system is desired. Obviously,
the strategy of an intelligent attacker depends on the number of legitimate
nodes he competes with. As the number of legitimate nodes increases, the gain
of the attacker who is trying to follow the min-max approach decreases. In
the case of malicious nodes, whose main goal is to create disruptions in the
network, the goal can be achieved by increasing the number of colluding at-
tackers. However, this creates a serious efficiency issues since each level of
disruption carries certain costs for malicious nodes. Therefore, the necessary
parameters needed for estimating the efficiency of the attack can be described
as follows:

—What is the minimum number of nodes that need to be involved in each
attack in order to create major disruption in the MANET functionality?

—What are quantitative metrics and relationships between the number of at-
tack nodes and the magnitude of the disruption occurred?

In our approach, we have assumed continuously backlogged nodes and have
used channel access probability as a means of measuring the benefit of the at-
tacker and corresponding performance loss of legitimate nodes. Implicitly, we
assumed that fair sharing of the medium is reflected by this measure. How-
ever, fair sharing also involves the intention of a node to send a packet and
therefore it is affected by packet arrivals from higher layers and backlogs at
different nodes. This introduces the issue of throughput fairness and through-
put benefit. The attacker causes more damage to the system if it prevents
legitimate nodes from transmitting their payload.

The treatment of more than one attacker in the network is definitely worth
investigating. It would be interesting to model and compare the case of attack-
ers that act independently and that of attackers that cooperate. In the first
case, the objectives of attackers may be conflicting in the sense that each of
them attempts to maximize its own benefit. In the latter case, the optimal at-
tack strategy, if it exists, can aid in quantifying the benefits of cooperation and
its effects on performance degradation of legitimate nodes.

The addition of mobility is a very challenging perspective. Our work as-
sumes a stationary network where the node relative positions do not change
with time. In a network of mobile nodes, one would expect the detection per-
formance to deteriorate since potential attackers move in and out of range of
an observer node with an IDS system, hence the sequence of observations is
intermittent. In that case, interesting topics to consider would be the impact
of specific mobility patterns on the detection performance, and how to engi-
neer mobility patterns of defender nodes in order to alleviate the impact of
attacks. Another interesting problem is the extent to which information can be
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passed in the system from nodes that have received a interrupted sequence of
backoffs, such that the prior history of the attacker will be at the disposal of
other observers that will apply the detection algorithm. On the other hand, a
spatial dimension of the payoff of the attacker (besides the temporal one of
channel access) might need to be incorporated in the model in order to ac-
count for the spatial pattern of channel denial. Intuitively, the payoff of the at-
tacker is smaller if it misbehaves at different spatial locations in the network.
Nevertheless, these movements by the attacker might be necessary in order to
avoid detection.

Finally, it would be very interesting to extend our approach and obtain re-
sults in the context of more sophisticated MAC protocols such as 802.11e with
the special features regarding back-off control and differentiation in channel
access opportunities that are incorporated in its enhanced DCF (EDCF) oper-
ation mode.
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