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Abstract. In an error-free system with perfectly clean data,
the construction of a global view of the data consists of linking
– in relational terms, joining – two or more tables on their key
fields. Unfortunately, most of the time, these data are neither
carefully controlled for quality nor necessarily defined com-
monly across different data sources. As a result, the creation
of such a global data view resorts to approximate joins. In this
paper, an optimal solution is proposed for the matching or the
linking of database record pairs in the presence of inconsis-
tencies, errors or missing values in the data. Existing models
for record matching rely on decision rules that minimize the
probability of error, that is the probability that a sample (a
measurement vector) is assigned to the wrong class. In prac-
tice though, minimizing the probability of error is not the best
criterion to design a decision rule because the misclassifica-
tions of different samples may have different consequences. In
this paper we present a decision model that minimizes the cost
of making a decision. In particular: (a) we present a decision
rule: (b) we prove that this rule is optimal with respect to the
cost of a decision: and (c) we compute the probabilities of the
two types of errors (Type I and Type II) that incur when this
rule is applied. We also present a closed form decision model
for a certain class of record comparison pairs along with an
example, and results from comparing the proposed cost-based
model to the error-based model, for large record comparison
spaces.

Keywords: Record linkage – Data cleaning – Cost optimal
statistical model

1 Introduction

In today’s competitive business environment, corporations in
the private sector are being driven to focus on their customers
in order to maintain and expand their market share. This shift
is resulting in customer data and information about customers
being viewed as a corporate asset. In the public sector, the very
large expansion of the role of the government resulted in an un-
precedented increase in the demand for detailed information.

Only recently has the data analytic value of these administra-
tive records been fully realized. Of primary concern is that,
unlike a purposeful data collection effort, the coding of the
data is not carefully controlled for quality. Likewise, data ob-
jects are not necessarily defined commonly across databases
nor in the way data consumers would want. Two of the serious
concerns which arise in this context are: (a) how to identify
records across different data stores that refer to the same en-
tity; and (b) how to identify duplicate records within the same
data store.

If each record in a database or a file carried a unique,
universal and error-free identification code, the only problem
would be to find an optimal search sequence that would min-
imize the total number of record comparisons. In most cases,
encountered in practice, the identification code of the record
is neither unique nor error-free. In some of these cases, the
evidence presented by the identification codes, (i.e., primary
key, object id, etc.), may possibly point out that the records
correspond or that they do not correspond to the same entity.
However, in the large majority of practical problems, the ev-
idence may not clearly point to one or the other of these two
decisions. Thus, it becomes necessary to make a decision as
to whether or not a given pair of records must be treated as
though it corresponds to the same real world entity. This is
called the record matching or linking problem [13,1,8,18,16,
9,10].

In this paper, we consider record matching as a pattern
classification task. Classification is one of the primary tasks
of data mining [4]. In classification problems, the goal is to cor-
rectly assign cases (tests, measurements, observations, etc.) to
one of a finite number of classes. Most of the currently avail-
able algorithms for classification are designed to minimize
zero-one loss or error rate: the number of incorrect predictions
made or, equivalently, the probability of making an incorrect
prediction. This implicitly assumes that all errors are equally
costly, but in most applications, like in record matching, this
is rarely the case. For example, in database marketing the cost
of mailing to a non-respondent is very small, while the cost of
not mailing to someone who would respond is the entire profit
loss. In real-world applications, there are many different types
of cost involved [26] such as the cost of tests, the cost of the
teacher, etc. In this study we consider only the cost of misclas-
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sification error which is related to assigning different weights
to different misclassification errors. An extension of this work
to more general cost models is one of our future goals. In gen-
eral, misclassification costs may be described by an arbitrary
cost matrix C, with elements of the form cij , meaning the cost
of predicting that an example belongs to class i when in fact
it belongs to j. It must be emphasized that assembling a cost
matrix (populating its cells) is an application specific task and
it must be made either by a domain expert or if training data
is available, the costs maybe determined automatically. The
important thing to note here is that given a cost matrix our
decision model generates a space that minimizes the overall
cost of the record matching process.

Bayes decision theory is a fundamental statistical approach
to the problem of pattern classification. The Bayesian ap-
proach is based on the assumption that the decision problem is
posed in probabilistic terms, and that all of the relevant prob-
ability values are known. In this paper, we propose a constant
error cost Bayesian model which means that the cost of a cer-
tain type of error (the value in the cost matrix) may be constant
(the same value for all cases). In some cases, we are uncertain
about the actual costs. To account for this uncertainty, we can
use a probability distribution over a range of possible costs. To
keep the presentation simple, we do not consider probability
distributions over costs in this study.

The large volume of applications spanning the range of
cases from (a) an epidemiologist, who wishes to evaluate the
effect of a new cancer treatment by matching information from
a collection of medical case studies against a death registry
in order to obtain information about the cause and the date of
death, to (b) an economist, who wishes to evaluate energy pol-
icy decisions by matching a database containing fuel and com-
modity information for a set of companies against a database
containing the values and the types of goods produced by the
companies, signifies the tremendous impact and applicability
of the problem addressed in this paper.

The rest of this paper is organized as follows. Section 2
provides some background information, and the notation that
is used throughout this paper. Section 3 introduces the cost
optimal model, along with the thresholds of the three decision
areas, and the probabilities of errors. Section 4 provides a de-
tailed formulation of the model when the comparison vector
components are conditionally independent random variables.
An example is also given to illustrate how the model can be
applied. Section 5 provides some information about the ex-
perimental environment that we used in order to perform the
experiments and Sect. 6 presents the results from a sample of
the experiments that we run by using it. Finally, Sect. 7 pro-
vides concluding remarks and guidelines for future extensions
of this work.

2 Background

Record matching or linking is the process of identifying
records, in a data store, that refer to the same real world entity
or object. There are two types of record matching. The first
one is called exact or deterministic and it is primarily used
when there are unique identifiers for each record. The other
type of record matching is called approximate. In this paper,
we focus only on the second type of matching. Table 1 shows

Table 1. Duplicated records in a name/address database

Name Address
EAGLE LIFT & EQUIP INC 412 OAK 05
EAGLE LIFT & EQUIPMENT 412 OAK ST
EAGLE LIFT & EQUIP INC 412 OAK 05
EAGLE LIFT & EQUIPMENT 412 OAK STREET
RIVER EAGLE DISTRBG CO 2346 RUST
RIVER EAGLE DISTRIBUTING 2346 RUST AV
RIVER EAGLE DISTRBG CO 2346 RUST
RIVER EAGLE DISTRIBUTING 2346 RUST AVE
EAGLE RIDGE INSTITUTE 601 NE 63RD
EAGLE RIDGE BUSINESS OFFI 601 NE 63RD

pairs of records that have been identified as duplicates in a
customer database of a telecommunication company. The de-
cision, as to the matching status of a pair of records, is based
on the comparison of common characteristics between the cor-
responding pair of records. These common characteristics are
related to the similarities in the schema of the corresponding
records. For example, a customer table may have two different
schema representations in two databases of customer data. The
first table may store information from the service department
while the second one may store information from the billing
department. Despite the differences in the representation of
the two tables, we always expect that overlapping information
(i.e., name, address, sex, marital status, etc.) is present and this
information can be used for the identification of matches be-
tween records from different databases that refer to the same
customer.

The two principal steps in the record matching process are
the searching of potentially linkable pairs of records – search-
ing step – and the decision whether or not a given pair is cor-
rectly matched – matching step. The aim of the searching step
must be the reduction of the number of failures to bring link-
able records together for comparison. For the matching step,
the problem is how to enable the computer to decide whether
or not a pair of records corresponds to the same entity, when
one part of the identifying information agrees and another part
disagrees. In the remaining of this section we provide infor-
mation about the notation that we will use, we discuss existing
techniques which have been deployed for the record matching
process, and we also review decision models which have been
built for the matching step.

2.1 Notation

In the product space of two tables, a match M is a pair that
represents the same entity and a non-match U is a pair that
represents two different entities. Within a single database, a
duplicate is a record that represents the same entity as another
record in the same database. Common record identifiers such
as names, addresses and code numbers (SSN, object iden-
tifier), are the matching variables that are used to identify
matches. The vector, that keeps the values of all the attribute
comparisons for a pair of records (comparison pair) is called
comparison vector x. The set of all possible vectors, is called
comparison space X . A record matching rule is a decision
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rule that designates a comparison pair either as a link A1, a
possible link A2, or a non-link A3, based on the information
contained in the comparison vector. Possible links are those
pairs for which identifying information is not sufficient to de-
termine whether a pair is a match, or a non-match. Typically,
manual review is required in order to decide upon the match-
ing status of possible links. False matches (Type I errors) are
those non-matches that are erroneously designated as links by
a decision rule. False non-matches (Type II errors) are either
(a) matches designated as non-links by the decision rule, or (b)
matches that are not in the set of pairs to which the decision
rule is applied.

For an arbitrary comparison vector x ∈ X , we denote by
P (x ∈ X|M) or fM (x) the frequency of the occurrence or
the conditional probability of the pattern x among the com-
parison vectors which are matches. Similarly, we denote by
P (x ∈ X|U) or fU (x) the conditional probability of pattern x
among the comparison vectors which are non-matches. Note
that the agreement of the comparison vector x can be defined
as specifically as one wishes and this completely rests to the
selection of the components of the comparison vector. We de-
note by d the predicted class of a pair of records, and by r the
actual matching status of a pair of records. Let us also denote
by P (d = Ai, r = j) and P (d = Ai|r = j) correspondingly,
the joint and the conditional probability that the decision Ai is
taken, when the actual matching status (M or U ) is j. We also
denote by cij the cost of making a decision Ai when the com-
parison record corresponds to some pair of records with actual
matching status j. When the dependence on the comparison
vector is obvious by the context, we eliminate the symbol x
from the probabilities. Finally we denote the a priori probabil-
ity of M or else P (r = M) as π0 and the a priori probability
of U or else P (r = U) as 1 − π0.

2.2 Decision models for record matching

In 1950s, Newcombe et al. [20–22] introduced concepts of
record matching that were formalized in the mathematical
model of Fellegi and Sunter [5]. Newcombe recognized that
record linkage is the statistical problem of deciding which
record pair of potential comparisons should be regarded as
linked in the presence of errors of identifying information. Fel-
legi and Sunter formalized this intuitive recognition by defin-
ing a linkage rule as a partitioning of the comparison space
into the so-called “linked” subset, a second subset for which
the inference is that the record pairs refer to different under-
lying units and a complementary third set where the inference
cannot be made without further evidence.

Fellegi and Sunter in [5], made the concepts introduced
by Newcombe et al. in [21] rigorous by considering ratios of
probabilities of the form:

R = P (x ∈ X|M)/P (x ∈ X|U) (1)

where x is an arbitrary agreement pattern in the comparison
space X . The theoretical decision rule is given by:

(a) If R > UPPER, then designate pair as link.
(b) If LOWER ≤ R ≤ UPPER, then designate

the pair as a possible link
and hold for clerical review.

(c) If R < LOWER, then designate the pair
as non-link.

The UPPER and LOWER cutoff thresholds are determined
by a priori error bounds on false matches and false non-
matches. Fellegi and Sunter [5] showed that the decision rule
is optimal in the sense that for any pair of fixed upper bounds
on the rates of false matches and false non-matches, the man-
ual/clerical review region is minimized over all decision rules
on the same comparison space X . If now, one considers the
costs of the various actions, that might be taken, and the util-
ities associated with their possible outcomes, it is desirable
to choose decision rules that will minimize the costs of the
operation. Nathan in [19] proposes a model that involves min-
imization of a cost function, but restricts detailed discussion
to cases in which the information used for matching appears
in precisely the same form, whenever the item exists in either
input source. Du Bois’s [23] approach attempts to maximize
the set of correct matches by minimizing the set of erroneous
matches. Tepping in [25] provides a graphical representation
of a solution methodology that minimizes the mean value of
the cost under the condition that the expected value of the loss
is a linear function of the conditional probability that the com-
parison pair is a match. The application of his mathematical
model involves the estimation of the cost function for each
action, as a function of the probability of a match, and the es-
timation of the probability, that a comparison pair is a match.
The estimation of the cost function is often extremely difficult.
Usually the cost consists of two classes of components. The
first class consists of the cost of actual operations that may
be involved and the second consists of the less tangible losses
associated with the occurrence of errors in matching. The for-
mer can often be estimated very well, but the estimates of the
latter may depend upon judgment in large part. Pinheiro and
Sun [24] present a text similarity measure based on dynamic
programming for matching verbatim text fields. Based on the
similarity measures for each corresponding pair of fields, they
build a classification model using logistic regression to pre-
dict whether any two records are matched or not. N-grams
is another approach for computing the distance between two
strings. The N-grams comparison function forms the set of all
the sub-strings of length n for each string. String comparisons
by using trigrams (n = 3) was used by Hylton [10] for the link-
age of records of bibliographical data. The N-grams method
was extended to what is referred to as Q-grams by Gravano et
al. [7] for computing approximate string joins efficiently.

2.3 Intelligent search of the comparison space

Errors, in the form of failures to bring potentially linkable pairs
of records together for comparison, could be reduced to zero
simply by comparing each record with all the others. However,
wherever the files are large, such a procedure would generally
be regarded as excessively costly, if there are many wasted
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comparisons of pairs of records that are not matched. For this
reason, it is usual to order the records in the database by using
identifying information that is common to all of them. The
ordering can be performed either on the key, or on some other
combination of record fields, or even on parts of the fields. In
the exact matching, sorting of the file or of the database can be
used to reduce the complexity of identifying duplicate records
[2]. In the approximate record matching, various compression
codes, i.e., phonetic codes, can be used to mask some of the
errors that frequently appear in typical record fields such as
names. There is a number of systems to do this and the most
common of which is known as the Soundex code [22]. The
Soundex code is a phonetic coding scheme, which is based
on the assignment of code digits which are the same, for any
phonetically similar group of components.

Often, we need to make a compromise between the number
of record pairs, that are compared, and the completeness of the
matching process. The searching process must be intelligent
enough and exclude from comparison, record pairs that com-
pletely disagree with each other. In order to do that, the search-
ing process must identify only those record pairs which have a
high probability of matching (prospective matches) and leave
uninspected those pairs that look very different (not prospec-
tive matches). Several techniques have been developed in the
past for searching the space of record pairs. The first one, was
presented early on in a paper by Newcombe [22] and is called,
blocking. In this approach, the database is scanned by compar-
ing only those records that agree on a user-defined key, which
for example can be the key used to sort the records. The char-
acteristics used for blocking purposes are known as blocking
variables. Kelley in [12] presents results related to a method
for determining the best blocking strategy.

Another technique for cutting down the number of un-
wanted comparisons in the approximate record matching, is
to scan the database by using a fixed size window and check
for matches by comparing every pair of records that falls in-
side that window, assuming that the records are already sorted.
This approach is known as the sorted-neighborhood approach
and has been proposed by Hernadez and Stolfo in [9]. Because
of the various types of errors that exist in the data sets that are
compared, it is very common that the information selected for
blocking or sorting the data sets contains errors. If that hap-
pens, we expect that some records to be clustered far away
from those records with which they should be compared to. In
this case, a multi-pass approach, proposed in [9], can be used.
In this approach, a number of different blocking variables, or
sorting keys, can be used for clustering the records in differ-
ent ways. The database is then scanned as many times as the
number of the different keys. The results from independent
passes are combined to give the final set of matching records.
An extension of the multi-pass approach has also been im-
plemented by the same group of researchers. On top of the
multi-pass approach, the transitive closure of the results of in-
dependent passes is computed. A similar approach, that has
been proposed independently by Monge et al. in [17], makes
use of an algorithmic technique that identifies the connected
components of a graph. By considering each record cluster as
a connected component, this process can be effectively used to
select the records that belong to the same cluster. Both groups
of researchers presented very similar results, regarding the
accuracy and the cost of the searching process.

Most recently, record matching has been investigated in
the data cleaning context. Lee et al. [14] extend the equational
theory for record matching to a complete knowledge-based
framework for data cleaning. Galhardas et al. [6] propose a
declarative language for the logical specification of data clean-
ing operations, along with a framework for specifying various
data cleaning techniques at the logical and physical database
level; record matching is one of these techniques. Finally, in
[3], Elfeky et al. demonstrate a Record Linkage Toolbox that
can make use of a variety of statistical and machine learning
techniques for solving the record matching problem.

3 The cost optimal Bayesian decision model

In the course of the record matching process, we observe a
comparison vector x and we want to decide upon whether the
comparison record corresponds to a matched pair M of source
records (A1); or whether the comparison record corresponds
to an unmatched pair U of source records (A3). In a Bayesian
decision setting, the decision rule, may be written as follows:
if p(M |x) ≥ p(U |x) then it is decided that x belongs to M ,
otherwise it is decided that x belongs to U . This decision rule
indicates that if the probability of the match class M , given
the comparison vector x, is larger than the probability of the
non-match class U , x is classified to M , and vice versa. For
example, if the binary comparison vector value (1, 1, 0) has a
probability of appearing 75% among matches and only 25%
among non-matches, then the rule of minimum error assigns
the comparison vector to the set M . In addition, if we consider
the misclassification costs, and it so happens that misclassify-
ing an unmatched comparison vector to a linked one is at least
three times more severe than misclassifying a matched com-
parison vector to an unlinked one, then the rule of minimum
cost will assign the vector (1, 1, 0) to the set U instead. Based
on this example we can see how the cost of different decisions
affects the results produced by the error-based and cost-based
models.

However, in some cases we will find ourselves unable to
make either of these decisions at specified levels of error or
cost so we will allow a third decision (A2). In order to be able
to make a decision, we assume that the distributions of the ran-
dom comparison vectors are known. Determining the distri-
butions of the random vectors requires a pre-processing phase
of training. For the training phase, a set of classified random
vectors is required, which can be used for determining these
a priori matching probabilities. Manual inspection of pairs of
records is required for labeling their corresponding compari-
son vectors with the correct class label. Other approaches can
also be applied on this process. For example, a domain expert
may assign a priori probabilities of M and U for each one
of the comparison vector fields. Another approach is to use
a clustering algorithm (i.e., EM) to automatically determine
these a priori probabilities. The important thing to note here is
that for this model to work, we need to know: (a) the a priori
matching probabilities of the random comparison vectors; and
(b) the various costs that should be assigned to different clas-
sifications/misclassifications. The model that we are building
will determine the necessary and sufficient criterion for test-
ing the M hypothesis against the U hypothesis and vice versa,
and the thresholds required for this reason.
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Table 2. Costs of various decisions

Cost Decision Actual Matching
Status

c10 A1 M

c11 A1 U

c20 A2 M

c21 A2 U

c30 A3 M

c31 A3 U

A AA1 2 3

Fig. 1. A partitioning of the decision space

Let us denote by cij the cost of making a decision Ai when
the comparison record corresponds to some pair of records
with actual matching status j. Each one of the decisions that are
made, based on the existing evidence about the linking status of
a comparison pair, is associated with a certain cost that has two
aspects. The first aspect is related to the decision process itself
and is associated with the cost of making a particular decision;
for example, how many value comparisons are needed in order
to decide, affects the cost of this decision. The second aspect is
associated with the cost of the impact of a certain decision; for
example, making a wrong decision should always cost more
than making the correct decision. Table 2 illustrates the costs
for all the various decisions that could be made during the
record matching process.

We need to minimize the mean cost c that results from
making a decision. The mean cost is written as follows:

c = c10 · P (d = A1, r = M) + c11 · P (d = A1, r = U) (2)

+c20 · P (d = A2, r = M) + c21 · P (d = A2, r = U)
+c30 · P (d = A3, r = M) + c31 · P (d = A3, r = U).

From the Bayes theorem, the following is true:

P (d = Ai, r = j) = P (d = Ai|r = j) · P (r = j),
where i = 1, 2, 3 and j = M, U. (3)

Let us also assume that x is a comparison vector drawn
randomly from the space of the comparison vectors which is
shown in Fig. 1. Then the following equality holds for the
conditional probability P (d = Ai|r = j):

P (d = Ai|r = j) =
∑

x∈Ai

fj(x),

where i = 1, 2, 3 and j = M, U. (4)

where fj is the probability density of the comparison vectors
when the actual matching status is j.

We also denote the a priori probability of M or else P (r =
M) by π0 and the a priori probability of U or else P (r = U)
as 1 − π0.

The mean cost c in Eq. 2 based on Eq. 3 is written as
follows:

c = c10 · P (d = A1|r = M) · P (r = M) + c11

·P (d = A1|r = U) · P (r = U)
+c20 · P (d = A2|r = M) · P (r = M) + c21

·P (d = A2|r = U) · P (r = U)
+c30 · P (d = A3|r = M) · P (r = M) + c31

·P (d = A3|r = U) · P (r = U). (5)

By using Eq. 4, Eq. 5 becomes:

c = c10 ·
∑

x∈A1

fM (x) · P (r = M) + c11

·
∑

x∈A1

fU (x) · P (r = U) (6)

+c20 ·
∑

x∈A2

fM (x) · P (r = M) + c21

·
∑

x∈A2

fU (x) · P (r = U)

+c30 ·
∑

x∈A3

fM (x) · P (r = M) + c31

·
∑

x∈A3

fU (x) · P (r = U).

By substituting the a priori probabilities of M and U in
Eq. 6, we get the following equation:

c = c10 · π0 ·
∑

x∈A1

fM (x) + c11 · (1 − π0) ·
∑

x∈A1

fU (x) (7)

+c20 · π0 ·
∑

x∈A2

fM (x) + c21 · (1 − π0) ·
∑

x∈A2

fU (x)

+c30 · π0 ·
∑

x∈A3

fM (x) + c31 · (1 − π0) ·
∑

x∈A3

fU (x).

which by dropping the dependent vector variable x, and com-
bining the information for each part of the decision space, can
be rewritten as follows:

c =
∑

x∈A1

[fM · c10 · π0 + fU · c11 · (1 − π0)] (8)

+
∑

x∈A2

[fM · c20 · π0 + fU · c21 · (1 − π0)]

+
∑

x∈A3

[fM · c30 · π0 + fU · c31 · (1 − π0)].

Every point x in the decision space A, belongs either in
partition A1, or in A2 or in A3 and it contributes additively in
the mean cost c. We can thus assign each point independently
either to A1, or A2 or A3 in such a way that its contribution
to the mean cost is minimum. This will lead to the optimum
selection for the three sets which we denote by Ao

1, Ao
2, and

Ao
3. Based on this observation, a point x is assigned to the

three optimal areas as follows:
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To Ao
1 if:

fM · c10 · π0 + fU · c11 · (1 − π0)
≤ fM · c30 · π0 + fU · c31 · (1 − π0)

and, fM · c10 · π0 + fU · c11 · (1 − π0)
≤ fM · c20 · π0 + fU · c21 · (1 − π0).

To Ao
2 if:

fM · c20 · π0 + fU · c21 · (1 − π0)
≤ fM · c30 · π0 + fU · c31 · (1 − π0)

and, fM · c20 · π0 + fU · c21 · (1 − π0)
≤ fM · c10 · π0 + fU · c11 · (1 − π0).

And to Ao
3 if:

fM · c30 · π0 + fU · c31 · (1 − π0)
≤ fM · c10 · π0 + fU · c11 · (1 − π0)

and, fM · c30 · π0 + fU · c31 · (1 − π0)
≤ fM · c20 · π0 + fU · c21 · (1 − π0).

We thus conclude from the above that:

Ao
1 =

{
x :

fU

fM
≤ π0

1 − π0
· c30 − c10

c11 − c31

and,
fU

fM
≤ π0

1 − π0
· c20 − c10

c11 − c21

}
(9)

Ao
2 =

{
x :

fU

fM
≥ π0

1 − π0
· c20 − c10

c11 − c21

and,
fU

fM
≤ π0

1 − π0
· c30 − c20

c21 − c31

}
(10)

Ao
3 =

{
x :

fU

fM
≥ π0

1 − π0
· c30 − c10

c11 − c31

and,
fU

fM
≥ π0

1 − π0
· c30 − c20

c21 − c31

}
(11)

The inequalities above give rise to three different threshold
values in the decision space. We denote these thresholds as:

κ =
π0

1 − π0
· c30 − c10

c11 − c31
, (12)

λ =
π0

1 − π0
· c20 − c10

c11 − c21
, (13)

µ =
π0

1 − π0
· c30 − c20

c21 − c31
. (14)

In the discussion below, we investigate what kind of rela-
tionships hold among these values, in order to concretely de-
fine the decision regions. For the sake of simplicity in the pre-
sentation, we have eliminated the common factor π0/(1−π0)
from all of the threshold values in the proofs below. This can
be easily done by a simple transformation of variables. Now,
we first observe that in order for the intermediate decision area

Ao
2 to exist, the following relationship should hold for the pair

of thresholds λ and µ:

λ =
c20 − c10

c11 − c21
≤ c30 − c20

c21 − c31
= µ (15)

Based on Eq. 15, we can easily prove that the threshold
value κ = (c30 − c10)/(c11 − c31) lies between λ and µ.
Indeed:

λ =
c20 − c10

c11 − c21
⇒ λ · (c11 − c21) = c20 − c10 (16)

and,

λ ≤ c30 − c20

c21 − c31
⇒ λ · (c21 − c31) ≤ c30 − c20 (17)

By adding by parts Eq. 16 and Eq. 17, we have:

λ · (c11 − c21) + λ · (c21 − c31)
≤ (c20 − c10) + (c30 − c20) ⇒
λ · (c11 − c31) ≤ c30 − c10 ⇒

λ ≤ c30 − c10

c11 − c31
⇒

λ ≤ κ.

By following the same reasoning, we can easily show that
κ ≤ µ. Thus, this proves our argument that

λ =
c20 − c10

c11 − c21
≤ κ =

c30 − c10

c11 − c31
≤ c30 − c20

c21 − c31
= µ (18)

If λ > µ, then the area Ao
2 disappears. If this holds, then

by using the same derivation sequence as above, we can show
that µ < κ < λ. This inequality implies that there are only
two regions in the decision area which are separated by the
threshold κ. Such a case occurs because of the fact that the
assigned costs to the decision area Ao

2, turn out to be high when
they are compared to the other two alternative decisions Ao

1
and Ao

3. Therefore, the test tends to completely avoid decision
Ao

2. The necessary and sufficient condition that guarantees
existence of Ao

2 is Eq. 15 (λ ≤ µ).

3.1 Optimality of the decision model

We can now prove that the decision model that we proposed
(i.e., the sets Ao

1, Ao
2, and Ao

3) is an optimal one. Based on the
discussion above we know that A = A1

⋃
A2

⋃
A3, where

A1, A2 and A3 are pair-wise disjoint. Every point also, belongs
to either one of these decision areas. We also introduce the
indicator function IC of a set C, as the function which takes
the value of 1 if the point x belongs to C and the value 0,
otherwise. Note that we can formally write Eq. 8 as:

c =
∑

x∈A1

z1(x) +
∑

x∈A2

z2(x) +
∑

x∈A3

z3(x) (19)

where zi(x), i = 1, 2, 3 denote the expressions inside the cor-
responding sums in Eq. 8.

Using the indicator functions, we can write:

c =
∑

x∈A1

z1(x) +
∑

x∈A2

z2(x) +
∑

x∈A3

z3(x) (20)
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=
∑
x∈A

[z1(x) · IA1(x) + z2(x) · IA2(x)

+z3(x) · IA3(x)] (21)

≥
∑
x∈A

min{z1(x), z2(x), z3(x)} (22)

def=
∑

x∈Ao
1

z1(x) +
∑

x∈Ao
2

z2(x) +
∑

x∈Ao
3

z3(x) (23)

3.2 Error estimation

The probability of errors can now be easily computed. There
are two types of errors. The first one is called Type I error
and it occurs when a non-link action is taken although the two
records are actually matched. The probability of this error can
be estimated as follows:

P (d = A3, r = M) = P (d = A3|r = M) · P (r = M)

= π0 ·
∑

x∈A3

fM (x). (24)

The second type of error is called Type II error and it occurs
when the link action is taken although the pair of records is
actually non-matched. The probability of this error can be
estimated as follows:

P (d = A1, r = U) = P (d = A1|r = U) · P (r = U)

= (1 − π0) ·
∑

x∈A1

fU (x). (25)

4 Conditionally independent binary components

The exact record linkage decision rule depends on the proba-
bility distributions assumed. In this section, we treat one inter-
esting distribution, and we provide closed form formulas for
the weights. We also provide an example.

4.1 Case study

Suppose that the vector x is a random variable having binary
(0 or 1) components. Further, suppose that the components of
these vectors are conditionally independent given the actual
value of the matching status. By conditional independence in
this case, we mean that the formulas for the distribution can
be expanded as follows:

fj(x) = f1
j (x1) · f2

j (x2) · · · fn
j (xn), where j = M, U. (26)

Let us define values of the components of the distribution
for specific values of their arguments, xi:

f i
M (xi = 1) = pi (27)

f i
M (xi = 0) = 1 − pi (28)

f i
U (xi = 1) = qi (29)

f i
U (xi = 0) = 1 − qi (30)

Table 3. Probabilities of agreement and disagreement

Attribute Under M Under U

pi 1 − pi qi 1 − qi

Last Name 0.90 0.10 0.05 0.95
First Name 0.85 0.15 0.10 0.90
Sex 0.95 0.05 0.45 0.55

We also consider the logarithm of the likelihood ratio fU

fM
.

log
fU

fM
= log

f1
U (x1) · f2

U (x2) · · · fn
U (xn)

f1
M (x1) · f2

M (x2) · · · fn
M (xn)

(31)

which can also be written as follows:

log
fU

fM
= log

f1
U (x1)

f1
M (x1)

+ log
f2

U (x2)
f2

M (x2)
+ · · · + log

fn
U (xn)

fn
M (xn)

=
n∑

i=1

log
f i

U (xi)
f i

M (xi)
(32)

Now, we note that since xi can only assume the values of
1 or 0:

log
fU (xi)
fM (xi)

= xi · log
qi

pi
+ (1 − xi) · log

1 − qi

1 − pi

= xi · log
qi(1 − pi)
pi(1 − qi)

+ log
1 − qi

1 − pi
(33)

Based on Eq. 33, Eq. 32 can be written as follows:

log
fU

fM
=

n∑
i=1

xi · log
qi(1 − pi)
pi(1 − qi)

+
n∑

i=1

log
1 − qi

1 − pi
(34)

4.2 Example

We assume that two records are being compared and that a
decision will be made as to their matching status based on a
comparison of three attributes: last name, first name and sex.
For each attribute there will be two possible outcomes: either
that they agree or they do not agree. Thus, the comparison
space contains eight 3-component vectors. For simplicity we
also assume that the probabilities of agreement or disagree-
ment of the attributes are independent under both M and U .
Table 3 gives the probabilities of agreement and disagreement
under both M and U .

Let us denote by a1 the comparison of last name, by a2
the comparison of the first name, and by a3 the comparison of
the sex attribute. Let us also denote a comparison vector x =
(x1, x2, x3), where xi = 1 if attribute i agrees, and xi = 0
is attribute i disagrees. By using Eq. 34, we can compute the
logarithm of the likelihood ratio of variable xi. In Table 4 we
show the likelihood ratios for this variable.

In order to decide upon the assignment of the comparison
vectors to decision regions, we need to assign values to the
various costs. Based on the impact of our decisions, we have
made the following value assignments: c10 = 0, c20 = 0.2,
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Table 4. Likelihood ratios for the comparison vectors and their as-
signment to decision areas

i xi log( fU
fM

) Decision Area

1 (0, 0, 0) 2.795 A3

2 (0, 0, 1) 1.429 A3

3 (0, 1, 0) 1.088 A3

4 (1, 0, 0) 0.562 A2

5 (0, 1, 1) −0.272 A2

6 (1, 0, 1) −0.804 A1

7 (1, 1, 0) −1.145 A1

8 (1, 1, 1) −2.511 A1

c30 = 1, c11 = 1, c21 = 0.2, and finally c31 = 0. We also
assume that the a priori probability that a certain vector belongs
to M is equal to the a priori probability that the same vector
belongs to U . For this reason, the ratio π0/(1 − π0) is equal
to 1. By using Eqs. 12, 13, and 14, we compute the values for
κ = 1, λ = 0.25 and µ = 4. We observe that the values for the
thresholds satisfy the necessary and sufficient condition in Eq.
15. In order to be consistent with the case study we also need
to take the logarithms of the threshold values. By doing this we
obtain: log(κ) = 0, log(λ) = −0.602 and log(µ) = 0.602.
The values for the two thresholds are equal in absolute values,
because we selected the costs in such a way that λ to be the
inverse of µ. Based on the values for the thresholds, we can
assign the comparison pairs to one of the three decision areas.
The assignment is shown in Table 4.

5 Prototype experimental system

In order to validate and evaluate the proposed decision model,
we build an experimental system. The system relies on a
database generator [8] that automatically generates source
data, with a priori known characteristics. This system also
allows us to perform controlled studies so as to establish the
accuracy or else the overall error, and the percentage of com-
parison pairs which are assigned to the decision area A2, in
which further manual inspection is needed in order to identify
the matching status. The database generator provides a large
number of parameters including the size of the database, the
percentage of duplicate records in the database, and the per-
centage of the error to be introduced in the duplicated records.
Each one of the generated records, by the database generator,
consists of the following fields: (a) social security number; (b)
first name; (c) middle initial; (d) last name; (e) street number;
(f) street address; (g) apartment number; (h) city; (i) state; and
(j) zip code. Some of the fields can be empty as well. As re-
ported in [8] the names were chosen randomly from a list of
63, 000 real names. The cities, the states, and the zip codes
(all from the USA) come from publicly available lists.

Our system generates two different databases for each set
of experiments. The first database is used for training the deci-
sion model and the second for testing it. The training process
includes the determination of the required parameters by the
decision model. Both databases are generated by using almost
the same parameter settings. It is only the number of records
and the number of record clusters in each database that can be

different. A record cluster is a group of records in the same
database that refer to the same person. All the records in the
same cluster are considered as duplicates. In practice, the size
of the training set must be very small compared to the size
of the test set in which the model is applied to, in order for
the training phase to be efficient. In real life, the test set is
the actual set of records which must be matched or undupli-
cated. According to our results, the ratio between the size of
the training and the test database is more than 10.

The training and the test databases are used correspond-
ingly for generating the training comparison space and the test
comparison space. As we mentioned earlier on, the compar-
ison space is populated by comparison vectors which corre-
spond to a component by component comparison of a pair of
database records. In our system, we can explicitly select the
type of the comparison, to be performed between each pair
of values corresponding to the same attribute, and the type of
the comparison result. In this study, the comparison vector has
binary components and for this reason the comparison result
can either be 0 or 1. In order to convert to binary, non-binary
components we used an entropy-based discretization method.
The parameters to be used, for the generation of the training
and the test comparison space, can be selected to be different
in our system.

Some of the options that are provided to the users of the ex-
perimental system, for the generation of the training and test
comparison spaces, include: (a) the pre-conditioning of the
database records; (b) the selection of the sorting keys to be used
for sorting the original database records; (c) the functions to be
used for the comparison of each record attribute; (d) the search-
ing strategy along with its parameters if applicable; and (e) the
thresholds for the decision model. For the pre-conditioning of
the database records, we may select to convert all the char-
acters to uppercase or lowercase, and compute the Soundex
code of the last name. Any subset or part of the record fields
can be used as a sorting key. Among the functions to be se-
lected for comparing pairs of field values, the most frequently
used are the Hamming distance for numerical attributes, and
the edit distance [15], the n-grams [10], the Jaro distance [11],
and the Smith-Waterman algorithm [18] for character string
attributes. For the searching strategy, the experimental system
currently supports the blocking and the sorted-neighborhood
approach. In the sorted-neighborhood approach the window
size to be used should also be provided as an input parameter
to the system. The last part of the parameters that are required
by the system include the threshold values, which delimit the
three decision areas in the proposed model. These thresholds
can be computed in a straightforward manner by using Eq.
12, Eq. 13 and Eq. 14, provided that the user has selected the
corresponding values for the costs shown in the Table 2 and
the a priori probabilities of the M and U .

6 Experiments and results

Our main goal in the experimentation with the prototype sys-
tem was to compare the efficiency of the proposed cost-based
approach with the error-based one [5]. In order to compare
these two models, we use two metrics: the mean cost given by
Eq. 8, and the error probability given by Eq. 24 (Type-I error)
and Eq. 25 (Type-II error).
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Fig. 2. c20 = 0.3, c21 = 0.2
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Fig. 3. c20 = c21 = 0.5

As a pre-processing step, we converted all the characters
in both databases to uppercase letters and we computed the
Soundex code of the last name, which was used for blocking.
In order to present comparable results in our experiments, we
have normalized the range of values for the costs, in such a
way that c10 = c31 = 0, and c11 = c30 = 1. This means
that the correct decision has zero cost, and the wrong decision
has maximum cost. Notice that we will use the value 1 as the
maximum cost. Hence, the values assigned to the other costs:
c20, and c21 will be less than or equal to 1. We will derive
the necessary condition between the costs c20 and c21 so as
for the decision area A2 to exist. By substituting the values of
c10 = 0, c30 = 1, c11 = 1, and c31 = 0 into the Eq. 15, we get
that the sum of the costs should be less or equal to 1, or else

c20 + c21 ≤ 1. When the equality holds (i.e., c20 + c21 = 1)
then all of the three thresholds (κ, λ and µ) coincide, and their
value depends only on the value of the π0.

The probabilities of agreement and disagreement under
both the match and the non-match hypothesis are given in
Table 5. These values can be easily computed by using the
information in the training comparison space since the actual
matching status is considered known. This is possible, because
each database record has been assigned a cluster identifier by
the database generator, which is used for the identification of
the cluster that each record belongs to. Based on these prob-
abilities, and the selection of the values for the costs in the
A2 area, c20, and c21, we can compute the thresholds in the
decision model, along with the percentage of error and the
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Fig. 4. c20 = c21 = 0, 0.1, ..., 1
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Fig. 5. c20 + c21 = 1, c20 = 0, 0.1, ..., 1

percentage of comparison vectors in the testing set which was
assigned in the area A2.

In all the experiments performed, we use blocking as the
searching method and the Soundex code of the last name as
the blocking key. The first and third row in the cost matrix are
fixed, i.e., c10 = c31 = 0, and c11 = c30 = 1. This means
that the correct decision has zero cost, and the wrong decision
has maximum cost. Notice that we will use the value 1 as the
maximum cost. Hence, the values assigned to the other costs:
c20, and c21 will be less than or equal to 1.

The first set of experiments examines different sizes of data
sets with different assignments of costs. Figures 2 and 3 show
the results using c20 = 0.3, c21 = 0.2, and c20 = c21 = 0.5,
respectively. Both Figs. 2(a) and 3(a) show that the cost-based
model has a lower mean cost value for the different data sizes.
However, Figs. 2(b) and 3(b) show that the error-based model

Table 5. Probabilities of agreement and disagreement in the training
comparison space

Attribute Under M Under U

pi 1 − pi qi 1 − qi

SSN 0.749 0.251 0.025 0.975
First Name 0.837 0.163 0.004 0.996
Middle Initial 0.983 0.017 0.017 0.983
Last Name 0.949 0.051 0.034 0.966
Street Number 0.619 0.381 0.013 0.987
Street Address 0.654 0.346 0.004 0.996
Apartment Number 0.869 0.131 0.004 0.996
City 0.750 0.250 0.004 0.996
State 0.954 0.046 0.004 0.996
Zip Code 0.936 0.064 0.004 0.996
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Fig. 6. c20 = 0.5, c21 = 0, 0.1, ..., 1
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Fig. 7. c21 = 0.5, c20 = 0, 0.1, ..., 1

has a lower error probability value for the different data sizes
since it produces less wrong decisions.

The second set of experiments examines the effect of in-
creasing the values of c20, and c21 in several ways by using
one data set. Figures 4, 5, 6, and 7 show the results of these
experiments. The figures show that the cost-based model has
always a lower mean cost value than the error-based model.
Moreover, since the error-based model does not rely on the
costs in determining the matching status of the record pairs,
the error probability value is the same in all the experiments,
and is lower than its counterpart in the cost-based model. Fig-
ure 5(a) shows that as far as the two costs c20, and c21 add
up to 1, the mean cost of the cost-based model has the same
value. Figures 4(a), 6(a), and 7(a) show that the mean cost of
the cost-based model increases slightly till it converges to the
same value. A similar behavior for the error probability value

for the cost-based model can be noticed from Figs. 4(b), 5(b),
6(b), and 7(b).

Finally, a time performance experiment is exploited to
compare both models considering the computation time. Fig-
ure 8 shows the results of this experiment using two different
searching methods, blocking and the sorted-neighborhood.
The costs are fixed to c10 = c31 = 0, c11 = c30 = 1,
and c20 = c21 = 0.5. Figure 8 shows that the cost-based
model usually takes less computation time than the error-
based model. Moreover, the computation time increases as
the data size increases, which is understandable, as the num-
ber of record pairs the model works on increases. This is also
the reason that sorted-neighborhood method takes more time
than the blocking one since it produces more record pairs.
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Fig. 8. Time performance

7 Conclusions

This paper presents a new cost optimal decision model for the
record matching process. The proposed model uses the ratio
of the prior odds of a match along with appropriate values of
thresholds to partition the decision space into three decision
areas. The model that we presented, is similar with the one
proposed by Fellegi and Sunter [5] as it uses the same cri-
terion for discriminating between matches and non-matches.
The major difference between our model and all the other al-
ready existing models is that it minimizes the cost of making
a decision rather than the probability of error in a decision.
Our model is also much more efficient than other error-based
models, as it does not resort to the sorting of the agreement
and of the disagreement ratios in order to select the threshold
values.

Our future plans regarding this work, are to develop a cost
decision model with a decision space of higher dimensional-
ity. This will allow the decision maker to use the model in its
full swing, as the model will provide a more precise and accu-
rate decision for the record matching problem. In our future
endeavors, we are also considering the design of a model for
cost and time optimal record matching. By using such a model,
it will be feasible not only to make a decision based on the en-
tire comparison vector, but also to acquire as many comparison
components as possible, in order to make a certain decision.
This will save some very important computation time, and at
the same time it will facilitate online decision making in the
record matching context.
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