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Abstract

In this paper, we are proposing a new algorithmic approach for sanitizing raw data from sensitive knowledge in the
context of mining of association rules. The new approach (a) relies on the maxmin criterion which is a method in decision
theory for maximizing the minimum gain and (b) builds upon the border theory of frequent itemsets. Experimental results
indicate the effectiveness of the proposed methodology both with respect to the hiding results as well as with respect to the
time performance compared to similar state of the art approaches.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Data mining is a rather new research area focusing on the development of algorithms for the intelligent
analysis of data. This analysis goes beyond the testing of statistical hypotheses, all the way to the sophisticated
extraction of knowledge that was previously unknown. Although the majority of the results created by data
mining is, so far, positive, there are recently some major concerns regarding privacy breaches that incur in the
data. These breaches into the privacy are the side effects of being able to discover hidden nuggets of informa-
tion, and possibly use them against the privacy of information. For example, it is not uncommon even after
having de-identified the data (which means that we have removed all the sensitive information like social secu-
rity number, home addresses, mobile phone numbers, etc.) for a person to be re-identified by making use of
certain patterns that closely characterize the individuals.

In response to the people’s concerns about the processing that their personal information is undergone
when this is collected in the data warehouses of different service providers and public organizations, legislation
has been proposed. This legislation come into play for safeguarding the people’s rights. More and more as we
move forward into the information society, legal bodies amend the laws on the protection of data privacy in
order to guarantee the confidentiality of data against new ways of data processing and file interconnection.
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The specific aspect of data privacy that is investigated in this paper has to do with knowledge privacy when
this knowledge is produced from the mining of the data. In particular, in this work we are dealing with knowl-
edge in the form of frequent patterns and rules that are generated from association rule mining techniques.
The task we are called for solving, known by the name association rule hiding, is to remove certain patterns
that we consider sensitive from a database, by changing the data in such a way that everything but the sensitive
knowledge remains intact. To elaborate on this idea, think of a scenario where customer sales data are col-
lected from a big chain store and afterwards are distributed to various product providers. Even though the
chain store has as its goal to help the providers in distributing their deliveries in the most effective way, a pro-
vider may use correlation among the sales of various products in order to stay ahead of the competition. For
this reason, the chain store needs to remove certain information (correlations for example) from the data so
that it will not be possible for a provider to engage in this illegitimate competition.

The solution proposed here builds upon the idea that we can minimize the impact of the changes in the
data, that we apply in order to hide the sensitive knowledge, by considering only to minimize the impact on
the positive border of the frequent patterns. As long as we succeed in maximizing the minimum gain (which
is to keep the positive border itemsets above the frequency threshold), all the non-sensitive frequent patterns
which are not in the positive border remain above the support threshold which means that they are
preserved.

The rest of this paper is organized as follows. Section 2 presents related work which has been proposed for
the association rule hiding problem. In Section 3, we state the specific problem, as well as the necessary back-
ground information for completeness purposes, and in Section 4, we expose our proposed maxmin technique
for the association rule hiding problem. In Section 5, we present two algorithms which rely on the maxmin
criterion along with an example which is outlined in Section 6 that sheds light on the workings of the MaxMin
algorithms, and in Section 7, we present a thorough evaluation by indicating how the proposed algorithms
behave in comparison with other similar algorithms proposed elsewhere. Finally, in Section 8, we conclude
our study and we refer to some research threads for future consideration.

2. Related work

The problem of hiding sensitive knowledge either in the form of frequent patterns or in the form of sensitive
rules appeared for the first time in an early paper by Atallah et al. [2]. The authors in this first work had inves-
tigated the problem of hiding sensitive frequent patterns (a) by providing a proof that an optimal solution to
this problem is NP-hard and (b) by proposing a heuristic greedy approach that traverses the frequent itemset
lattice for pinpointing the transactions and the items that they had to change, so that the support of a sensitive
frequent pattern reduces and falls below the support threshold. Dasseni et al. [5] generalized the problem in the
sense that they considered the hiding of both sensitive frequent itemsets and sensitive rules. The algorithms
initially proposed in [5] were later on improved and evaluated for their performance under different sizes of
input data sets and different sets of sensitive rules in [20] and it was seen to exhibit very good behavior both
in their complexity and their effectiveness.

Saygin et al. [18,17] consider the problem of hiding frequent patterns and rules by using unknowns. Their
idea was motivated by real life constraints with respect to the modification of the original database, where
sometimes to tell a lie (turn a 0 to 1 or the opposite) is very different from expressing your ignorance (the value
is not known). This work presents a fuzzification of the support and the confidence metrics, and considers
both 0 and 1 values to use for hiding, in some proportion, so that it is not made easy for the data intruder
to conclude upon the value hidden behind an unknown value.

An in depth experimentation and evaluation of distortion (turning zeroes to ones and the opposite) and
blocking (using unknowns for hiding) techniques have been performed by Pontikakis et al. [15,16]. Bertino
et al. [4] propose a complete evaluation framework for measuring the performance of association rule hiding
techniques that can be utilized for comparing different association rule hiding algorithms. Zaiane et al. [13]
present a new formalization of the association rule hiding problem by trying to remove/hide the inference
channels created by rules that exist in a released rule base. A number of papers focusing on improving the
effectiveness and complexity of the aforementioned algorithms have also appeared in literature [14,10–12,9,
8,13].

76 G.V. Moustakides, V.S. Verykios / Data & Knowledge Engineering 65 (2008) 75–89



3. Problem formulation

The problem we are dealing with in this paper is to protect the implied knowledge that is hidden in a data-
base by slightly modifying the data, in such a way that (a) the sensitive knowledge is obscured and (b) the non-
sensitive knowledge as well as the raw data remain to a maximum degree intact. We consider this problem in
the context of frequent itemset mining of the association rule discovery framework. In a database D, a fre-
quent itemset is a set of items A, chosen from the universe of possible items I = {i1, i2, i3, . . ., in}, that appears
frequently enough in the database. In other words, a frequent itemset is one that its frequency of occurrence in
the database is above a minimum frequency threshold specified by the user. The frequency of occurrence in
this context is known as support and it is denoted by supp. By specifying a support threshold r, in the first
phase of an association rule discovery algorithm, all frequent itemsets are discovered in an increasing order
of cardinality (number of items). Let us call the set of all frequent itemsets as F.

Given a privacy policy, as exemplified by a directive released by a data protection authority, we can assume
that part of these frequent itemsets might be sensitive, or else it should not be disclosed to the public or to
some competitor. Let us call the set of frequent itemsets which are sensitive as S. What we should do at this
step is to minimally change or perturb our database in such a way that the sensitive frequent itemsets become
infrequent. Apparently, we are assuming a privacy policy which is completely related to the fact that an item-
set is frequent. We argue that such a policy is legitimate since the frequency of an itemset makes it interesting
from a decision maker point of view. By turning a certain frequent itemset to infrequent, we are automatically
making it uninteresting for further consideration, which implies that this itemset will escape the scrutiny or
attention of the data terrorists.

The formalism of the border presented in [7] is important in our problem formulation and for completeness
we include it here. Let P be a set of patterns, and � a partial order on P. Further, let F be closed downwards
under the relation �. The border Bd(F) of F consists of those patterns / such that all more general patterns
than / are in F and no patterns more specific than / is in F: Bd(F) = {/ 2 P | for all c 2 P such that c � / we
have c 2 F, and for all h 2 P such that / � h we have h 62 F}. Those patterns / in Bd(F) that are in F are called
the positive border Bd+(F) = {/ 2 F | for all h 2 P such that / � h we have h 62 F}, and those patterns / in
Bd(F) that are not in F are the negative border Bd�(F) = {/ 2 PnF | for all c 2 P such that c � / we have
c 2 F}. In other words, the positive border consists of the most specific patterns in F, the negative border con-
sists of the most general patterns outside F, and the border is the union of these two sets.

Let us also consider a subset S of F which includes the sensitive rules in F, that needs to become safe
based on some privacy policy, or in other words to lose so much of its frequency as it is required to just
become infrequent. Such a requirement first of all require S to move to PnF and then it will necessitate a
revision of both the positive and negative border. The same idea was proposed initially by Sun and Yu
[19] who claimed that in order to formalize the work performed by a hiding algorithm so that it achieves
the minimum impact on the database, there is a need to control the impact of the hiding algorithm on
the expected positive border, which is the positive border after this has been shaped up with the removal
of the sensitive itemsets. By following a similar approach, we need to prune the frequent itemset lattice, start-
ing from the sensitive itemsets and moving upwards from there till we reach the original positive border. The
removal of the sensitive itemsets from the old frequent itemset lattice along with their super-itemsets (super-
sets of itemsets) creates a new (revised) positive border and a new negative border. The nature of the pro-
posed MaxMin algorithms is that they try to remove from the database all the sensitive itemsets that belong
to the new (revised) negative border, while they try to keep the supports of the frequent itemsets in the new
(revised) positive border above the support threshold. More information about the revision theory of the
border can be found in Section 4.1.

4. A MaxMin approach for hiding sensitive itemsets

The MaxMin approach that we propose, relies on the fact that we succeed in the hiding of the sensitive item-
sets while at the same time we minimize the impact of the hiding process to the non-sensitive information. We
achieve this by considering only the effects of the hiding process to the itemsets on the positive border, after the
border has been revised by taking into consideration the sensitive large itemsets. In the following subsections,
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we present the necessary theory which underlies the revision of the border, and a number of theorems that prove
the minimum impact of the changes in the database imposed by the MaxMin approach. In Section 5, we present
two algorithms that rely on these theorems and demonstrate the minimum impact behavior.

4.1. Border revision theory

We follow here the approach first proposed in [19]. We should emphasize that the border revision technique
that we implemented is not documented in [19], apart from an example that indicates the workings of the bor-
der revision approach. Also, since the software implementing the algorithms in [19] is proprietary we had to
implement the border revision technique by ourselves. Given a set of sensitive itemsets for hiding, it follows
that the border of the frequent itemsets needs to be modified. The idea is that since some of the old (before
hiding) frequent itemsets will eventually become hidden or else their support gets lowered below the support
threshold, the border needs to be modified in order to accommodate the transition of the sensitive itemsets
from frequent to infrequent. The revision of the border has to do with keeping track of what frequent itemsets
need to be protected from hiding (must not lose support) and it is a process that takes place only in the data
structure holding the frequent itemset lattice and not in the actual database.

The algorithm that revises the positive border, starts from the minimum level of the frequent itemset lattice
corresponding to the shorter (in number of items) sensitive itemsets. It then proceeds upwards to the itemset
lattice by removing from the lattice, all the sensitive itemsets along with their super itemsets, until it reaches
the upper limit of the lattice, where it stops. After that, it moves down the new frequent lattice (produced in
the previous phase) and checks whether a frequent itemset has a cover. An itemset cover is a super itemset of
this itemset that is also frequent. If a frequent itemset in the revised frequent lattice does not have a cover, then
it belongs to the new positive border. The algorithm stops, when it reaches the minimum level of the revised
frequent itemset lattice.

In a similar manner, the algorithm that revises the negative border, starts from the bottom of the revised
frequent itemset lattice, which has been produced after the revision of the positive border. It then, in each level
of the lattice, produces joins of frequent itemsets from this level similarly with the joins of algorithms made by
Apriori algorithm. For each joined itemset created, checks whether all its sub itemsets belong to the revised
itemset lattice. If this is the case, it checks whether the joined itemset belongs to the revised itemset lattice
by itself. If it belongs, then it continues with generating new joined itemsets further. If the joined itemset does
not belong to the revised itemset lattice while all of its sub itemsets belong to this, then it places the joined
itemset to the revised negative border. This process ends when the algorithm arrives at the upper limit of
the revised itemset lattice.

After the formation of the revised positive and negative border, the algorithms proposed in this paper can
take over the hiding of the sensitive itemsets by actually modifying the database. Both of the algorithms accept
as input, the revised positive border, as well as the intersection of the revised negative border with the list of
sensitive itemsets. It is only the intersection that needs to be tested, because (a) the itemsets that belong to the
revised negative border but not in the intersection used to be in the original negative border (it was hidden
before) and (b) the itemsets that belong to the sensitive itemsets but do not belong in the revised negative bor-
der, have a sub itemset that belongs to the revised negative border.

4.2. Hiding of a sensitive itemset

The main idea behind the MaxMin optimization criterion as this is applied to the hiding of the sensitive
itemsets is to reduce the support of the sensitive itemsets while at the same time it tries to maintain the support
of a non-sensitive itemset intact, if possible. Below we introduce the necessary terminology and the accompa-
nying theorems before we describe the basic algorithms.

Let us assume that a sensitive itemset abd needs to be hidden. For every item that belongs to a sensitive
itemset we list the set of itemsets in the revised positive border that depend on it. We assume that the revised
positive border is the set {ab,bd,acd,cde} and we create a data structure which we call affinity list that main-
tains the lists of revised positive border itemsets that depend on every item in a sensitive itemset. The use of the
affinity lists in the course of the MaxMin algorithms will be demonstrated in Section 6.
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We call an item (for example a) that belongs to a sensitive itemset a tentative victim item, and a large itemset
(for example acd) that belong to the revised positive border and is affected by a tentative victim item, as a ten-

tative victim itemset. Note that in the following discussion, both the positive and the negative borders are the
revised (new) ones. We also call the set of tentative victim itemsets that depend on the same tentative victim
item vi as the vi-list. For example the a-list for the tentative victim item a of sensitive itemset abd is the set
{ab,acd}. In every vi-list, we select the itemset(s) with the minimum support which we call minimum support

itemsets. Itemset cde is the minimum support itemset in the d-list of the sensitive itemset abd. A minimum sup-
port itemset is the most sensitive one among the itemsets in each vi-list since it is the closest to the borderline
between the positive and the negative border.

From among all the minimum support positive border itemsets ({ab,acd} for a-list, {ab} for b-list, and
{cde} for the d-list) we select the itemset(s) with the highest (maximum) support. We call such an itemset
the maxmin itemset – there might be a set of maxmin itemsets, and in this case we call this set, the max-
min set – since this is the only itemset among the different minimum support itemsets which is the max-
imum distance away from the border. In the affinity list of sensitive itemset abd there are two maxmin
itemsets {ab,acd} [ {ab} = {ab,acd}. The maxmin itemset determines the tentative victim item through
which the hiding of the sensitive itemset will take place. We call such an item a victim item. For example
the maxmin set {ab,acd} indicates that either a or b should be the victim item, since the itemsets in the
maxmin set belong to the vi-lists of items a and b. The proposed algorithms modify the victim item indi-
cated by the maxmin itemset in such a way that the value of the support of the maxmin itemset, if pos-
sible, not to be modified. The reduced complexity of the proposed MaxMin algorithms compared to other
similar approaches, emanates from the fact that it is the selection of one and only itemset that determines
the victim item, through which a sensitive itemset will lose support. This selection is taking place in a very
small set of itemsets which are both affected by the sensitive itemset and belong to the revised positive
border.

In the following discussion, we present a number of theorems which are cornerstone in the functionality of
the proposed MaxMin algorithms. The first theorem is concerned with two tentative victim itemsets that
achieve the minimum support value for their corresponding vi-lists. The theorem indicates that if the support
values for two minimum support itemsets are different, then by modifying the tentative victim item that cor-
responds to the larger minimum support itemset, the support of the smaller minimum support itemset remains
unaffected. This is true independently of whether the larger minimum support itemset is affected or not by the
modification. We state the theorem more formally next.

Theorem 1. If two minimum support itemsets SA and SB contain the tentative victim items A and B, respectively,

and have supports supp(SA) > supp(SB), then the minimum support itemset SB does not contain A.

Proof. Let us assume that SA and SB are two minimum support itemsets corresponding to the tentative vic-
tim items A and B respectively. We also assume that supp(SA) > supp(SB) and that SB contains the tentative
victim item A. Since SB contains the tentative victim item A, it should also appear in the list of tentative
victim itemsets of tentative victim item A along with SA. Because supp(SA) > supp(SB), it means that the
SB is the minimum support itemset for the tentative victim item A. But we claimed at the beginning that
the minimum support itemset for A is SA. For this reason, we have proved that SB cannot contain sensitive
item A. h

The direct consequence of Theorem 1 is that if we modify the victim item A, and this has as a side effect that
the maxmin decreases by one (in the worst case), no other minimum support value will be affected by this
change.
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The second theorem and its accompanying lemma apply to the case when two sets of minimum support
itemsets (each is a subset of its corresponding vi-list) corresponding to two different tentative victim items hap-
pen to have the same support. Below we state formally a theorem that ensures that if the victim item corre-
sponding to one set of minimum support itemsets can change without affecting the support of its minimum
support itemsets, then the other set of minimum support itemsets will not be affected either.

Theorem 2. Let LA = {A1,A2, . . .,AK} and LB = {B1,B2, . . .,BM}, the vi-lists for two tentative victim items A and B

correspondingly which are contained in sensitive itemset S. Let also LSA ¼ fAi1 ;Ai2 ; . . . ;Aikg and LSB ¼
fBj1

;Bj2
; . . . ;Bjm

g, the sets of minimum support itemsets that correspond to the tentative victim items, such that
sA ¼ suppðAi1Þ ¼ suppðAi2Þ ¼ � � � ¼ suppðAik Þ < suppðAiÞ where i 62 fi1; i2; . . . ; ikg and sB ¼ suppðBj1

Þ ¼
suppðBj2

Þ ¼ � � � ¼ suppðBjm
Þ < suppðBjÞ where j 62 fj1; j2; . . . ; jmg. If sA = sB and the support of S is decreased

through A without the border itemsets in LSA to be affected, then no itemset in LSB will be affected either.

Proof. If an itemset in LSB is affected by the decrease of the sensitive itemset through A, then this means that
the affected itemset contains A. If it contains A, it should also belong to LSA . But the theorem claims that no
itemset from LSA is affected from the change in A. Because of that, no itemset in LSB will be affected either. h

The lemma below applies to the cases in complement to those covered by Theorem 2 that the change in a
victim item causes a minimum support itemset from its corresponding vi-list to lose support. If it so happens
that the minimum support itemset which loses support is the only one affected in the vi-list by the change in the
victim item, and at the same time it is not included in the other set of minimum support itemsets, then no min-
imum support itemset from the second set will be affected. The statement and its proof follows more formally
below.

Lemma 1. Let sA = sB and the support of S is decreased through A. Let also Ai1 ;Ai2 ; . . . ;Air be a set of tentative

victim itemsets in LSA that are both different from all the tentative victim itemsets in LSB and are also affected by
the decrease in the support of S through A, while the rest of the border itemsets in LSA are not affected. If this

holds, then no tentative victim itemset in LSB is affected from the decrease of S through A.

Proof. Since Ai1 ;Ai2 ; . . . ;Air 2 LSA are both the only border itemsets in LSA which are affected by the change in
S through A, and they are different from all the border itemsets in LSB , no border itemset in LSB will be
affected. If a border itemset Bis 2 LSB is being affected by a change in A, then this border itemset should con-
tain A and also belong to LSA . Therefore we would have an additional itemset besides Ai1 ;Ai2 ; . . . ;Air 2 LSA

affected by the change, which leads to a contradiction. h

4.3. Hiding of sets of sensitive itemsets

We turn now our discussion to the methodology which will be followed by the MaxMin algorithms in order
to hide a set of sensitive itemsets. In the discussion above, we presented the foundations underlying the hiding
of a single sensitive itemset.

The assumption that it is made in the frequent set hiding problem, is that the privacy administrator is pre-
sented with a set of sensitive itemsets for hiding. The heuristic which is used by the MaxMin algorithms for the
hiding of a set of sensitive itemsets is that the algorithm performs a sorting of the sensitive itemsets based on
their support in an increasing order of support, and starts the hiding process from the sensitive itemset with
the minimum support. After the algorithm finishes the hiding of the minimum support itemset, it continues
with the next itemset in the order indicated until it is done with the hiding of every sensitive itemset.

By adopting a heuristic like that we enforce the requirement of the minimum impact adopted by the pro-
posed MaxMin algorithms, since the sensitive itemset with the minimum support is the one that is closer to the
border, and it is hidden in the smaller number of iterations.

We can also easily prove that the support of the minimum support itemset remains constantly smaller than
the support of all the other sensitive itemsets that remain to be hidden. This has as a result that the complete
hiding of a certain sensitive itemset can be considered in isolation from the hiding of all the other sensitive
itemsets. The following theorem makes the above idea concrete.
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Theorem 3. Let S1,S2, . . .,Sn be the sensitive itemsets which are sorted in increasing order of their supports. The

support of the minimum support sensitive itemset S1 will be constantly smaller than the supports of all the other

sensitive itemsets S2,S3, . . . ,Sn during the hiding of this itemset.

Proof. In every iteration of a MaxMin algorithm, the sensitive itemset in the foreground (the itemset selected
each time by the algorithm for hiding) loses one point from its support. For any other sensitive itemset, the
algorithm may reduce the support of this itemset by at most one. For this reason, the difference in the support
of the itemset selected for hiding with all the rest, after the application of the MaxMin algorithm, will be at
least as great as it was at the beginning of the hiding process. h

Because of the fact that different sensitive itemsets (except the one on which the algorithm is applied each
time) may lose different amounts of support, after the hiding of each sensitive itemset, the remaining (not hid-
den yet) itemsets need to be sorted again in the increasing order of their supports.

A MaxMin algorithm needs to decide also which sensitive itemset to select next for hiding in case there is a
tie in the supports of different itemsets. In this case, the algorithm considers the longer sensitive itemset first
because this itemset offers to the algorithm the higher degree of freedom with respect to the selection of the
victim items.

5. MaxMin algorithms

In the following discussion, we present two MaxMin algorithms that hide sensitive itemsets in an increasing
order of sophistication.

5.1. Algorithm MaxMin 1

The first algorithm MaxMin 1 attempts to hide a sensitive itemset by selecting the victim item in such a
way that the side effects to the minimum support itemsets in the positive border are minimized. To achieve
this, it tries to hide the victim item from a transaction which supports the corresponding sensitive itemset,
so as the support of the minimum support itemsets except possibly the support of the maxmin itemsets
remains unchanged. MaxMin 1 algorithm assures that if the value of the maxmin is unique, then by mod-
ifying the maxmin itemset, no other minimum border itemset is modified. This property holds because of
Theorem 1.

In case the maxmin value is attained by more than one tentative victim itemsets where each one corresponds
to different tentative victim items, MaxMin 1 randomly selects the victim item to use for hiding. It is also indif-
ferent to the algorithm the number of different border itemsets that attain the maxmin value, because all of
them indicate the same victim item.
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The pseudocode of the proposed MaxMin 1 algorithm is shown in Algorithm 1. The algorithm accepts as
input the positive border itemsets from the revised border, as well as the list of sensitive itemsets and it pro-
duces as output the sanitized database. The processing starts with the housekeeping for the data structures.
The outer while loop goes through the list of sensitive itemsets starting from the one with the minimum sup-
port. In case there is a tie in the support of two or more itemsets, the algorithm breaks the tie by considering
the longest itemset first. From among sensitive itemsets of equal support and length the algorithm processes
the itemsets in lexicographic order. The sensitive itemset which is selected in this way undergoes a certain pro-
cessing that creates an affinity list containing for each tentative victim item, the corresponding tentative victim
border set.

The next step of the MaxMin 1 algorithm is to remove support from the current sensitive itemset, so that it
becomes hidden. This is done through an inner loop that iterates as many times as the difference between the
initial support of the sensitive itemset and the support threshold plus one. In each iteration of the inner loop,
the algorithm makes use of the affinity list to find out the maxmin itemset and consequently the corresponding
victim item. After the victim item has been pinpointed the algorithm makes a scan through the database to
find the first transaction that supports the sensitive itemset. In this transaction, the algorithm turns the one
that corresponds to the victim item to a zero. After this modification the algorithm checks whether the support
of the sensitive itemset has been appropriately reduced below the minimum support threshold. If this is not the
case, it modifies the affinity list and iterates once more.

5.2. Algorithm MaxMin 2

Algorithm MaxMin 2 improves over the MaxMin 1 algorithm in a number of ways. For those cases where
there is a maxmin value which is assumed by some maxmin itemsets in the same vi-list, the algorithm checks
whether the reduction in the support of the sensitive itemset can be achieved without modifying the support of
any maxmin itemset. By using Theorem 1 we know in advance that no other minimum support itemset will be
affected in this case.

To reduce the support of the sensitive itemset without affecting the support of the maxmin itemsets, we need
to ensure that each of the maxmin itemsets is not a subset of the sensitive itemset, and at the same time that
there are transactions that provide support to the sensitive itemset without supporting the maxmin itemset. In
order to be able to get this information we need to maintain for every sensitive itemset s and every maxmin
itemset maxmin in the vi-list, the list of transactions that support them. If we denote the lists of these trans-
actions as Ls and Lmaxmin, respectively, then by computing the difference between these two lists (sets) we will
know whether we can reduce the support of the sensitive itemset without affecting the support of the maxmin
itemset.

In those cases where there are more than one maxmin itemsets that correspond to different tentative
victim items we go through all the vi-lists containing maxmin itemsets and check whether we can reduce
the support of the sensitive itemset without affecting any of the maxmin itemsets in each vi-list. If we can
do this, then by making use of Theorem 2 we can ensure that no other maxmin itemset in any other vi-list
will be affected. In order to do this, we need to find transactions that support the sensitive itemset but do
not support any of the maxmin itemsets in the vi-list. For this, we compute again the lists of transactions
that support both the sensitive itemset and the set of maxmin itemsets in every vi-list and we compute the
difference of the lists that correspond to the maxmin itemsets from the list of the sensitive itemset. If the
result is not empty, then we can reduce the support of the sensitive itemset without affecting any other
itemset.

In case where the previous scenario is not feasible we consider pairs of vi-lists in every iteration of the algo-
rithm. We call the first list in the pair as vi1-list and the second vi2-list. Then what we try to do is to find a set
of minimum support itemsets in a vi1-list that will lose support by a change in the corresponding victim item,
which are different from all the minimum support itemsets of another vi2-list that attain the maxmin value,
while we can maintain the support of the rest of the minimum support itemsets in vi1-list, then by Lemma
1 we can ensure that the maxmin value in vi2-list will remain the same.
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Finally, there is no other option than to reduce the support of the sensitive itemset while we reduce the sup-
port of the maxmin itemset as well. The sketch of the MaxMin 2 algorithm is given in Algorithm 2.

6. Example

Let us assume the database that is shown in the left hand side of Fig. 1. Let also the support threshold r be
3. The set of all frequent itemsets along with their supports is given in the right hand side of Fig. 1. The posi-
tive border in this way turns out to be Bd+ = {abd,acd,bcd,cde}. Assuming that we are told that the sensitive
items belong to the set S = {bc,abd,bcd}, the expected positive border becomes fBdþ ¼ fab; bd; acd; cdeg and
the expected negative border is thus fBd� ¼ fabd; bcg. In order to hide the sensitive itemsets, we need to mod-
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ify the database in such a way that the itemsets in the expected negative border lose support while at the same
time we keep the support of the itemsets in the expected positive border above the support threshold.

Let us first see what happens if we try to hide the sensitive itemsets in fBd� by making use of algorithm
MaxMin 1. We first sort the negative border itemsets in increasing order of support and we select for hiding
the minimum support itemset which is itemset abd. We then create the necessary affinity list as it is indicated
below containing in the first column the tentative victim itemsets that belong to the sensitive itemset abd and
for each tentative victim item we have included the vi-lists in a row. For each tentative victim itemset we have
included its support after the slash symbol.

Since the support of abd is 3 and the minimum support threshold is also 3, we need to reduce the sup-
port of abd by one in order to hide it. For this, the inner loop in Algorithm 1 will be executed only once.
Having created the data structure above, we can easily compute the maxmin itemset which is actually a set
in this case containing itemsets ab from a-list and b-list as well as acd from a-list. The algorithm randomly
selects the victim maxmin itemset from among the ones that attain the maxmin value (this is 4). Let us
assume that randomly selects itemset ab from a-list. This selection determines automatically that the victim
item is item a. In the sequel the algorithm scans the database in order to find the first transaction that
supports itemset abd and removes from this transaction item a. The transaction with TID 1 qualifies to
this and so the 1 on a in the first transaction becomes 0. Since the sensitive itemset abd has been hidden,
we remove it from the list of sensitive itemsets and we continue with the next sensitive itemset which is
itemset bc.

We then build an affinity list for the sensitive itemset bc which is shown below.

The inner loop of MaxMin 1 will iterate two times since the support of the sensitive itemset bc is 4. In the
first iteration we compute the maxmin itemset which randomly again is selected among the three that qualify
to be the itemset ab. This sets b to be the victim item, and so the algorithm scans the database to find the first
transaction that supports the sensitive itemset bc and removes from this transaction the item b. The first trans-
action that supports bc is again transaction with TID 1, and so b in this transaction becomes 0. Since we need
one more time the inner loop to iterate, we recompute the affinity list, which is illustrated below.

Fig. 1. An example.
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Interestingly enough we note that no positive border itemset became hidden in the previous iteration. In the
second iteration we compute again the maxmin itemset, which is also selected randomly among the three that
qualify. Let us assume that cde is selected this time which makes c the victim itemset. Another scan through the
database identifies transaction with TID 4 that supports the sensitive itemset, and sets item b in this transac-
tion to 0. The sensitive itemset is hidden in this way.

We turn now to the illustration of the workings of the second proposed algorithm MaxMin 2. By following
the same reasoning as above we build the affinity list for the sensitive itemset abd as it is shown below and we
find the maxmin itemset.

The maxmin value is attained by three itemsets. What we do next is to check whether we can reduce the
support of the sensitive itemset without affecting the support of the minimum support itemsets that attain
the maxmin value. For this reason we compute the set difference Labd � Lab � Lacd which we find to be the
empty list. For this reason, it is obvious that we cannot reduce the support of the sensitive itemset abd without
reducing the support of at least one maxmin itemset. The next check is to see whether we can still reduce the
support of a maxmin itemset, while leaving the support of other maxmin itemsets intact. In this way, we will
have maintained the maxmin value intact for the next iteration.

By following the steps of the algorithm MaxMin 2 since ab is in both a-list and b-list, a possible reduction in
its support will also affect the maxmin value. Since ab is also a subset of the sensitive itemset, no matter what
the change will be, the maxmin will be reduced as well. In this case, we select any transaction that supports abd
and we change randomly either a or b. Let us change a in the transaction with TID 1. The sensitive item abd

has been hidden then, and we continue with the next sensitive itemset bc where the algorithm needs to iterate
twice. We first build the affinity list structure for bc which is shown below.

The maxmin value is taken by three minimum support itemsets. We first check whether we can reduce the
sensitive itemset without affecting any of the minimum support itemsets. For the tentative victim item b we
compute Tbc � Tab which is {1,4,6} and it implies that we can change b in transactions with TIDs {1,4,6}
without affecting ab. By Theorem 2, we know that the minimum support itemsets in the c-list will not be
affected. Let us change b in transaction with TID 1 and continue.

The new affinity list structure is shown below.

Once again we compute Tbc � Tab which is {4,6} and once again we can modify b in either transaction with
TIDs {4,6} without affecting any other minimum support itemset that achieve the maxmin value. We finally
change b in transaction with TID 4 and the sensitive itemset is hidden without affecting any maxmin itemset.
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7. Experiments and evaluation

We have compared our algorithms with the heuristic algorithm 2.b from [20] which has been selected for
comparison by Sun and Yu [19], as well as with the border based approach which proposed by Sun and Yu
[19]. Since Sun and Yu indicated that their algorithm performs constantly better than the heuristic algorithm,
we present our findings from the comparison of the proposed algorithms with the border based algorithm.

Initially, we present the hiding achieved by the border based approach on the example presented in Section
6. The algorithm proceeds in changing 3 items, namely item a from transaction TID 3 for achieving the hiding
of sensitive itemset abd, and item b from transactions TID 6 and TID 7 for the hiding of sensitive itemset bc.
The hiding process creates a side effect, in the sense of causing the itemset ab from the expected positive bor-
der, to lose support and become infrequent. Recall that both of the MaxMin techniques proposed in this paper
when applied to the example took three changes while they created no side effect, which is an improvement
over the border based approach.

For comparison purposes we have created a table that indicates the performance of our algorithms versus
the performance of the border based approach for hiding different sets of itemsets from the itemset lattice of
the same example.

Fig. 2 contains four columns. The first presents the set of sensitive itemsets which are selected for hiding,
while the rest three columns present the performance of each one of the compared algorithms, the Border
based, the MaxMin 1 and the MaxMin 2. The performance of each algorithm is measured by using the nota-
tion m/n where m indicates the number of changes in raw data and n indicates the number of side effects (num-
ber of non-sensitive frequent itemsets which became hidden through the hiding process). Depending on the
application, either the first or the second performance measure may have the major significance. Intuitively,
the number of raw data changes is bounded by the number of iterations needed for decreasing the support of
all the sensitive itemsets while the number of side effects is bounded by the number of frequent itemsets in the
revised positive border. By giving the same weight to both performance metrics, we can consider that the algo-
rithm that achieved the minimum sum over these two numbers in each row in the comparison table, is the
algorithm that wins. In this respect, we have indicated the winning algorithm in each row by underlining

Fig. 2. Comparison of Border based, MaxMin 1 and MaxMin 2 algorithms for the example of Section 6.
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the performance measures of this algorithm. The information listed in Fig. 2 indicates that for the reference
example, as the number of sensitive itemsets grows, MaxMin 2 algorithm outperforms both the Border based
and the MaxMin 1 algorithm.

The results presented above are consistent with similar comparisons performed with larger data sets gen-
erated by the IBM Synthetic Data Generator [1]. We have also experimented with a number of real datasets
which are publicly available through the FIMI repository (http://fimi.cs.helsinki.fi/). In this paper, we report
results on comparing the reference border based approach with our proposed algorithms on two datasets from
Blue Martini Software Inc. namely BMS-WebView-1 (BMS1 for short) and BMS-WebView-2 (BMS2 for
short) that were used for the KDD Cup of 2000 [6] and contain click stream data, and another dataset, the
mushroom dataset (Mushroom) that was made available by Roberto Bayardo from the University of Califor-
nia, Irvine [3]. These three datasets was selected on purpose for this evaluation study because they exhibit
varying characteristics with respect to the number of transactions and items that they contain, as well as with
respect to the average transaction length.

Fig. 3 presents the most indicative results from comparing the three algorithms under evaluation on the
three real datasets. The ‘‘Hiding Scenario’’ column in this table indicates the nature and the number of sen-
sitive itemsets which were selected for hiding. In particular, we make use of the notation (i, j) to indicate by i

the number of sensitive itemsets that are hidden each time, as well as, by j the length of the sensitive itemset.
The rest of the columns are either self explanatory or they have the same semantics as in Fig. 2. We should
note here that the selection of sensitive itemsets to hide in each hiding scenario was completely random.

More specifically the evaluation of the three algorithms on the three real datasets indicated the MaxMin 2
performed constantly better than the other two algorithms (exhibiting only a minimum of times similarly with
the Border approach) when we consider the sum of the two performance metrics which consists of the number

Fig. 3. Comparison of Border based, MaxMin 1 and MaxMin 2 algorithms for the BMS1, BMS2, and Mushroom.
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of changes and the number of side effects. We should also note here the overwhelming superiority of both of
the MaxMin approaches with respect to execution times compared to the Border approach. To give an insight
into the execution times of the algorithms we report that for both MaxMin algorithms the range of execution
times was in between 10 and 20 min, while for the Border based approach the execution time was in the range
of 70 and 80 min.

8. Conclusions

We have presented two new algorithms which rely on the maxmin criterion for the hiding of sensitive item-
sets in an association rule hiding framework. Both algorithms apply the idea of the maxmin criterion in order
to minimize the impact of the hiding process to the revised positive border which is produced by removing the
sensitive itemsets and their super itemsets from the lattice of frequent itemsets. By restricting the impact on the
border, we can be very efficient in the selection of items which must be selected for hiding, while at the same
time it can be ensured that non-border itemsets are protected from hiding. A thorough experimental evalua-
tion indicated that the proposed algorithms (especially MaxMin 2) being at the same time much less compu-
tationally demanding, outperform other similar approaches.
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