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Record-linkage is the process of identifying whether two separate records refer to the same
real-world entity when some elements of the record’s identifying information (attributes) agree
and others disagree. Existing record-linkage decision methodologies use the outcomes from the
comparisons of the whole set of attributes. Here, we propose an alternative scheme that assesses
the attributes sequentially, allowing for a decision to made at any attribute’s comparison stage,
and thus before exhausting all available attributes. The scheme we develop is optimum in that
it minimizes a well-defined average cost criterion while the corresponding optimum solution can
be easily mapped into a decision tree to facilitate the record-linkage decision process. Experimen-
tal results performed in real datasets indicate the superiority of our methodology compared to
existing approaches.
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1. INTRODUCTION

Record-linkage has a long history of uses for statistical surveys and adminis-
trative data files. It refers to the process of identifying records on the same or
two different databases that contain information about the same entity. These
records usually correspond to a person, an organization, or an institution
although they could also be places or residences, real estate properties,
criminal cases, licenses to carry out an activity such as the sale of pesticides
or drugs or anything else that could be the subject of a database record. There
are two basic reasons to try to link records: data collation and list construc-
tion. In the data collation setting, a project might require data that are not
all available from the same database. Such a project might involve checking
the consistency between earnings reported on income tax returns and earn-
ings reported by employers to the Social Security Administration. From the
list construction point of view, some projects require a list of all members of a
population to serve as a sampling frame, the contact list for a census, or for
collation with data from other sources. It often happens that there is no single
list of the population, but that a combination of several lists can be expected
to include all or most of it. Usually, there is some overlap between these lists.
To avoid biasing the sample or census, we must delete duplicate records so
that each member of the population is included only once. This “deduplication”
process requires that we are able to identify people or other entities that are
included in more than one list.

The record-linkage process would be greatly simplified if each individual
had used the same unique identifier (such as the driver’s license number of the
full Social Security Number) in each database. In this case, matching (linking)
records across databases would have been easy. However, in the absence of a
unique identifier, it is necessary to use combinations of fields in order to match
records. Matches based on the comparison of corresponding fields such as first
name, last name, address, and date of birth are inherently inferential, and for
this reason prone to higher rates of error such as false matches (a match is
indicated when in fact the two records refer to different individuals) or false
nonmatches (a nonmatch is indicated when the two records refer to the same
individual). The former type of record-linkage that relies on unique identifiers
is called exact or deterministic and refers to the matching of records that either
contain unique identifiers or their information is error free. The latter type of
linkage is known as probabilistic or approximate. Probabilistic record-linkage
refers to the process of linking records that they lack a unique and universal
identifier and/or may have become inconsistent because of data entry errors,
misspellings, missing information, etc. In this article we focus on the second
type of record-linkage.

The two principal steps in the record-linkage process are: (a) the search-
ing step for potentially linkable pairs of records and (b) the matching step for
determining the linkage status of a pair of records. The main goal of the
searching step is to keep to a minimum the number of pairs of records that
are brought together for comparison. With respect to the matching step, the
main problem is to automatically decide upon the matching status of a pair of

ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.



Optimal Stopping: A Record-Linkage Approach · 9: 3

records when some of the record information is in agreement while the rest
is not. The matching step makes use of the outcomes of the comparisons
among all the available pairs in order to decide whether the pair matches
(correspond to the same entity) or does not match. More extensive introduc-
tory information regarding record-linkage and its applications can be found in
Winkler [1995].

In this article we introduce a new direction for saving computational time
in the record-linkage process while we keep the searching step and a large
part of the matching step intact. The approach that we propose is sequential
in nature, and optimizes the matching of records by minimizing the number
of field comparisons that are necessary for the decision process to deliberate,
without affecting the quality of the final decision. More specifically we argue
that, as opposed to the classical record-linkage methodology where the entire
set of attributes for a pair of records under comparison must be examined, on
the average a significantly smaller subset of these attributes is actually needed
to achieve similar performance results (such as the same probability of error).
The savings in computation time is enormous if we consider the expansion of
the comparison space in regular record-linkage scenarios that is analogous to
the cardinality (millions of records) and the degree (hundreds of attributes)
of the databases to be linked, as well as the strict deadlines usually imposed
upon the record-linkage officers for running the process on a weekly basis. For
the development of our optimum sequential scheme we heavily rely on results
and methodologies coming from optimal stopping theory for Markov process
[Shiryayev 1978].

The rest of this article is organized as follows. In Section 2 we make a
brief literature review and in Section 3 we present the basic elements of the
probabilistic record-linkage theory. Section 4 contains our main theoretical de-
velopments while Section 5 is devoted to practical issues as fine-tuning of our
decision scheme; equivalent tree-structure representation and a blocking type
alternative implementation. Section 6 contains possible extensions and vari-
ants and Section 7 presents a thorough experimental evaluation. The article
is completed with Section 8 which contains our concluding remarks.

2. RELATED WORK

Newcombe et al. [1959] were the first to introduce the ideas of computer-
ized record-linkage. In their inaugural works Newcombe et al. [1959] and
Newcombe and Kennedy [1962] proposed decision rules that rely on odds
ratios of frequencies, that have been computed apriori, for sorting out matches
from nonmatches. Fellegi and Sunter [1969] established the foundations of
record-linkage by demonstrating the optimality of decision rules proposed by
Newcombe et al. under certain fixed upper bounds on the rates of false matches
and false nonmatches. The underlying assumption of these early models was
the conditional independence of the fields in the agreement pattern. Winkler
[1993] showed how to estimate the model parameters using the EM algorithm
[Dempster et al. 1977] and demonstrated that a properly applied EM algorithm
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Fig. 1. Process diagram of the record-linkage process.

provides suitable estimates of optimal parameters in a number of situations.
Extensions of the basic parameter estimation approach have been proposed
to those cases where the different fields used in the EM algorithm can have
dependencies upon one another.

Tepping [1968] was the first to propose a record-linkage model focusing on
the costs of the matching decisions rather than purely on the errors by present-
ing a graphical approach for estimating the likelihood thresholds. Verykios
et al. [2003] developed a formal framework for the cost-based approach, intro-
duced by Tepping, by demonstrating an analytical solution for the computation
of the thresholds for the three decision areas problem. Bilenko et al. [2003],
by using SVMlight [Joachims 1999] for learning how to combine the indepen-
dent results of individual fields, indicated that the SVM approach outperforms
other simpler approaches like treating the entire record as one field. A number
of record-linkage models relying on supervised and semisupervised techniques
appear in Cohen and Richman [2002], McCallum and Wellner [2004], and
Singla and Domingos [2004]. Various record-linkage approaches which rely
on active learning have been proposed in Sarawagi and Bhamidipaty [2002]
and Tejada et al. [2002].

Distance-based approaches alleviate the problem of having available
training data, or some domain expert. Monge and Elkan [1996] proposed a
string matching algorithm for detecting similar records by applying a general-
purpose field matching algorithm. Cohen [2000] suggested combining the
TF.IDF weighting scheme with the cosine metric to measure the similarity
of records. Guha et al. [2004] proposed creating a distance metric that is based
on ranked list merging. Ananthakrishna et al. [2002] proposed a distance met-
ric that takes into account the cooccurrence similarity of a pair of records.
Recently, Chaudhuri et al. [2003] proposed a new framework by observing
that the distance thresholds for detecting duplicate records should vary ac-
cording to the record at hand. Finally, various rule-based approaches pre-
sented in Hernández and Stolfo [1995] and Galhardas et al. [2001] as
well as some unsupervised learning approaches proposed in Ravikumar and
Cohen [2004] and Bhattacharya and Getoor [2005] constitute a representative
sample of different solutions which have been proposed for the record-linkage
problem.

3. BACKGROUND

Figure 1 illustrates the big picture of the record-linkage process. The various
steps of the process, along with the transformations the input data are under-
gone, are explained in the following paragraphs.
ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.
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In the product space of two database tables, a match is a pair of records
that represent the same entity and a nonmatch is a pair that represent two
different entities. Within a single database, a duplicate record represents the
same entity as another record in the same database. Instead of considering all
record pairs in the product space, the search of matches is usually constrained
to those pairs that agree on certain fields or parts of fields, which are known
as blocking variables or criteria. Errors resulting from failing to compare
tentative matches (missed matches are those false nonmatches that do not
agree on a set of blocking criteria) is a side effect of blocking.

Matching variables are common identifiers (such as name, address,
annual receipts, or tax code number) that are used to identify matches. Where
possible, sequences of strings of characters like business names and addresses
need to be standardized which is to be parsed or separated into components so
as to allow for better comparison and hence improve matching accuracy. The
basic ideas of standardization are to replace the many spelling variations of
commonly occurring words with standard spellings and use certain keywords
found during standardization as hints for parsing procedures. A user dealing
with a special population can improve the standardization of the data by using
certain terms pertaining to the population. For example, if matching involves
a list of military personnel, the list of titles to be used might be augmented
with the various terms for military ranks, such as “sergeant” and “captain.”

A record-linkage decision rule is a rule that designates a pair either as a
link, a possible link, or a nonlink. Possible links are those pairs for which the
identifying data are insufficient to provide evidence whether a pair is a match.
In this situation, clerks review possible links and determine their match
status. Mistakes can and do actually occur in matching such as false matches
and false nonmatches. Generally, link/nonlink refers to designations under
decision rules and match/nonmatch refers to true status. The matching weight
or score is a number assigned to a pair that simplifies assignment of link and
nonlink status via decision rules. A procedure or matching variable has more
distinguishing power if it is more appropriate to delineate matches and non-
matches than another.

For many projects, automated matching decision rules are developed using
ad hoc and intuitive approaches. Ad hoc rules are easily developed and may
yield good results. The disadvantage is that ad hoc rules may not be applicable
to pairs that are different from those used in defining the rule. Users seldom
evaluate ad hoc rules with respect to false match and false nonmatch rates.
In the 1950’s, Newcombe et al. [1959] introduced concepts of record-linkage
that were formalized in the mathematical model of Fellegi and Sunter [1969].
Fellegi and Sunter’s paper provides: (a) methods for estimating outcome prob-
abilities that do not rely on intuition or past experience, (b) estimates of error
rates that do not require manual intervention, and (c) automatic threshold
choice based on estimated error rates. Fellegi and Sunter considered the like-
lihood ratio of the form L = P[γ |M]/P[γ |U], where γ is an arbitrary agreement
pattern in the comparison space and M and U are the two classes of matches
and nonmatches. The ratio L or any monotonically increasing function of it
is referred to as a matching weight or score while the probabilities are called
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matching parameters. A decision rule D provides three outcomes for record
pairs and is given by the following.

D =






match if L ≥UPPER
possible match if LOWER < L < UPPER
nonmatch if L ≤LOWER

The cutoff thresholds UPPER and LOWER are determined by apriori error
bounds on false matches and false nonmatches. For the decision rule to work,
the matching parameters (probabilities P[γ |M], P[γ |U], and P[M]) must be
computed. Fellegi and Sunter’s paper provides methods of estimating match-
ing probabilities and error rates as well as the appropriate thresholds based
on estimated error rates.

Fellegi and Sunter showed that the decision rule they proposed is optimal in
that for any pair of fixed upper bounds on the rates of false matches and false
nonmatches, the clerical review region is minimized over all decision rules on
the same comparison space. The theory holds on any subset such as pairs
agreeing on a postal code, street name, or part of a name field. In actual appli-
cations the optimality of their decision rule heavily depends on the estimated
matching parameters. For a thorough and complete presentation of various
models for record-linkage the interested reader should refer to Elmagarmid
et al. [2007].

4. MAIN RESULTS

Suppose we have a set of K attributes1 and we have specified the order by
which they are going to be compared. Let {ξn}K

n=1 denote the sequence of com-
parison outcomes, with ξn ∈ {0, 1} and “0” and “1” denoting agreement and
disagreement, respectively. For each attribute we are given the probabilities
pU

n (ξ ), pM
n (ξ ), n = 1, . . . , K, ξ ∈ {0, 1}, with the first quantity denoting the prob-

ability of the comparison of the nth attribute to produce the outcome ξ when
the true hypothesis is HU (nonmatch) and the second when the true hypothesis
is HM (match). Notice that these prior probabilities need not be the same for
every attribute; this is why they depend on n. We also assume that the random
variables ξn are independent under each hypothesis Hi. This means that the set
of outcomes {ξ1, . . . , ξn} has a conditional joint probability which is given by the
following product

P[ξ1, . . . , ξn|Hi] =
n∏

k=1

pi
k(ξk); i = U,M, (1)

with P[A|B] denoting the probability of the event A conditioned on the event
B. Since our intention is to follow a Bayesian approach, we need to specify the
prior probability P[HM] = p of having a match and therefore P[HU] = 1 − p is
the probability of having a nonmatch.

Existing decision schemes compare first the whole set of attributes thus
generating K outcomes {ξ1, . . . , ξK} which are then used to make a selection

1In the sequel the words “attributes” and “fields” are used interchangeably.
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D with D ∈ {1, . . . , L}. In other words, the decision scheme selects among L
different possibilities which, without loss of generality, we enumerate with the
first L positive integers. Actually these integers are simply labels for more
practically meaningful decisions. As we pointed out in Section 3 the most
common example corresponds to the case where L = 3 with D = 1 denoting
selection in favor of “nonmatched,” D = 2 selection in favor of “need of clerical
review,” and D = 3 selection in favor of “matched.”

In this work, instead of first comparing all attributes and then using the
outcomes to make a selection, we propose the application of a sequential
scheme that exploits the attributes gradually. We start by comparing the first
attribute that generates the outcome ξ1. The accumulated information in this
first stage is simply the set {ξ1}. We then ask ourselves whether the accumu-
lated information is adequate to make a reliable selection from the L existing
possibilities. If the answer is positive we stop using any additional attributes
and proceed to the selection process, by selecting one of the L possibilities,
and the whole process terminates; if the answer is negative we continue and
use the second attribute. In the latter case, by comparing the second attribute
we generate the outcome ξ2 which enriches the accumulated information with
a new element thus becoming {ξ1, ξ2}. Again we ask ourselves whether this
information is adequate to make a reliable selection or not. If the answer
is positive we stop using any additional attributes, we proceed to the selec-
tion process, we select one out of the L possibilities, and the whole process is
terminated; if the answer is negative we continue with the third attribute. The
process is repeated until we either stop and make a selection or exhaust all
attributes and then enforce a final selection. What is crucial in this scheme
is the fact that at any stage the decision stop/continue is based on the
accumulated information until this stage and not on any other (for example,
future stage) information.

If N denotes the number of attributes we used, it is clear that N can be any
integer less than or equal to the maximum number K of available attributes.
In other words, with the sequential scheme we just described we are not forced
to necessarily use all attributes. Notice also that N is random, since the
decision stop/continue we make at every stage is based on the random data we
have accumulated up to that point. This clearly means that different record
comparisons will require different number N of attributes. Another important
characteristic is the fact that since we can stop at any stage N we can use a
different selection strategy DN per stage. Of course, DN must comply with the
same basic rule as our stop/continue decision, namely, it must rely only on the
information accumulated up to stage N which is the set {ξ1, . . . , ξN }.

Let us summarize our sequential scheme. We observe that it is comprised
of a pair (N ,DN ), where N is a random variable that takes values in the set
{0, . . . , K} and DN is a random variable that depends on N and takes values
in the set {1, . . . , L}. The first random variable indicates at which attribute we
stop and the second which possibility to select. N , however, is not any random
variable with values in the specified set. It is characterized by a very impor-
tant property: The event {N = n} (the decision to stop at stage n) depends only
on the set {ξ1, . . . , ξn}, that is, the information accumulated up to stage n. Such
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random variables are known under the name of stopping times (s.t.). Further-
more, for the random variable DN the event {DN = j} (selection of possibility j),
is based on the information accumulated until the time of stopping N , that is,
{ξ1, . . . , ξN }. Our goal is to optimally select the s.t. N and the selection rule DN .
As we are going to see, the latter problem is rather straightforward whereas
for the former there exists a very strong supporting theory known as optimal
stopping theory. Since our intention is to find a scheme which is optimum, it
is clear that we first need to define an appropriate performance measure. Our
intention is to adopt a Bayesian approach where we are going to penalize with
known costs the use of attributes and the result of our final selection. This
will give rise to an average cost (exactly as in the classical nonsequential case)
which we will attempt to minimize by properly selecting N and DN .

4.1 A Bayesian Setup

Suppose we are given costs cn, n = 1, . . . , K, with cn > 0 denoting
the cost of using the nth attribute. This cost indicates the complexity of
computing the comparison outcome between the two values of the correspond-
ing attribute from the pair of compared records. Consider also constants
C ji ≥ 0, j = 1, . . . , L; i = U,M, with C ji denoting the cost of selecting pos-
sibility j when the true hypothesis is Hi. It is then clear that any pair (N ,DN )
produces an average cost which can be written as

C(N ,DN ) = E
[ N∑

n=1

cn

]

+
L∑

j=1

∑

i=U ,M
C jiP[DN = j& Hi], (2)

where P[·], as we said, denotes probability and E[·] expectation. In the average
cost, which we intend to use as our performance measure, we clearly distin-
guish two parts. The first expresses the average cost for using the attributes
and the second the average cost due to our selection strategy. It is obvious that
our ultimate goal is to produce the pair (N ,DN ) that will minimize the average
cost.

In order to understand the difference of our scheme with the existing tech-
niques, we recall that in a nonsequential setup we first use all attributes and
then apply a selection strategy D which employs the whole set of comparison
outcomes {ξ1, . . . , ξK}. It is therefore evident that for such a case, the average
cost becomes

C(D) =
K∑

n=1

cn +
L∑

j=1

∑

i=U ,M
C jiP[D = j& Hi],

with the first part being now outside the expectation since it is completely
deterministic and common to all schemes. The only unknown here is the
selection strategy D. If we desire to minimize the average cost in order to
optimize D then it is sufficient to consider only the second part (see Verykios
and Moustakides [2004]). In the approach we propose here we clearly need to
take into account both parts of the average cost, since we are allowed to stop
at any stage and make a selection before exhausting all attributes.
ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.
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Our intention is to minimize the average cost defined in Eq. (2) in two steps.
First, for any given s.t. N , we are going to specify the optimum selection strat-
egy DN . Since the resulting cost will be a function only of N , we will then
optimize with respect to N . Before proceeding with the details of our analysis,
we need to introduce a number of definitions and background results.

LEMMA 1. Assume that we have performed n attribute comparisons with
corresponding outcomes {ξ1, . . . , ξn}, then the joint probability of this event is
equal to

P[ξ1, . . . , ξn] = p
n∏

k=1

pM
k (ξk) + (1 − p)

n∏

k=1

pU
k (ξk). (3)

PROOF. The proof is a direct application of the theorem of total probability.
Specifically, we have

P[ξ1, . . . , ξn] = P[ξ1, . . . , ξn & HM] + P[ξ1, . . . , ξn & HU ]
= P[ξ1, . . . , ξn|HM]P[HM] + P[ξ1, . . . , ξn|HU ]P[HU ].

(4)

The two conditional probabilities are simply the corresponding products from
(1), while for the prior probabilities used our assumption that P[HM] =
1 − P[HU ] = p.

Let us now consider the posterior probability πn that the true hypothesis is
HM conditioned on the event that the available information is {ξ1, . . . , ξn}. In
other words, we are interested in πn = P[HM|ξ1, . . . , ξn]. Using the Bayes rule
we can write

πn = P[HM|ξ1, . . . , ξn] =
P[ξ1, . . . , ξn|HM]P[HM]

P[ξ1, . . . , ξn]

=
p

∏n
k=1 pM

k (ξk)
p

∏n
k=1 pM

k (ξk) + (1 − p)
∏n

k=1 pU
k (ξk)

.

(5)

What is interesting here is the fact that we can find a convenient recurrence
formula for the computation of πn. This is given in the following lemma.

LEMMA 2. Let πn−1 denote the posterior probability at stage n − 1 and
suppose that at stage n the nth attribute comparison generates the outcome
ξn, then

πn =
πn−1 pM

n (ξn)
πn−1 pM

n (ξn) + (1 − πn−1)pU
n (ξn)

; π0 = p. (6)

PROOF. From Lemma 1, Eq. (5), we can easily show that

πn

1 − πn
=

p
1 − p

∏n
k=1 pM

k (ξk)
∏n

k=1 pU
k (ξk)

=
p

1 − p

∏n−1
k=1 pM

k (ξk)
∏n−1

k=1 pU
k (ξk)

pM
n (ξn)

pU
n (ξn)

=
πn−1

1 − πn−1

pM
n (ξn)

pU
n (ξn)

.

(7)

The desired formula is then obtained by solving for πn.
ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.
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Since πn depends only on its previous value and the new acquired informa-
tion ξn, it is clear that {πn} forms a Markov process. The next lemma provides
another useful identity that we are going to need in our analysis.

LEMMA 3. The joint probability of the set {ξ1, . . . , ξn+1} at stage n + 1 condi-
tioned on the event that at stage n we have {ξ1, . . . , ξn} satisfies the relation

P[ξ1, . . . , ξn+1|ξ1, . . . , ξn] =
P[ξ1, . . . , ξn+1]
P[ξ1, . . . , ξn]

= πn pM
n+1(ξn+1) + (1 − πn)pU

n+1(ξn+1).

PROOF. The proof is straightforward once we substitute the numerator and
denominator using Lemma 1 and then apply Eq. (5).

As we can see, the conditional probability depends on the past only through
πn. In other words, the posterior probability summarizes the influence of the
past information to future events. In fact, as we are going to establish, πn is
all we need to know in order to define our optimum strategies. Let us now use
the previous identities in order to put the average cost under a more suitable
form. We first need to introduce some notations and definitions.

From now on, E[·] denotes expectation with respect to the probability
defined in (3). For any event A, we denote its corresponding indicator
function with A (in other words A = 1 when A occurs, otherwise A = 0).
This definition suggests that P[A] = E[ A ]. For our last definition, we recall
that our stopping time N can take upon the values {0, . . . , K}. With this in
mind, for any sequence {xn} of random variables, we define

xN =
K∑

n=0

xn {N=n}. (8)

The next lemma provides the necessary elements that will help us rewrite the
average cost under its final form.

LEMMA 4. Consider the probability P[DN = j& Hi], j = 1, . . . , L, i = M,U ,
then we can write

P[DN = j& HM] = E[πN {DN = j}]P[DN = j& HU ] = E[(1 − πN ) {DN = j}]. (9)

PROOF. Let us first show that if the first relation is true, so is the second.
Indeed, since P[DN = j] = P[DN = j& HM] + P[DN = j& HU ], we have P[DN =
j& HU ] = P[DN = j] − P[DN = j& HM]. Using the indicator function, we can
write P[DN = j] = E[ {DN = j}], therefore the second equality results immediately
ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.
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from the first by simple substitution. Let us now prove the first equality. We
have that

P[DN = j& HM] =
K∑

n=0

P[N = n&Dn = j& HM] =
K∑

n=0

pP[N = n&Dn = j|HM]

=
K∑

n=0

p
∑

ξ1,...,ξn

{N=n} {Dn= j}

n∏

k=1

pM
k (ξk)

=
K∑

n=0

∑

ξ1,...,ξn

P[ξ1, . . . , ξn] {N=n} {Dn= j}πn

=
K∑

n=0

E[ {N=n} {Dn= j}πn] = E
[ K∑

n=0
{N=n} {Dn= j}πn

]

= E[ {DN = j}πN ].

For the third equality we used the fact that the sum over ξ1, . . . , ξn of the prod-
uct of probabilities times a quantity, is simply the definition of the conditional
expectation of the quantity. Since {N=n} {D= j} is the indicator function of the
event {N = n&Dn = j}, its conditional expectation is equal to the conditional
probability of this event. For the forth equality we used the definition of the
posterior probability from (5). For the fifth we used a similar property as in
the third equality, that is, the sum over ξ1, . . . , ξn of the probability times a
quantity, is the expectation of the quantity.2 Finally, for the last equality we
applied the definition in (8). This concludes the proof.

With the help of Lemma 4, the average cost in (2) can be rewritten as

C(N ,DN ) = E
[ N∑

n=1

cn

]

+ E




L∑

j=1

{C jMπN + C jU (1 − πN )} {DN = j}



 . (10)

We are now in a position to find the optimum pair (N ,DN ). We start by opti-
mizing with respect to DN , a task that turns out to be particularly simple.

Running example. To facilitate the understanding of our methodology we
introduce the same example employed in Tepping [1968], for which we present
its solution gradually along with the derivation of our results. Our goal is to
compare two records and make a decision as to their matching status based
on K = 3 attributes: surname, first name, and sex. The outcome ξn of each
attribute comparison is either 0 or 1. The probabilities pM

n (ξn), pU
n (ξn) of the

nth attribute deciding 0 or 1 under matched or nonmatched conditions are
depicted in Table I.

Regarding the possible decisions, we assume that L = 3 with decision D = 1
corresponding to “nonmatched,” D = 2 indicating “clerical review,” and D = 3
corresponding to “matched.” We select the decision costs Cij as follows: C1M =

2This is true because πn and the events {N = n}, {Dn = j} depend solely on the random variables
{ξ1, . . . , ξn}.
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9: 12 · G. V. Moustakides and V. S. Verykios

Table I. Attributes and Attribute Probabilities for Running Example

Attribute pM
n (1) pM

n (0) pU
n (1) pU

n (0)
Surname 0.90 0.10 0.05 0.95
First Name 0.85 0.15 0.10 0.90
Sex 0.95 0.05 0.45 0.55

C3U = 1, C2M = C2U = 0.15, and C3M = C1U = 0. In other words, the cost of
making an incorrect decision is equal to 1, the cost of a correct decision is 0, and
finally the cost of asking clerical review is valued 0.15. Note that without the
second choice (clerical review) this specific selection of costs yields the decision
error probability.

Up to this point the parameters of our approach coincide with the ones of
the classical theory [Verykios and Moustakides 2004; Verykios et al. 2003].
The element that discriminates our methodology from the existing one is the
fact that we impose cost on the usage of each attribute. One might argue that
we could adopt the same idea in the classical methodology as well. This is
indeed true, however, in the classical case, the attribute costs have no effect in
the definition of the optimum decision scheme since by employing the entire set
of attributes we simply incur a constant contribution to the average cost (the
sum of all attribute costs). In the sequential methodology proposed here, this is
clearly not the case. By using a different number N of attributes in each record
pair we contribute with a different portion in the total cost. Consequently,
attribute costs play a fundamental role in selecting the right moment to stop
and make a decision.

For our example we select the following attribute cost values: 8 × c for sur-
name, 5 × c for first name, and 1 × c for sex. Quantities 8,5,1 roughly reflect
the average number of letters existing in each attribute and c the processing
cost per letter. For our example we select c = 0.01 since this value, as we are
going to see, yields simple yet pedagogical results.

4.2 Optimal Selection Strategy

For $ in the interval [0, 1], we define the function g($ ) as follows

g($ ) = min
1≤ j≤L

{C jM$ + C jU (1 − $ )}. (11)

Notice that g($ ) is a known, deterministic, continuous, and piece-wise
linear. Using g($ ) we can now find the optimum selection strategy for any
given s.t. N . Our first theorem provides the desired result.

THEOREM 1. Fix the s.t. N then, for any selection rule DN we have that
L∑

j=1

{C jMπN + C jU (1 − πN )} {DN = j} ≥ g(πN )

with equality attained by the following rule

Do
N = arg min

1≤ j≤L
{C jMπN + C jU (1 − πN )}, (12)

which is optimum.
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Fig. 2. Formation of function g($ ) (thick) for L = 4. The third possibility (dashed) is never selected.

PROOF. Since at any stage the selection strategy DN can select only one
out of the L available possibilities, it is clear that

∑L
j=1 {DN = j} = 1 (only

one of the terms in the sum becomes 1 while all remaining terms are equal
to 0). From {C jM$ + C jU (1 − $ )} ≥ g($ ) (remember g($ ) is the minimum of
these linear functions) and the fact that {DN = j} is nonnegative, we conclude
that

L∑

j=1

{C jMπN + C jU (1 − πN )} {DN = j} ≥ g(πN )
N∑

j=1
{DN = j}

= g(πN ).

The last quantity is independent from DN , it thus constitutes a lower bound to
any selection strategy DN . We easily observe that this lower bound is attain-
able only by the rule defined in (12), which is therefore the optimum.

Figure 2 depicts an example with L = 4 possibilities and selection costs
C1M = 80, C2M = 50, C3M = 30, C4M = 0; C1U = 0, C2U = 20, C3U = 70, C4U =
95. According to our theory, the line C jM$ +C jU (1−$ ) corresponds to selection
j. Since we have four possibilities this generates four linear functions with
g($ ) tracing their minimum. In this figure, the resulting g($ ) is marked with
a thick line. We can see in this example that g($ ) is never equal to the (dashed)
line 30$ + 70(1 − $ ) corresponding to the third possibility. This means that
the optimum rule Do

N completely avoids possibility 3, since there is always an
alternative selection with smaller cost.

From Theorem 1 we deduce that C(N ,Do
N ) ≤ C(N ,DN ) therefore, from now

on, for every s.t. N we are going to use its corresponding optimum selection
strategy Do

N . The resulting average cost then becomes

C̃(N ) = C(N ,Do
N ) = min

DN
C(N ,DN ) = E

[ N∑

n=1

cn + g(πN )

]

,

ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 9, Pub. date: September 2009.



9: 14 · G. V. Moustakides and V. S. Verykios

an expression that depends only on the s.t. N . The goal in our next subsection
is to optimize C̃(N ) with respect to N , that is, to solve the following optimiza-
tion problem

min
N≥0

C̃(N ) = min
N≥0

E
[ N∑

n=1

cn + g(πN )

]

. (13)

This optimization is not as straightforward as the previous one.

4.2.1 Running Example (continued). Let us apply the preceding theory to
the running example introduced in Section 4.1. Substituting the specific values
of the decision costs Cij in (11) we end up with the following g($ ) function

g($ ) = min{$, 0.15, 1 − $ }, (14)

which can be seen in Figure 4.

4.3 Optimal Stopping Strategy

The optimization in (13) constitutes a classical problem in optimal stopping
theory for Markov processes [Shiryayev 1978] and its solution can be imme-
diately obtained by applying the corresponding results. However, in order to
make the presentation more intelligible, we decided to follow a less rigorous
approach by not making any direct reference to this well-established theory.
Unfortunately, such a direction, although more pedagogical, is bound to be
analytically lenient, and it is therefore imperative to emphasize that all our
results are entirely consistent and fully supported by the optimal stopping
theory contained in Shiryayev [1978].

Since every s.t. N can take upon the values {0, 1, . . . , K}, it is evident that
the optimum strategy will be characterized by a maximum of K + 1 stages.
Going from stage 0 to stage K, the optimum scheme must minimize the
corresponding average cost. According to the (Bellman) dynamic program-
ming principle, the solution we seek must also be optimum, if instead of the
first stage we start from any intermediate stage and continue towards the final
one. In other words, if we suppose that we start at stage n having compared
the first n attributes with corresponding outcomes ξ1, . . . , ξn, then the optimum
strategy must still be optimum for the remaining stages. This principle is going
to be the basis for deriving our optimum stopping rule.

Let us assume that we are at stage n having already used the first n at-
tributes that generated the outcomes ξ1, . . . , ξn and led to the summarizing
posterior probability πn. For n = 0, . . . , K, define the additional-optimum-
average-cost given that πn = $ as

Vn($ ) = inf
N≥n

E
[ N∑

k=n+1

ck + g(πN )|πn = $

]

;

and for n = 0, . . . , K − 1, the additional-optimum-average-cost-to-go as

Ṽn($ ) = inf
N≥n+1

E
[ N∑

k=n+1

ck + g(πN )|πn = $

]

.
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Function Vn($ ) expresses the additional optimum average cost we need to pay
to complete our task, given that we are at stage n and the posterior proba-
bility is πn = $ . Function Ṽn($ ) on the other hand expresses the additional
optimum average cost we need to pay when we exclude stopping at n. According
to our definition, V0(p) is the solution to our original problem defined in (13).
The following theorem relates the two costs and provides a useful backward
recursion.

THEOREM 2. For n = K − 1, . . . , 0, function Ṽn($ ) is related to Vn+1($ )
through the equation

Ṽn($ ) = cn+1 +
∑

ξn+1

{$ pM
n+1(ξn+1) + (1 − $ )pU

n+1(ξn+1)}×

Vn+1

(
$ pM

n+1(ξn+1)
$ pM

n+1(ξn+1) + (1 − $ )pU
n+1(ξn+1)

) (15)

where VK($ ) = g($ ). Furthermore Vn($ ) is related to Ṽn($ ) as follows

Vn($ ) = min{g($ ), Ṽn($ )}. (16)

PROOF. When n = K we have exhausted all attributes and we are left with
the selection process. With the help of the posterior probability πK = $ we
select among the L possibilities. Optimal selection has cost g($ ), therefore
VK($ ) = g($ ).

Assume now that we are at an intermediate stage n with the corresponding
posterior probability πn being equal to $ . Let us first verify the validity of
Eq. (15). Being at stage n and choosing not to stop means that we will use
the (n + 1)st attribute and then continue optimally. Comparing the attribute
costs cn+1 and will produce the outcome ξn+1, with the help of which we will
update the posterior probability from πn = $ to πn+1. From this point on (stage
n + 1) we will continue optimally and, according to our definition, this will
have an additional optimal cost Vn+1(πn+1). Therefore the total cost-to-go is
cn+1 +Vn+1(πn+1). Notice, however, that since we are still at stage n we do not yet
know what ξn+1 is going to be. Consequently, we need to consider the expected
value of the total cost conditioned on the fact that πn = $ . In other words, the
optimum-average-cost-to-go is equal to

Ṽn($ ) = cn+1 + E[Vn+1(πn+1)|πn = $ ].

From this relation we immediately obtain (15) if we replace πn+1 with its equal
from Lemma 2; apply Lemma 3 for the conditional probability and then sum
over all possible values of ξn+1 in order to compute the conditional expectation.

To verify Eq. (16) we have to proceed as follows. When at stage n and the
available information is πn = $ , we are faced with two options: Either stop and
select optimally among the L possibilities, or continue to the next attribute
and from that point on continue again optimally. The first option has cost g($ )
whereas the second, as we have seen, Ṽn($ ). Clearly we are in favor of the
option with the smallest average cost. This yields (16).
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From the previous proof we also deduce the optimal stopping strategy.
According to what we said we stop at stage n whenever the cost of stopping is
smaller than the optimum-average-cost-to-go, that is, whenever g(πn) ≤ Ṽn(πn).
With Theorems 1 and 2 we have completely identified the two optimal strate-
gies for N and DN . Let us summarize our optimum scheme.

Offline. We first compute g($ ) from (11) and the K functions Ṽn($ ), n =
K −1, . . . , 0, with the help of Eqs. (15) and (16). This computation is performed
only once and offline and requires only apriori information.

Sequential. We start by setting π0 = p (our prior probability that HM is
true) and compare g(π0) with Ṽ0(π0). If g(π0) ≤ Ṽ0(π0) then we stop without
consulting any attributes and make a selection applying Eq. (12) of Theorem 1
with πN = π0; the whole process is then terminated. If g(π0) > Ṽ0(π0) we go to
stage 1 and use the first attribute.3 In the latter case, the first attribute com-
parison will generate an outcome ξ1. This information is consequently used
to compute π1 by applying the updating formula (6) of Lemma 2. We then
compare g(π1) with Ṽ1(π1). If g(π1) ≤ Ṽ1(π1) we stop any further attribute com-
parison and apply the selection process (12) with πN = π1; the whole process
is then terminated. If g(π1) > Ṽ1(π1) we continue with the second attribute. In
this latter case the comparison of the second attribute produces the outcome
ξ2 which we use to compute π2 from (6). We then compare g(π2) with Ṽ2(π2). If
g(π2) ≤ Ṽ2(π2) we stop any further attribute comparison, we apply the selection
process (12) with πN = π2 and terminate; etc. These steps are repeated until
we either stop and make a selection or exhaust all attributes and then enforce
a final selection using (12) with πN = πK .

For the implementation of the optimum scheme, we see that the average
costs-to-go Ṽn($ ) play a crucial role. This is the reason why the next section
is devoted to uncover a number of important characteristics of these functions
that will facilitate their computation and simplify, considerably, the practical
application of the optimum scheme.

5. ALTERNATIVE IMPLEMENTATIONS OF THE OPTIMUM TEST

The fact that the maximum number of attributes K and the number of possible
values of ξn is finite makes the representation and the numerical computation
of Ṽn($ ) particularly simple. Furthermore, we have a number of interesting
properties enjoyed by these functions and by g($ ) that allow for an alternative
and much simpler implementation of the optimum strategies. This alterna-
tive implementation methodology will be adopted in our simulations section in
order to present a larger and much more realistic application as compared to
the small example that runs through our theory sections.

We start with g($ ) which is defined in (11) and, as we have seen, appears
in the average cost when we use the optimum selection strategy Do

N defined in
(12). We have the following important property regarding this function.

3Of course, under normal conditions we never expect to have g(π0) ≤ Ṽ0(π0) since this amounts to
trusting the prior probability p more than any information provided by the attribute comparisons.
Furthermore, this case results in making always the same selection! Consequently, we anticipate
g(π0) > Ṽ0(π0), which suggests that we should at least use the first attribute.
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LEMMA 5. The function g($ ) is concave, continuous, and piece-wise linear,
with at most L linear segments. According to the optimal selection rule Do

N , in
each segment we assign only a single selection from the L possibilities and each
selection can be assigned to at most one linear segment.

PROOF. Function g($ ) is concave if and only if for every $1,$2, ε ∈ [0, 1] we
have g(ε$1 + (1 − ε)$2) ≥ εg($1) + (1 − ε)g($2). By using the definition of g($ )
from (11), it is straightforward to show this inequality. Concavity also assures
continuity. Since in convex/concave functions the derivative is monotonous, a
line cannot provide two different segments in g($ ) because this would corre-
spond to a nonmonotonous derivative. Therefore each line provides at most one
segment to g($ ) and as we have seen in Figure 2, it is possible for a line not
to participate at all in this function. We thus conclude that g($ ) is comprised
of a number of line segments that cannot exceed L. Furthermore, since each
such segment corresponds to a single line and each line represents a specific
selection, it becomes clear that the optimum rule assigns in each segment a
single selection (the one represented by the corresponding line). Finally, since
each line provides at most one segment, each selection is assigned to at most
one segment.

Using Lemma 5 we can propose an alternative realization of the optimum
selection rule Do

N . We note that each line segment is defined by its two end-
points; it is therefore clear that there are J ≤ L + 1 thresholds of the form
0 = s0 < s1 < · · · < sJ−1 = 1, with sj−1, sj denoting the horizontal coordinates
of the endpoints of the jth line segment. This also means that the optimum
selection rule Do

N makes a specific selection every time the posterior probabil-
ity πn falls inside the interval [sj−1, sj]. Consequently, instead of (12), we can
use the thresholds sj and simply examine which interval the posterior prob-
ability falls into. Figure 3 presents an example with L = 3. We can see the
corresponding thresholds 0, s1, s2, 1 that form the three consecutive intervals
[0, s1], [s1, s2], [s2, 1], with the optimum selection rule assigning in each interval
the selection dictated by the corresponding line segment. Let us now continue
by introducing several important characteristics of the functions Ṽn($ ).

LEMMA 6. The functions Ṽn($ ), n = 0, . . . , K − 1, are concave, continuous,
and piece-wise linear, with a finite number of linear segments.

PROOF. We first prove that the functions Ṽn($ ) are concave. For our proof
we need the following result: If A(x) is concave in x, then for nonegative
a, b , y the function B(y) = {ay + b (1 − y)}A( ay

ay+b (1−y) ) is also concave. We
recall that a differentiable function A(x) is concave if and only if A(x) ≤
A(x0) + A ′(x0)(x − x0) (the graph of a concave function is always below the
tangent line at any point). To prove our statement it is thus sufficient to show
that B(y) ≤ B(y0) + B′(y0)(y − y0). After some tedious but straightforward
manipulations this inequality can be shown to be true based on the equivalent
inequality for A(x).

Let us use this result to show that ṼK−1($ ) is concave. In (15) the expres-
sion under the sum, for every value of ξn+1, is concave by direct application of
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Fig. 3. Typical form of functions g($ ) and Ṽn($ ) for L = 3 selection possibilities and K = 2
attributes.

our previous result and using the fact that VK($ ) = g($ ) is concave. Since the
sum of concave functions is also concave this implies that ṼK−1($ ) is concave.
From this concavity we can also deduce the concavity of VK−1($ ) from (16)
because the minimum of two concave functions is also concave. The concav-
ity of VK−1($ ), through (15), assures the concavity of ṼK−2($ ), etc. We can
formally prove our statement for all n using backward induction. We skip
the details.

In a similar way we can also prove the piece-wise linear nature of Ṽn($ ).
Again we need to prove an auxiliary result: If A(x) is linear in the interval x1 ≤
x ≤ x2 then for nonegative a, b , y the function B(y) = {ay + b (1 − y)}A( ay

ay+b (1−y) )
is also linear for b x1

b x1+a(1−x1) ≤ y ≤ b x2
b x2+a(1−x2) . The proof of this statement is

straightforward. The two bounds for y assure that ay
ay+b (1−y) ∈ [x1, x2]. If A(x) =

c1x+c2 then by direct substitution we can verify that B(y) = c′
1y+c′

2. Let us now
show that ṼK−1($ ) is piece-wise linear. In (15) the expression under the sum is
piece-wise linear for each value of ξn+1. This is true by direct application of our
previous result and using the fact that VK($ ) = g($ ) is piece-wise linear. Since
finite sums of piece-wise linear functions produce piece-wise linear functions
this means that ṼK−1($ ) has the desired property. The same property is also
passed to VK−1($ ) from (16) because the minimum of two piece-wise linear
functions is also piece-wise linear. With the help of (15) the property passes
to ṼK−2($ ), etc. Again we can have a formal proof for all n using backward
induction.

Finally for continuity, we have that this property is assured because of the
concavity of the functions Ṽn($ ).

The fact that g($ ), Ṽn($ ) are piece-wise linear allows for a compact rep-
resentation of these functions. In particular it is sufficient to keep track of
the coordinates of the “corners,” that is, the endpoints of their linear seg-
ments. Indeed, this is true since any other point can be obtained by simple
linear interpolation. For example, in Figure 3, we can completely describe the
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Optimal Stopping: A Record-Linkage Approach · 9: 19

function g($ ) by specifying the four pairs (0, g(0)), (s1, g(s1)), (s2, g(s2)), and
(1, g(1)). Similarly, for the functions Ṽ0($ ), Ṽ1($ ) we only need the coordinates
of the points marked with a dark circle (and the function values at 0 and 1).

Let us now use these characteristics to find an alternative means for de-
scribing our optimum stopping rule. We recall that according to the theory we
developed in the previous section, we stop at attribute n whenever g(πn) ≤
Ṽn(πn), otherwise we continue to the next attribute. This rule can be imple-
mented in an alternative way by comparing the posterior probability πn with
thresholds. The following lemma provides the details for this possibility.

LEMMA 7. There exist an even number In of thresholds (depending on the
stage n) with In ≤ 2L of the form 0 = $n,0 < $n,1 < · · · < $n,(In−1) = 1 where
the intervals ($n,(2i−1),$n,2i) correspond to continuation (to the next stage) and
the [$n,2i,$n,2i+1] to stopping. In particular the first and last intervals always
correspond to stopping.

PROOF. Let us first show that Ṽn(0) > g(0) and Ṽn(1) > g(1) for all n =
K − 1, . . . , 0. We start with ṼK−1(0), we have from (15) that

ṼK−1(0) = cK +
∑

ξK

pU
K(ξK)VK(0) = cK + g(0)

with the last equality being true because VK($ ) = g($ ) and
∑

ξK
pU

K(ξK) = 1.
Since the attribute costs cn were assumed positive we conclude that ṼK−1(0) >
g(0). This (strict) inequality, when combined with (16), also suggests that
VK−1(0) = g(0). We can now proceed and show our claim for ṼK−2(0) in ex-
actly the same way, and more generally for every n using backward induction.
Similar proof applies for the second inequality Ṽn(1) > g(1).

Let us now investigate the formation of the thresholds $n,i. We recall from
Lemma 6 that function Ṽn($ ) is concave. A concave function and a line can
intersect at most in two points, therefore each line segment of g($ ) can have
at most two intersections with Ṽn($ ). The latter is true for all line segments of
g($ ) except the ones containing the points 0 and 1 which can intersect Ṽn($ )
in at most one point (the second is at ∞ because the lines, as we can see in
Figure 3, are parallel). Therefore the total number of intersecting points
cannot exceed 2 × (L − 2) + 2 = 2L − 2. If we also include in these points
the values 0 and 1, then the total number of points In is less or equal than 2L.

Denote the horizontal coordinates of the intersections as $n,i. These quan-
tities constitute our thresholds. Let us order them in increasing order and
suppose without loss of generality that 0 = $n,0 < $n,1 < · · · < $n,(In−1) = 1
(including 0 and 1). As we have shown Ṽn(0) > g(0), this suggests that through-
out the whole first interval [$n,0,$n,1] we will have Ṽn($ ) > g($ ) (otherwise,
due to continuity, we would have had another intersection point smaller than
$n,1). In other words, inside the first interval we decide in favor of stop-
ping. In the next interval [$n,1,$n,2], due again to continuity the inequality is
reversed to Ṽn($ ) < g($ ), suggesting that this is a continuation interval,
and we proceed in this way by switching between stopping and continuation,
exactly as described in the lemma.
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With the help of Lemma 7 the decision whether to stop or continue can
be made by comparing the posterior probability with the thresholds $n,i, i =
0, . . . , In − 1. This is entirely equivalent to comparing g(πn) with Ṽn(πn). Thus,
if πn ∈ ∪l[$n,2l,$n,2l+1] we stop, otherwise we go to the (n+ 1)st attribute. If we
stop then we proceed to the optimal selection process and compare πn against
the selection thresholds sj examining which interval [sj, sj+1] contains the pos-
terior probability. As we have proved, each such interval corresponds to a
specific selection. In Figure 3 we can see that for n = 0 we have 4 thresh-
olds 0,$0,1,$0,2, 1, while for n = 1 we have 6 (the maximum since L = 3)
0,$1,1,$1,2,$1,3,$1,4, 1. For n = 0 if π0 falls inside the two intervals [0,$0,1],
[$0,2, 1] we stop and proceed to the optimal selection process whereas if it falls
inside the interval ($0,1,$0,2) we continue with the first attribute. Similarly,
for n = 1 the intervals [0,$1,1], [$1,2,$1,3], [$1,4, 1] are for stopping while
the ($1,1,$1,2), ($1,3,$1,4) for continuation. Finally, for optimal selection we
have the three intervals [0, s1], [s1, s2], and [s2, 1], each one corresponding to a
different selection possibility.

5.0.1 Running Example (continued). Once the function g($ ) is available
from (14), we can proceed to the computation of the functions Vi($ ), i = 0, 1, 2,
recalling that V3($ ) = g($ ). As we are going to detail in Section 5.3, the order
by which we compare the attributes plays also an important role in the final
average cost. This is another notable difference as compared to the classical
methodology where attribute ordering has absolutely no effect in the total cost.
For our example we are going to use the attributes in the following order: sex,
first name, surname.

For the consecutive computation of the functions V2($ ),V1($ ),V0($ ) we are
going to apply (15) and (16). We start with V2($ ) and use the observation
that V3($ ) = g($ ). By applying (15) with n = 2 and using the parameters
of the third attribute (surname): c3 = 8c and, from Table I, pM

2 (1) = 0.90,
pU

2 (1) = 0.05, pM
2 (0) = 0.10, pU

2 (0) = 0.95, we can compute Ṽ2($ ). This function
is depicted in Figure 4 and, as we can see, it is also piece-wise linear. Using
(16) we obtain V2($ ). We repeat the same procedure for the computation of
V1($ ). Here we use the parameters of the second attribute (first name): c2 = 5c,
pM

1 (1) = 0.85, pU
2 (1) = 0.10, pM

2 (0) = 0.15, pU
2 (0) = 0.90 and apply (15) with

n = 1 to find Ṽ1($ ). This function, like the previous one, can be seen in Figure 4.
Using (16) gives rise to V1($ ). Finally, we need to apply once more the pair
of equations (15), (16) in order to compute Ṽ0($ ) and V0($ ). Here we use
n = 0 and the parameters of the first attribute (sex) c1 = c, pM

3 (1) = 0.95,
pU

3 (1) = 0.45, pM
3 (0) = 0.05, pU

3 (0) = 0.55.
In Figure 4 we also indicate the thresholds of each level. Besides the two

standard 0,1 thresholds, we observe that Ṽ0($ ) generates two additional ones:
$0,1 = 0.069 and $0,2 = 0.9653 [the points of intersection with the function
g($ )]. If the prior probability p is smaller than the first threshold we decide
in favor of “nonmatched” whereas if it is larger than the second in favor of
“matched.” If p is between the two values then we continue with the first
attribute (sex). Note that in this case there is no decision in favor of “clerical
review.” It is clear that a prior outside the interval ($0,1,$0,2) corresponds to
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Fig. 4. Form of the functions g($ ) and Ṽn($ ), n = 0, 1, 2 and corresponding thresholds for the
running example.

the case where we place more trust to the prior knowledge as opposed to any
data coming from comparisons. Of course, in a normal situation it is advisable
to avoid this situation by selecting the prior probability p inside this interval.

To either stop at the first level and decide or continue with the second at-
tribute we need to use the thresholds coming from Ṽ1($ ). As we can see we
have four: $1,1 = 0.111, $1,2 = 0.4, $1,3 = 0.5285, $1,4 = 0.8845. Using the
prior probability p and the outcome ξ1 of the first attribute comparison, we
compute the first posterior probability π1 according to (6). If π1 is in the inter-
val [0,$1,1] we stop and decide in favor of “nonmatched”; if it is in the interval
[$1,2,$1,3] we stop and decide in favor of “clerical review”; if it is in [$1,4, 1]
in favor of “matched.” In all other cases, that is, if π1 falls in ($1,1,$1,2) or in
($1,3,$1,4) we continue with the second attribute.

If we continue with the second attribute we obtain the comparison outcome
ξ2. We then use this information to form π2 following (6). Now for this second
level we have once more four thresholds $2,1 = 0.0881, $2,2 = 0.3238, $2,3 =
0.6353, $2,4 = 0.9079 due to the intersections of Ṽ2($ ) with the function g($ ).
To decide we follow again the same procedure as in the previous case, that is,
for π2 ∈ [0,$21] decision in favor of “nonmatched,” for π2 ∈ [$2,2,$2,3] decision
in favor of “clerical review,” and for π2 ∈ [$2,4, 1] decision in favor of “matched.”
If π2 ∈ ($2,1,$2,2) ∪ ($2,3,$2,4) then we continue with the third attribute.

Using the third attribute leads to the generation of ξ3 which we substitute
in (6) to form π3. Note that at this stage we have completely exhausted all
attributes, therefore the only possibility left is to make a final decision. For
this we use the two thresholds s1 = 0.15, s2 = 0.85 of the function g($ ). If
π3 ∈ [0, s1] we decide in favor of “nonmatched,” if π3 ∈ (s1, s2) in favor of “clerical
review,” and if π3 ∈ [s2, 1] in favor of “matched.” Of course the expectation is
that in most of the cases we will reach decision in earlier stages thus reducing
(in the average) the number of attribute comparisons.

5.1 Tree Representation of Optimum Test

A particularly appealing characteristic of our optimum scheme is our ability
to interpret the whole decision mechanism with the help of a decision tree. If
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Fig. 5. Example of decision tree with K = 3 attributes and L = 3 selection possibilities.

the comparison outcomes ξn are binary then this tree turns out to be binary as
well. Again, for simplicity we limit the presentation to this case.

An example of a tree is depicted in Figure 5 for K = 3 and L = 3. We
distinguish K + 1 levels with the first, the 0th level, having a single starting
node. All subsequent levels imply the use of the corresponding attribute. We
distinguish two types of nodes: dark and white. Dark nodes correspond to
continuation (to the next level) and therefore usage of the next attribute, while
white nodes correspond to stopping and optimal selection. This means that
white nodes are leaves. Each leaf contains the value obtained by applying the
optimum selection strategy. Regarding now the dark nodes, since we are in
the binary case, outcomes ξn can be equal to 0 or 1, therefore from a dark node
with a 0 we move to the left and with a 1 to the right.

In a normal situation, the starting node must be dark. This happens when
g(p) > Ṽ0(p) where p is the prior probability P[HM] to have a match. If g(p) ≤
Ṽ0(p) then the tree collapses into a single white node with a given selection
value in its interior, suggesting that we should always make the same selection
without consulting any attributes.4 Finally, we observe that in the last level
there are only white nodes (leaves) since we have exhausted all our attributes
and we are left with the selection process.

Let us now describe the tree generation mechanism. We recall that we must
specify the order by which we compare the K attributes. Given the order-
ing, the attribute probabilities and costs, the prior probability, and the selec-
tion costs, we compute the functions g($ ), Ṽn($ ), n = 0, . . . , K − 1, exactly as
described in the previous section. From g($ ) we then compute the selection
thresholds sj, j = 0, . . . , J − 1 and from each function Ṽn($ ) the thresholds
$n,i, i = 0, . . . , In − 1 for stopping/continuation for the nth attribute. These
quantities are needed for the generation of our tree.

During the generation process, to each node (white or dark) we assign a
quantity that expresses the posterior probability. Figure 6 can be used to
illustrate the generation mechanism. Notice that a dark node at level n −
1 becomes the parent of two children at level n. If πn−1 is the posterior

4This case occurs when for example p is very close to 0 or 1, or when the attribute costs cn are
exceedingly higher than the selection costs Cji.
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Fig. 6. Detail of decision tree generation.

probability assigned to this node, then by moving to the left with ξn = 0 we as-
sign to the left child the corresponding probability πn, which is computed using
the indicated formula (coming from Lemma 2). A similar procedure holds for
the right child. Now we must color the two children. In both cases we compare
the computed posterior probability πn with the thresholds $n,i of this level,
and decide whether we should stop or continue. If the decision is “continue”
we color the node dark; if the decision is “stop” we color the node white. In the
latter case we use πn to make the optimum selection by comparing the poste-
rior probability with the thresholds sj. The selection is placed in the interior of
the white child, which becomes a leaf. In the example depicted in Figure 6 the
left child is colored dark; therefore we need to continue further from this node,
whereas the right child’s color is white and the optimum selection turned out
to be 2. This child becomes a leaf.

We would like to emphasize that the computation of the functions g($ ),
Ṽn($ ), the thresholds $n,i, sj, and the posterior probabilities πn is required
only in the tree generation phase, which is an offline task. When the actual
record-linkage testing begins we simply use the tree (as it appears in Figure 5)
without the need to reuse these quantities. Guided by the comparison out-
comes ξn we follow a path in the tree until we reach a leaf which specifies the
optimum selection and terminates the testing (between two records). Notice
that the gain of our sequential scheme comes from the leaves that appear at
intermediate levels (not requiring all attributes to be compared).

5.1.1 Running Example (continued). Keeping the same parameters de-
fined previously in the running example and the results we obtained so far
regarding the thresholds $i, j and si, we can now apply the previous theory in
order to build a binary tree representation of the decision mechanism. For this
to be possible we need to define the prior probability p. We select for simplicity
p = 0.5.

In Figure 7 we can see the resulting tree, the values of the posterior prob-
abilities at each node, and the corresponding coloring with the necessary
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Fig. 7. Decision tree generation for running example.

decision when the color is white. Let us follow the coloring mechanism to
understand this particular tree generation case. For the starting point we
observe that p = 0.5 is between the two thresholds $0,1 = 0.0690,$0,2 = 0.9653,
suggesting that we must continue with the first attribute. Consequently, the
starting node will be colored black. Going to the left with ξ1 = 0 and applying
(6) produces the posterior probability π1 = 0.0833, whereas going to the right
with ξ1 = 1 yields π1 = 0.6786. We must now compare each value with the
thresholds $1,i. Since $1,1 = 0.111, we observe that 0, 0833 ∈ [0,$1,1], suggest-
ing that here we must stop and decide in favor of 1 (nonmatched). Therefore
this node is colored white and the corresponding decision is 1. In the opposite
direction, since $1,3 = 0.5285,$1,4 = 0.8845, we note that 0.6786 ∈ ($1,3,$1,4)
which is a continuation region, therefore this node is colored black. Continu-
ing from this last node, again we have two possibilities: left and right. Each
direction results in a different posterior probability π2 which is marked at the
side of the corresponding node. These probabilities must be compared with the
thresholds of the second level $2,i. By direct comparison we can immediately
deduce that both cases lead to stopping and decision. The left decides in favor
of 2 (clerical review) and the right in favor of 3 (matched).

It is interesting to note that the optimum scheme uses only the first two
attributes and never the third. Furthermore the resulting tree has only 3
leaves, as opposed to 8 needed for the classical methodology.

5.2 Blocking Implementation of Optimum Test

The sequential scheme, the way it is presented, suggests a record-by-record
testing. One might therefore envisage that there might be a possibility, using
blocking type methodology, to outrun it. Next we will show that the exist-
ing blocking methods constitute in fact primitive forms of sequential testing,
corresponding to an alternative implementation of a sequential test.
Consequently, our test continues to enjoy the same optimality properties even
in this seemingly different class of methodologies.

Instead of applying our test to each database record separately, we can
follow an alternative idea. Let us initially apply the first stage of our test to
all records in the database. In other words, compare the first attribute of the
query record with the corresponding attribute of each record in the database.
For each record this will produce an outcome ξn and allow for the computa-
tion of the corresponding posterior probability π1. We can now categorize the
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records using their posterior probabilities. Each value π1 either belongs to the
stopping region or to the continuation region (defined by the thresholds $1,n).
We can thus separate the records into two classes, one corresponding to con-
tinuation and the other to stopping. To the records that belong to the stopping
class we apply the optimal selection strategy and decide among the L possibil-
ities. These records are excluded from any further testing. In the remaining
records (the ones belonging to the continuation class) we apply the second stage
of our test. In other words, the second attribute of each record generates an
outcome ξ2 that is used to update the corresponding posterior probability π2.
We can now further categorize these records according to π2 into stopping and
continuation classes. In the first class we apply the optimal selection and then
exclude this whole class from any further testing; in the second we continue
with the third stage of our test, etc.

From the previous discussion, it becomes clear that it is impossible to find
more efficient solutions inside the blocking methodology class than the one
offered in this article. This is because blocking simply constitutes a different
implementation of the record-by-record sequential scheme.

5.3 Optimum Attribute Ordering

The theory we developed in Section 2 and the useful tree and blocking
representations of the optimum scheme detailed in the previous subsections
are based on the assumption that we have a prespecified attribute ordering. In
this subsection we address this final issue.

Given the attribute and selection costs and the prior and the attribute prob-
abilities, the optimum average cost Vo(p) becomes a function of the attribute
ordering. To make this clear, let us assume that we have K = 4 attributes
enumerated as 1,2,3,4. Then the optimum average cost obtained by comparing
the attributes in the order 1,2,3,4 is different5 from the optimum average cost
we obtain if the comparisons are performed in the order, say, 2,1,4,3. There
are K! possible permutations of the attributes and, with the theory developed
in Section 2, to each permutation we can assign an optimum sequential test
and its corresponding optimum average cost V0(p). It is then clear that the
ordering that provides the minimum average cost value V0(p) is the optimum.

Unfortunately, it does not seem possible to perform ordering optimization
efficiently, that is, without an exhaustive search through all K! possibilities.
Although in most database systems the number of attributes K is limited,
examining all permutations might still be prohibitive from a computational
point of view. This is because K! increases dramatically with small increases
in the value of K. For example, 7! = 5 040 while 10! = 3 628 800 and
11! = 39 916 800. Thus a case with 7 attributes might require acceptable com-
putation time to examine all permutations, however, the same task becomes
Herculean with 10 or 11 attributes.

5Such difference is nonexistent in nonsequential schemes because attribute ordering is immaterial
when we first compare all attributes and then make a selection.
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For cases where exhaustive search is not practically feasible we propose the
following ad hoc rule.

Sort the attributes in increasing order according to the
values cn[pM

n (0) + pU
n (1)].

Roughly speaking, we should defer usage of attributes that often make errors
(expressed by pM

n (0) + pU
n (1)) and have high cost. This rule requires only order

K log K computations (for sorting) and is therefore very efficient. Furthermore,
although it is not guaranteed to yield the optimum ordering in all cases, it was
observed through numerous simulations to provide average costs that were ex-
tremely close to the minimum. Of course, it is also possible to come up with
more sophisticated techniques and improve this rule (by performing for exam-
ple exhaustive search in subsets of attributes).

5.3.1 Running Example (continued). Let us apply the previous observa-
tions to the running example. An exhaustive search requires 3! = 6 per-
mutations of the attributes and computation of the optimum solutions of the
corresponding optimal stopping problems. As before, we assume p = 0.5. By
ranking the solutions according to their corresponding V0(0.5) values, the per-
mutation that produces the smallest average cost is the optimum. Using the
theory we introduced so far to compute the average cost, we find that the opti-
mum ordering is: sex, first name, surname, with a corresponding average cost:
V0(0.5) = 0.13165.

Our simple ad hoc rule produces the following ordering: sex, surname, first
name, with average cost V0(0.5) = 0.13170 which is extremely close to the op-
timum. In fact this permutation generates the second best average cost. We
should mention that the ad hoc rule does not take into account the prior prob-
ability p, as opposed to the result of the exhaustive search which is a function
of this parameter.

6. EXTENSIONS AND VARIANTS

There are different possibilities for extensions and variations. We present a
characteristic example for each case.

6.1 General Comparison Outcomes

This extension is in fact immediate and requires almost no additional effort.
This is because the presentation of our results was made under a general form
not limited to the binary case. Let us assume that outcome ξn takes values
inside a finite set &n. In other words, we assume that different attributes
may produce outcomes with values in different sets. As it turns out the actual
values of ξn are immaterial since they enter in the computation of the posterior
probability only through the probabilities pM

n (ξn), pU
n (ξn). Therefore ξn can take

any quantitative or qualitative value.
Theorems 1 and 2 that provide the optimum selection and stopping strate-

gies continue to apply unaltered with the only difference being in (15) where
the summation is over all possible values of ξn+1 ∈ &n+1. The results of
Section 5 are also valid, that is, functions g($ ), Ṽn($ ) are still piece-wise
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linear, concave, and continuous and for each stage we have thresholds $n,i
that define the stopping/continuation intervals.

The only significant difference, as compared to the binary case, occurs in the
decision tree implementation of the optimum scheme. As expected, the tree is
no longer binary. Indeed, at level n−1 we have now |&n| edges emanating from
each dark node, leading to an equal number of children. The posterior prob-
ability at each child node is still computed using Lemma 2 and its coloring is
performed in exactly the same manner as in the binary case by comparing the
posterior probability to the stage thresholds $n,i and to sj for optimal selection.

6.2 An Important Variant

The following problem defines an interesting variant of our original setup.
Suppose that we would like to minimize the average selection cost, as in the
nonsequential Bayesian approach [Verykios and Moustakides 2004]

min
N ,DN

L∑

j=1

∑

i=M,U
C jiP[DN = j& Hi], (17)

but among all sequential strategies (which clearly include all nonsequential
tests as a special case). Without imposing any other constraint, let us exam-
ine what is the test that minimizes (17). Notice now that since attribute us-
age has no cost, information accumulation is not only harmless but also helps
the selection process if it is used wisely (optimally). It is therefore clear that the
test that minimizes (17) is the classical optimum nonsequential test that uses all
attributes [Verykios and Moustakides 2004]. There is no sequential test that
can have better performance! It is only by taking into account the attribute
costs that makes a sequential scheme preferable to the optimum nonsequen-
tial test.

As we noted earlier, the classical test is undesirable because of its need for
all attributes. In order to limit this necessity, we can impose a constraint on
the number of attributes to use. We can, for example, attempt to solve (17)
under the constraint

E[N ] ≤ K, (18)

where K a constant defined by the user satisfying 1 ≤ K ≤ K (the expected
number of attributes cannot exceed the total number K and we would like
to consult at least one attribute). In other words, we do not impose a hard
constraint on N but rather, in the average, we would like it to be no larger
than some quantity K. This constraint diverts the optimum tests from the
nonsequential class to the sequential one. Of course the crucial question here
is: How much do we lose in performance by constraining our scheme with (18)?
We defer the answer to this question until the next section.

Let us conclude this subsection by briefly presenting the solution to the
constrained problem defined by (17) and (18). With the help of the Lagrange
multiplier technique, the constrained problem can be reduced into an uncon-
strained, similar to the one solved in Section 4. Specifically, if α > 0 denotes a
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Lagrange multiplier, then we can define the average cost of the unconstrained
problem

C(N ,DN ,α) = αE[N ] +
L∑

j=1

∑

i=M,U
C jiP[DN = j& Hi] (19)

which falls under the setup of Section 4 with cn = α. According to the Lagrange
multiplier methodology, we must solve the problem assuming α is given. The
resulting optimum stopping and decision strategies clearly become a function
of this parameter. We must then select a specific Lagrange multiplier α = α(

for which the corresponding strategies satisfy the constraint with equality. One
can then show that the stopping and selection rules we obtain for α = α( also
solve the original constrained optimization problem of (17) and (18).

7. EXPERIMENTS AND EVALUATION

In order to evaluate the proposed methodology, we have made use of the Record
Linkage Software [Yancey and Winkler 2002] developed by the Statistical
Research Division of the U.S. Bureau of the Census and has been provided
to us by William E. Winkler. A general overview of the record-linkage process
as it is performed by the Bureau of the Census is as follows. The process begins
with two files which must be standardized using the address and name stan-
dardizer. The record matching system includes modules to standardize names,
both business and personal, and street addresses. The standardized files must
then be sorted according to the blocking variables, producing in this way a pair
of sorted files. The matching program matches the two sorted files. After each
pass through the matching program, record pairs are assigned either to a file
of matched records or to a “residual” file of unmatched records that are not in-
volved in the matched pairs. It is usually advisable to run the residual records
through the matching program again after adjusting the matching score para-
meters and sorting and blocking on a different set of variables.

The matching program is distributed as a set of executable files that have
been compiled for a windows machine. The program takes as input two files,
each one containing 12 attributes. The first file contains 449 records and the
second one 392. The input files need to be sorted and standardized. The lay-
out of the input files is described in a parameter file that is provided to the
matching program. A subset of the 12 attributes is used for blocking the file.
The variables to be used for blocking are also described in the same parame-
ter file, along with the prior probabilities of the 10 attributes to be used for
matching. A program runs to compute the distribution of the comparison vec-
tors produced by the linkage phase in the comparison space, so that the initial
priors are adequately modified by using the EM algorithm to the data at hand.
The matching program runs then and creates two sorted files based on the
scores, one for positive scores and another one for negative scores. A script
that runs next produces a collective output containing the full range of score
values along with the pairs of records that generated these scores.

The 10 attributes to be used for comparison and their corresponding proba-
bilities under the match and nonmatch hypotheses appear in the Table II. Our
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Table II. Attributes and Attribute Probabilities for the Experimental Evaluation Example

Attribute pM
n (1) pM

n (0) pU
n (1) pU

n (0)
Last Name 0.9245 0.0755 0.2035 0.7965
First Name 0.7342 0.2658 0.0019 0.9981
Middle Name 0.7232 0.2768 0.0699 0.9301
Relation 0.5012 0.4988 0.1380 0.8620
Marital Status 0.9198 0.0802 0.3824 0.6176
Sex 0.9796 0.0204 0.4879 0.5121
Race 0.9856 0.0144 0.8618 0.1382
Age 0.8756 0.1244 0.1038 0.8962
House Number 0.9716 0.0284 0.1909 0.8091
Street 0.9018 0.0982 0.2856 0.7144

intention is to solve the variant introduced in Section 6.2. Following our ad
hoc rule and since all attributes have common costs cn = α, we only need to or-
der the attributes according to their attribute error probabilities pM

n (0)+ pU
n (1).

This yields the following ordering: House Number, Age, First Name, Last Name,
Middle Name, Street, Marital Status, Sex, Relation, Race.

We perform an initial blocking of the records in the input files by using
two blocking variables, the cluster id in each record and the first character
of the last name. This generated 68 blocks in both files. From the overall
68, only 59 blocks match, which means that 9 blocks from both files are not
compared. This created a number of 50 records and 20 records from each file
correspondingly that escape comparison. Based on the sizes of the matched
blocks, we can compute an upper bound for the matched records. Assuming
one-to-one matching (which means one record from the first file will match
with at most one record from the second) we find, by summing the minima of
the sizes of the matched blocks, that we can have at most 334 matches. By
summing the products of the sizes of the matched blocks we compute the total
number of record comparisons, which turns out to be 3703. These two figures
can help us estimate the prior probability as p = 334/3703 = 0.09.

Regarding selection possibilities we consider the simple case of L = 2
selections (we decide between “Matched” and “Nonmatched”; there is no
“Clerical review”). As average selection cost we use the selection error prob-
ability, which is obtained by defining C00 = C11 = 0 and C01 = C10 = 1. With
this last definition we have specified all parameters of the problem and we are
finally in a position to apply our theory.

We would like now to answer the question we deferred until this moment
concerning the loss in performance as a result of the constraint in (18). In order
to compare the sequential test against the classical that uses all attributes,
we are going to solve the problem defined in (19) for different values of the
Lagrange multiplier α. Each value of α produces an error probability and a
corresponding average number of attributes. By varying α we can make a
plot of the error probability as a function of the average number of attributes.
We expect this curve to be decreasing since the more attributes we use, the
smaller the selection error probability becomes. Furthermore, as the average
number of attributes approaches the maximum number K, the selection error
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Fig. 8. Probability of error as a function of the expected number of attributes.

probability is expected to approach the error probability floor imposed by the
classical nonsequential test that uses all K attributes.

Figure 8 depicts the graph we just described. In the same figure we also
display, with a horizontal line, the error floor attained by the classical test.
The latter has the value 3.324 × 10−3. As we emphasized in the previous
subsection, this floor cannot be surpassed by any sequential scheme. We ob-
serve that the sequential test, when the average number of attributes K is low
(below 2), it exhibits an error probability which is an order of magnitude larger
than the classical test. However, performance improves rapidly as we increase
the average number. Indeed, at K = 2.5 attributes it reaches the same order of
magnitude, whereas at K = 3.5 it becomes practically indistinguishable from
the classical test. The fact that we attain the same minimum error level but
at a significantly lower (average) attribute usage is what makes the sequen-
tial methodology attractive. Indeed, in this example by practically making no
sacrifice in error performance we can cut down the attribute usage to one-third.
If we are willing to make a slightly more significant sacrifice, say raise the
error probability from 3.3 × 10−3 to 5.7 × 10−3, then we can attain this value
with an average of just 1.85 attributes instead of 10.

The previous findings constitute theoretical predictions on our scheme’s per-
formance, based on the analysis developed in the previous sections. But does
the practical application of the sequential test corroborate these analytical
figures? To answer this question, we generated the thresholds for the sequen-
tial test for an expected number of attributes K = 3.6. Theory predicts that
this test has an error equal to 3.333 × 10−3 which is extremely close to the
floor value 3.324 × 10−3. In other words, we expect the sequential and the
classical test to have the same performance. Indeed, by running the two tests
on the 3703 record comparisons, they both produced 24 errors. We also gen-
erated thresholds for the sequential test for an expected number of attributes
K = 1.85, which corresponds to a theoretical error probability of 5.7 × 10−3. We
ran the sequential test and the number of errors increased to 65.
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Fig. 9. Frequency of number of attributes needed by the sequential test to reach a final decision.

Fig. 10. Binary decision tree implementation of the optimum sequential test for K = 1.85.

In Figure 9, using bar-charts, we show how often the sequential test needs
1,2,. . . ,10 attributes to reach a final decision. Subfigure (a) refers to K = 3.61
and (b) to K = 1.85. The equivalent bar-chart graph for the classical test is
a single bar at 10, with frequency 3703. In (a) most of the final decisions
(2502) are reached by using the first 3 attributes. We can also see that the
sequential test resorted only 68 times to the complete set of attributes. If we
allow ourselves the benefit of making more errors (65 instead of 24) then, in
case (b), most of the decisions are reached with a single attribute (these are
“nonmatched” cases which constitute the majority of the record comparisons).
Here the test used all attributes only 18 times.

Figure 10 depicts the binary decision tree representation of the optimum
sequential test for the case K = 1.85. We have selected this case because
its binary tree is much simpler (and consequently more legible) than the
corresponding tree for K = 3.61. We have slightly changed the tree layout
as compared to Section 5.1 to accommodate the limitations imposed by the ar-
ticle format. Instead of going left-right, now with ξn = 1 we go down while
with ξn = 0 we go right. A white leaf with a 1 suggests a decision in favor of
“matched” and with a 0 in favor of “nonmatched.” We observe the top horizon-
tal edge which corresponds to a decision in favor of “nonmatched” every time
the first attribute outputs a 0. According to Figure 9(b) this happens 2762
times. There is also the left most vertical line which is comprised of three
consecutive edges. This suggests that whenever the first three attributes
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output three consecutive 1s we decide in favor of a “matched.” Again as we
can see from Figure 9(b) this happens 189 times (there is no other combination
of the first 3 attributes that leads to a decision). It is also worth counting the
total number of leaves in the tree, which is 66. This means that there are only
66 different attribute combinations that arise in the sequential decision mech-
anism as compared to the 210 = 1024 that can be encountered in the classical
test.

Let us now examine whether the simulation results are consistent with
the theoretical findings regarding probability of error and average number of
attributes. In Figure 9, by multiplying the frequencies with the corresponding
number of attributes and then adding the products, we compute the total num-
ber of attribute comparisons used by the sequential test to complete all 3703
cases. In (a) this number is 15, 067 and in (b) 7, 723. The corresponding num-
ber for the classical test is 3703× 10 = 37, 030. Consequently, we have a 59.3%
reduction in number of attribute comparisons in (a) and 79.2% in (b). We can
also compute the arithmetic average number of attributes used by the sequen-
tial test. We have K̂ = 15, 067/3703 = 4.07 for (a) and K̂ = 7, 723/3703 = 2.09
for (b) which must be compared with the theoretical values K = 3.61 and 1.85,
respectively. We note a relatively close agreement.

By forming the ratio Pe = 24/3703 = 6.48 × 10−3 we compute the fre-
quency of errors which should normally agree with the theoretically deter-
mined error probability 3.324 × 10−3. As we can see, there is a significant
difference. We recall, however, that Pe is simply an estimate for the actual
error probability and since estimates are random variables, Pe has a vari-
ance. One can show that with 3703 record comparisons Pe can differ from the
theoretical probability6 even by 100%. In fact, we need 10 times more record
comparisons in order for Pe to start being close to the error probability. The
same reasoning when applied to the arithmetic average number of attributes
K̂ results in a qualitatively different conclusion. Specifically, with 3703 record
comparisons, statistical analysis shows that K̂ should deviate from K by a
(practically) tolerable 10%. The two computed K̂ values are indeed consistent
with this claim since they differ from their theoretical counterparts by approx-
imately this percentage.

8. CONCLUSION

We have presented a sequential test for solving the record-linkage problem.
Instead of first comparing all attributes and then making a decision as is
the case in the existing methodology, we propose the gradual assessment of
attributes and the possibility to stop and decide at any intermediate step.
Based on a well-defined performance measure, we were able to optimize the
proposed decision scheme by finding interesting tree-like and blocking type
implementations. The strong point of the sequential methodology lies in the
fact that we can achieve practically the same performance as the classical test,
but by using, on average, a significantly lower number of attributes.

6We basically refer to the 99% confidence interval.
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