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where E, = l?‘,]f( t)]’ dt is the signal energy. Note that the where E, = l?‘,]f( t)]’ dt is the signal energy. Note that the 
coefficients a;,, coefficients a;,, in (9) are obtainable in explicit form as the in (9) are obtainable in explicit form as the 
coefficients in the binomial expansion of coefficients in the binomial expansion of 

Clearly, the technique used here can be extended using three 
parameters to introduce another degree of freedom: 

3n 

(1 - au;z - ‘y;z2)” = 1 - ; a;,zk 
k=l 

where cz; = 2 - fi and Q; = 1 - 0. 

III. RANDOM CASE 

In this section x(t) is assumed to be a complex-valued WSS 
process with power spectral density S,(w) = 0 for ]o] > 8, and 
R,(T) = (1/2?r)~T!,Sx(w)eJWTdw for all r, where R,(T) 6 
E{x(t + 7)x*(t)}. With Z,,(w) L 1 - C$=lukneK’WT for o E 
[ - rr, n] it is an easy exercise to verify that 

E x(t) - E a,,x(t-kT) 
k=l 

From the preceding section we have 

(1 - (~ie~‘~r - a2e-J20T) ’ = 1 - k$1 a&JkWT = I,,,( 0) 

thus 
1 I,,,( 0) I2 = (I1 - alePior - a2e-J207.12)“. 

However,forcu,=a;=2-fianda,=cu$=l-fi,O<T 
5 l/2, and w E [ -rr, n], we have ]Z2,1(w)]2 5 p” where p = 
4(3 - 2fi) = 0.6863, since ]I - cyfe-lwT - a$e-j20T]2 =< p for 
-r/2 6 wT s 7r/2. 

Theorem 2: For x(t) a WSS random process with power spec- 
tral density having support on [ - rr, V] and 0 < T 5 l/2 the 
coefficients { a;,, } determined from the identity 

[ 1 - (2 - 0) e-jwT - (1 _ a) e-j2wT] ” = 1 - g a;,,e-jkwT 
k=l 

are such that 

E x(t) - F &x(t - kT) Sr(w) da 
k-l n 

where /3 = 0.6863. 
= p . R,(O) 

Again we observe that the mean-square convergence is uniform 
in t for t E (- co, co) and the coefficients { ai,,} are independent 
of both T and the spectral properties of the particular random 
process being estimated. 

IV. REMARKS 

We have determined a set of numerical coefficients which 
yields a one-step prediction of either a deterministic or random 
band-limited process with error that decreases geometrically as 
the number of past samples used becomes infinite. While the 
deterministic signal was assumed to have finite energy, the as- 
sumption that the signal spectrum is absolutely integrable works 
equally well for - - 

t-(t) - ?a,,,f(f - W 
1 

where ]Z2,? ( o)12 j /?” as in the previous section. 

11 - ale-/~T - a2e-i20T - a3e-13wT~r~ = 1 - C ak,,e-lkWT 
k=l 

Using this approach with normalized band-width we have found 
explicit coefficients { akn } such that the prediction error goes to 
zero at a geometric rate for intersample spacings T satisfying 
0 < T 5 2/3; that is, the past samples need only be taken at a 
rate equal to or in excess of 3/2 the Nyquist rate. Details of this 
approach and numerical examples are currently in preparation. 
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Detection and Diagnosis of Abrupt Changes in Modal 
Characteristics of Nonstationary Digital Signals 
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GEORGE!5 V. MOUSTAKIDES, MEMBER, IEEE 

Ahs~act-New “instrumental” tests for detecting and diagnosing changes 
in the poles of a signal having unknown time-varying zeros are proposed. 
Numerical results for nonstationary scalar signals are given. The extension 
of these tests to the vector case may be used for vibration monitoring. 

I. INTRODUCTION 

The problem of detecting changes in spectral properties arises 
frequently in practice, in the segmentation of nonstationary dig- 
ital signals or the monitoring of time series, for example. Most of 
the solutions, which are available so far in the time domain 
basically use the complete set of the (known or identified) model 
parameters: this is the case for innovations-based detectors and 
standard likelihood ratio tests. For example, [l] presented a new 
on-line algorithm based upon Kullback’s divergence between the 
conditional probability laws of the observations under a “refer- 
ence” model and a “current” one. 

In some practical situations, one is interested in detecting 
changes in a subset of the model parameters, while the comple- 
mentary subset of model parameters are completely unknown 
and thus have to be considered as nuisance parameters. This is 
the case, for example, in vibration monitoring, where one wishes 
to detect changes in vibrating characteristics of systems subject to 
nonstationary unknown excitation such as swell, wind, or 
earthquakes. In this case, the change detection problem can be 
formulated as follows: using an autoregressive moving-average 
(ARMA) model with (highly) nonstationary unknown moving- 
average (MA) coefficients to model the excitation [12], detect a 
change in the autoregressive (AR) part (assumed stationary) and, 
if possible, determine which AR coefficients or which poles have 
changed (this latter task is the diagnosis problem). Let us em- 
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phasize that, even in the scalar case, this diagnosis problem is not 
standard. 

A. Identification of the AR Coefficients Without Knowing the 
Nonstationury MA Coefficients 

Because of the highly time-varying character of the unknown 
MA coefficients, none of the standard elimination methods for Assume that a single record (ya; . ., y,) of the process (y,) is 

nuisance parameters [3] seems to be of help for this change available. The so-called instrumental variable method [13] for 

detection problem. On the other hand, it has been shown in [4] identification has been recently proved [4] to provide consistent 

that it is possible to obtain consistent estimates of the AR estimates of the AR parameters in the present framework. More 
precisely, let 

R,-,+,(s) 
/’ 

R,+,(s) ,,R~+z(s) 

/’ 
/” ,/” 

,’ I 

coefficients without knowing (or using estimates of) the varying 
MA coefficients. 

The basic idea underlying this correspondence is thus the 
following: instead of using standard likelihood ratio methods 
which are of no help in the present case because of the unknown 
MA part, one may base the detection upon the same idea used 
for the identification. Using this idea, a statistic U is introduced 
and the central limit theorem is shown to hold [8] for this statistic 
U under both hypotheses: null Ha (i.e., no change) and local 
alternative HI (i.e., small change). This gives a test statistic for a 
global test (for a change in the AR part) with no diagnosis about 
the nature of the change. Using the effect of specific parameter 
changes, such as, for example, changes in poles or vibrating 
modes, on the mean of U under HI, one may design specific tests 
for monitoring vibrating modes separately. We will present 
another approach for solving the diagnosis problem, which con- 
sists basically of reidentifying each pole which has to be moni- 
tored. 

In this correspondence, we investigate only the scalar case. The 
extension of the proposed test to the vector case is reported 
elsewhere [2]; let us only emphasize that this extension may be 
used, for example, to solve the problem of vibration monitoring 
for offshore platforms. 

Sections II and III present the proposed off-line algorithms for 
the two problems of interest-detection and diagnosis-while 
numerical results are given in Section IV. The performance in the 
simple case of changes in AR models (no MA part) are investi- 
gated in Table II, with special emphasis on the problem of 
coupling effects that arise during diagnosis upon the poles. The 
performance of the proposed tests in simulations with scalar 
ARMA signals is reported in Table III for the case where the 
nonstationary MA part is piecewise constant. 

This numerical analysis is the only justification of the two 
proposed methods for solving the diagnosis problem; this is not 
the case for the detection problem for which a theoretical basis 
can be found in [8]. Section V outlines the main conclusions of 
this study. 

II. DETECTIONOF~HANGESINTHE AR PARTOFAN 
ARMA MODEL WITH NONSTATIONARY UNKNOWN 

MA COEFFICIENTS 

As mentioned in the Introduction, this correspondence is 
focused on the scalar case. Thus let us consider the following 
model: 

Y, = ii a,~,-~ + i: b,(t)+,, 
i=l j=O 

where (e,), is a Gaussian white noise with constant variance u: 
and p 2 q. 

Here the unknown MA coefficients (b,) are time-varying and 
may even be subject to jumps. The problem to be solved is the 
(off-line) detection of abrupt changes or jumps in the AR param- 
eters (a,). We shall first recall the main results concerning the 
identification problem because, as mentioned in the Introduction, 
it is the starting point of our detection procedure. 

the (p + 1) X N empirical Hankel matrix of the process 
(Ylh~,~,, whereN 2 p is the number of instruments and 

s-k 

R,(s) = c .%+k.h; k 2 0. 
t=o 

Then the least-squares solution (ii,(s), 2P i(s), . . , 6, (s)) of 

(-% -Upml ... -a, l)~.NWW = 0 

is a consistent estimate of true vector parameter 

e = (up tzp-I ..’ a,)’ 

of model (1). See [4] for a complete proof and precise statement 
of the consistency result. This result does not require any 
stationarity assumption about the MA parameters b,(t). In this 
sense, this identification method of the AR part may be thought 
of as being robust with respect to the unknown MA part. Good 
numerical results in which high-order modes are correctly identi- 
fied have been obtained with N = 3p for offshore platform data 
WI. 
B. The Chunge Detection Problem 

The use of standard observation-based likelihood ratio tech- 
niques for solving this problem would require either an identifica- 
tion of the MA coefficients b,,(t) using, for example, a forgetting 
factor, or maximization or mtegration of the likelihood with 
respect to a prior distribution of these unknown parameters [3]. 
Because of their highly varying features (related, for example, to 
the shock or turbulence effects of the sea on an offshore plat- 
form), these approaches do not seem to be appropriate. (Recall 
also that in [5] Bohlin assumed that convenient values of the MA 
coefficients were available.) 

Moreover, the Fisher information matrix of an ARMA model 
is not block diagonal: an interaction takes place between the AR 
and the MA coefficients. In other words, a coupling effect exists 
between the detection of changes in poles or zeros, and therefore 
the use of (local) likelihood methods as in [7], [9], and [ll] for 
detecting changes on poles is not convenient when the zeros have 
to be viewed as nuisance parameters. 

Keeping in mind the “robustness” properties of the identifica- 
tion procedure with respect to the nuisance parameters, we pro- 
pose the following off-line change detection procedure. Let us 
now assume that a reference model parameter 6, = (u,” . . . up)’ 
has been estimated on a record of signals y, and let us consider 
the following problem: given a new record of signals y, decide 
whether they follow the same model or not. We propose the 
following solution: compute again the empirical Hankel matrix 
iP ,, ( N corresponding to this new record, and look at the “size” of 
the vector UN defined by 

U/(s) = (-a; . . . -up l)Zp,N&l(S). (4) 

If no change has occurred in the AR part, this U vector should 
be close to zero; in case of a change in the AR parameters, this U 
vector should be significantly different from zero. 
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Let us rewrite U,(s) in a numerically more efficient way, as 

u,(s) = i w,z,, (5) 
t=q+N 

where 

w, = y, - a,y,-, - ... -a,y,+, 

is the MA part and 

(6) 

z, = b-q-1 &q-2 ... Y,-q-d’. (7) 

Under the hypothesis of no change (i.e., 0, still represents the 
AR part of the actual process), Z, is orthogonal to w,, and the 
covariance matrix of U is 

s-4 ZN(S) = c 5 b”(w-,z,z:-,)~ (8) 
t=q+N i= -q 

because, for It - rI 2 q + 1, 

bob wr z, z;> = 0. 

Finally, let e,v(s) be the following matrix: 
s-q 

%w = c 5 w,w,-,z,z:_,. 
t=q+N i= -q 

(9) 

Despite the fact that the process y,, and thus Z,, is nonsta- 
tionary, the two following theorems hold [8]. ~ 

Nonstationary Law of Large Numbers: 2, is a consistent 
estimate of Z,, namely, 

B,‘(s)&(s) ‘2’ z, (10) S”M 
under both the null hypothesis (the set of AR parameters is 0,) 
and the local alternative hypothesis (the set of AR parameters is 
0,, + (se/ fi), where 60 is fixed). 

Cent& Limit Theorem: Under the probability law Poe,, we 
have 

ZN(p2. u,(s) 2 Jlr(O, I,), (11) 
s-rm 

and under the “small” change hypothesis POB,+CsB,~, we have 

ZN(S)p2. i UN(S) -q7-l.N-l; s;mqo, I,). (12) 1 
The proofs of the theorems are based upon extensive use of 

various limit theorems for martingales. Because of these results, 
the use of the local approach for detecting changes [7], [9], [ll] 
reduces the original problem to that of detecting a change in the 
mean value of a Gaussian process. 

We will make extensive use of the following general result. 
Assume U is (asymptotically) distributed as Jlr(O, Z) under Ha 
and as JV(~, Z) under HI. For testing jt = 0 against p # 0, 
asymptotically one computes 

u’z-‘u (13) 
and compares it to a threshold. On the other hand, for testing 
p = 0 against p E range (A), where A is a full column rank 
matrix, one computes 

U’Z-lA(A’Z~‘A)-lA’Z~‘U, (14) 
which is nothing but the maximum value, with respect to v, of the 
log likelihood ratio between HO and HI with p = Av. 

Thus for small changes in 0, using (12) and (14), we get the 
following x2 test: 

As the true covariance matrix Z, of U, is not known, in practice 
we use an estimate for computing to. The estimate Z,,, given by 
(9), which is consistent by (lo), is a possible choice. Another 
choice is shown in (19). 

C. Further Results for Some Special Cases 
1) Let us first investigate the AR case where q = 0. Then 

UN(S) = Ii w,z, 
r=N 

where 

wr = bottle, 

and 

Furthermore, 

4 = (Y,-I . . . Yt-NY. (16) 

z,(s) = 0,’ i b,2(t)bo(Z,Z,% 
t=N 

where lEoO( Z, Z,!) is the Toeplitz covariance matrix of size N of 
the observation process ( y, ), . 

Let us now consider the stationary AR case, that is, let us 
assume that b,(t) is constant, which is usually the case when one 
is interested in changes in AR parameters. Then 8, may be 
estimated by 

e,(s) = b&,2 i Z,Z;. 
r=N 

(17) 

Furthermore, let us assume that N = p, which is the minimum 
number of instruments to be used. Then the empirical Hankel 
matrix 2P-l.P-l is invertible, and the global test to (15) is 

t, = @p ‘up ) (18) 

which is nothing but the classical local likelihood ratio test (third 
version of the cusum type algorithm derived by Nikiforov) for 
detecting changes in AR coefficients [lo], [ll]. 

2) Let us now consider the ARMA (p, p - 1) case, which 
naturally arises from state space models without observation 
noise; this model has been used for the vibration monitoring 
application on offshore platforms [12]. Then 

uN(s) = c w,z,, 
t=N+p-1 

with w, as in (6) and 

z, = (Ytep Y,-p-1 ... Yr-N-p+l)‘. 

For N = p, the global test to (15) is still as in (18). 
Notice that, instead of the estimate (9) of Z,, one can com- 

pute another “approximate” estimate: 

%(s> = (&wF)( ,=iJz;) ‘is -PI, (19) 

[see (17)] which leads to a global test numerically better condi- 
tioned than the initial one, although we have no theoretical 
justification for it. However, it can be proved theoretically that 
2, (s) is always invertible (even if p is not the correct AR order) 
and that, under general conditions [8], Z,(s) is invertible pro- 
vided that the AR order is not underestimated. Finally, let us 
mention that all these tests may be extended to the vector case. 
(See PI.) 

III. DETECTION WITH DIAGNOSIS 

Here we investigate the problem of detecting changes in the 
AR part, with diagnosis upon which AR coefficients or which 
poles have changed, and still without knowing the nonstationary 
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MA coefficients. As in Section II, we only investigate the scalar 
case. Let us first emphasize that, even in the stationary AR case, 
this diagnosis problem is not so much standard, especially when 
the poles are of interest. As far as we know, the only approach 
which has been investigated for solving this problem is the 
so-called multiple-model approach described, for example, in [15] 
and [16]. Two approaches are presented in this section: a sensitiv- 
ity method which looks for changes (on the AR parameters or on 
the poles) constrained into a subspace, and a decoupling method 
which is a kind of filter bank approach and which basically 
reidentifies each pole to be monitored. 

A. Sensitivity Method 
It has been shown in the previous section that a possible 

solution to the problem of detecting changes in the AR parame- 
ters without knowing the MA ones is to solve the equivalent 
Gaussian testing problem for the instrumental statistic U. (Recall 
(11) and (12), which summarize the nonstationary central limit 
theorem.) 

The basic idea underlying the sensitivity method is to take into 
account the effect 68 of changes of interest (for example on 
separate poles) on the 8 parameter (3) and to use the same 
likelihood ratio approach based upon the U vector. 

Describing the diagnosis problem more precisely, let J/ be the 
m-dimensional set of the “free” parameters to be monitored, and 
let #o be the set of their nominal values. Then changes S$ in 
these free parameters induce changes in the AR parameters 68 
given by 

60 = f( w> 
where f is a nonlinear differentiable function. Let J = f ‘(#o) be 
the p X m Jacobian matrix, 

(20) 

A first-order approximation leads to 

66 = J&b; 

in other words, the changes on the AR parameters are con- 
strained to the subspace range (J). The corresponding diagnosis 
test is nothing but (14) with 

For example, if the diagnosis problem of interest is to monitor 
eigenfrequencies w, , the corresponding Jacobians may be found 
in [6]. The advantage of this approach is that it allows the 
separate monitoring of as many poles or subsets of poles as 
desired, without knowing a priori which poles will actually 
change. The main drawback is that a coupling effect may exist 
between the poles to be monitored; namely, all the separate tests 
can be nonzero even if only one pole has actually moved. 
However, it will be shown in Section IV that the diagnosis 
decision is nevertheless correct in most cases. 

B. Decoupling Method 
The basic idea of this approach is to reidentify the poles which 

have to be monitored and to use the global tests (15) or (18) 
associated to the small order corresponding U vectors. For 
simplicity, let us consider the case where no pole is real, and thus 
p = 2r. 

Define 

P(z) = zZr - 2 a,z2’-‘, 
i=l 

the characteristic polynomial of the model, and let us consider all 
the possible factorizations of the form 

P(z) = (z - x,)(z -X,)p,(z). 

The decoupling method for diagnosis is as follows. For each 

index j of interest, achieve the inverse filtering of the signal (y,) 
through P,. On the resulting signal, identify the (AR part of an 
ARMA (2, q) model, in the same manner as in Section II-A for 
example. Then, using the new “nominal” values af and ai, 
compute the corresponding Uj vector via (4) and the x2 test 
(181, 

Ti = u.l’yul 

with p = 2 and with Z estimated via (9) or (19). If there is no 
change at all, all the T’ tests will be zero. If there is a change on 
the pole h, , then the test T’ is zero, while all the other ones (T-’ 
for j # i) are nonzero. 

The obvious advantage of this method is that there is no more 
coupling effect between the poles: if only one pole is moving, 
only one test is closed to the “good” value (here zero). The main 
drawback of this method is that if m 2 2 poles are moving 
simultaneously, then we need to perform a number of tests that is 
equal to the number of combinations of m elements among n 
(order of the system). The sensitivity method requires only m 
tests. Furthermore, the decoupling method requires in practice 
the prior knowledge of which subsets of poles are moving, 
otherwise the decoupling property is lost. 

Numerical results concerning these two methods for diagnosis 
will be given in the next section. We mention that their extension 
to the vector case is possible. 

IV. NUMERICALRESULTS 

Here we investigate the numerical behavior of the tests which 
we have presented in the two previous sections. The main points 
to be emphasized are that 

1) the global test (15) is an efficient approach, especially when 
the estimated B matrix is computed via (19); 

2) the sensitivity method, despite its coupling effect, is able to 
detect and diagnose small changes in eigenfrequencies; 

3) the decoupling method is efficient for diagnosis when only 
one pole moves. 

The experiments which have been done are highly motivated 
by the fact that, in view of the application to vibration monitor- 
ing, we are interested in detecting small changes in eigenfrequen- 
ties, where small means one percent. In other words, according to 
the location of the corresponding poles, the “observable” change, 
namely the change in the cosine, may be less than four per 
thousand. 

We have chosen models of even order, with pairs of complex 
conjugate poles, of the form 

(p,e’“l, p,e-‘“I), 

and we have studied changes in one or more w,. In most cases, 
the ,o, are equal, but the influence of these parameters has also 
been studied. We will show that a fixed pole close to the unit 
circle can prevent the diagnosis, and even the “global” detection 
of a change in a second pole far from the unit circle. The models 
which have been used are shown in Table I. For each experiment, 
the numerical values of the test statistics are computed under 
both H, (i.e., the actual model is the reference model) and HI 
(i.e., the actual model is the changed model). 

Table II gives the values of the global test and the sensitivity 
test for diagnosis in the special case of stationary AR signals. The 
reason for considering this case is the analysis of the coupling 
effect during diagnosis mentioned in Section III-A. 

Table III gives the corresponding results for the nonstationary 
ARMA (p, p - 1) case, where the MA coefficients are piecewise 
constant. The lengths of the intervals are randomly chosen: the 
jumps in the MA coefficients have the same order of magnitude 
as the changes to be detected in the AR coefficients. No special 
attention was given to the problem of pole-zero cancellation 
(unlikely to occur). 
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TABLE I 
NOMINALANDCHANGEDMODELSUSED 

FORTHE SIMULATIONSTUDY 

Name of Reference Model Changed Model 
Experiment p, 9 wi 

AR4 

AR6 

e41 

e42 

e43 

e44 

e45 

e46 

e41 

e48 

e49 

e61 

e62 

e63 

e64 

e65 

0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.98 
0.99 
0.99 
0.98 
0.98 
0.99 
0.99 
0.98 
0.99 
0.6 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 
0.99 

1.9 1.9 
0.5 0.495 
0.8 0.8 
0.6 0.594 
1.5 1.5 
0.5 0.495 
2.2 2.18 
2.4 2.4 
1.9 1.9 
0.5 0.495 
1.9 1.9 
0.5 0.495 
0.8 0.8 
0.6 0.594 
0.8 0.8 
0.6 0.594 
0.8 0.8 
0.6 0.594 
1.9 1.9 
0.6 0.6 
0.4 0.396 
1.5 1.5 
0.6 0.6 
0.4 0.396 
1.5 1.5 
0.6 0.594 
0.4 0.4 
0.8 0.8 
0.6 0.6 
0.4 0.396 
0.8 0.8 
0.6 0.594 
0.4 0.4 
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TABLE II 
INVESTIGATIONOFTHECOUPLINGEFFECTOFTHESENSITIVITY 

METHODINTHE STATIONARYARCASE 

Experiment 

e41 

HO Hl 
Global Sensitivity Global Sekitivity 

Test Test Test Test 

3.78 0.93 15.14 0.85 

e42 3.32 

e43 2.95 

e44 4.42 

e45 3.44 

e46 3.93 

e41 4.39 

e48 3.15 

e49 4.52 

e61 4.99 

e62 6.54 

e63 6.54 

e64 7.01 

e65 7.01 

0.60 
1.09 
0.93 
0.90 
1.25 
1.37 
1.06 
0.99 
0.69 
0.65 
0.61 
1.13 
0.87 
0.61 
1.09 
1.13 
1.87 
0.35 
1.09 
0.66 
0.61 
1.36 
0.87 
0.61 
1.36 
0.87 
1.07 
1.39 
1.74 
1.07 
1.39 
1.74 

17.99 

13.68 

175.69 

14.12 

9.05 

18.21 

10.33 

4.12 

13.23 

13.32 

22.35 

17.51 

22.10 

14.15 
1.24 

17.90 
1.57 

11.81 
189.32 

1.18 
0.87 

13.57 
1.44 
7.69 
1.27 

15.94 
1.30 
7.79 
0.90 
1.01 
1.27 
1.30 
1.55 
1.82 
1.09 

10.96 
0.83 

16.74 
1.29 
1.96 
1.14 

13.50 
1.74 

17.43 
1.68 

TABLE III 
DIAGNOSISBYSENSITIVITYANDD~XOUPLINGMETHODS 

INTHE NONSTATIONARYARMACASE(PIECEWISE 
CONSTANTMACOEFFICIENT) 

HO ffl 
Global Sensitivity Decoupling Global Sensitivity Decoupling 

Experiment Test Test Test Test Test Test 

e41 2.56 0.89 2.39 14.90 0.43 15.15 
0.49 2.00 13.20 1.81 

e42 1.75 0.48 0.75 11.29 0.84 22.14 
0.59 0.69 9.27 0.75 

e43 2.51 1.08 1.97 7.23 0.29 17.63 
0.49 0.93 6.33 0.82 

e44 4.29 0.70 7.55 237.35 233.03 6.22 
1.54 4.86 1.23 312.29 

e61 2.27 1.17 4.14 9.84 0.44 13.24 
0.26 1.72 0.30 11.10 
0.61 1.84 6.70 3.80 

e62 2.69 0.54 5.09 7.27 0.92 9.21 
0.30 6.10 0.26 1.44 
0.36 2.66 3.93 3.64 

e64 4.11 0.17 5.53 8.99 0.84 20.60 
0.25 4.09 0.47 13.72 
0.62 6.20 4.21 3.63 

It must be emphasized that the numerical values given in these Let us finally comment upon the choice of the parameters of 
tables are pessimistic because they give the mean values obtained the algorithms, namely, the AR order p, the number of instru- 
by mixing experiments with different record lengths (from 1000 ments N, and the thresholds. It can be shown that if the AR 
to 10 000, by increments of 500), and in many experiments it is order p is overestimated, the law of large numbers (10) and the 
obvious that the behavior of the tests (especially those for diagno- central limit theorem (11) and (12) are still valid; on the other 
sis) is very poor when less than 3000 or 4000 sample points are hand, nothing can be said if this order is underestimated. The 
available (remember the small magnitude of the changes under numerical results of Tables II and III were obtained when the 
study). algorithms were run with exact AR order; however, overestima- 
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tion of the order was also tried and gave good results, provided 
that the overestimated AR model did not add already-existing 
poles. Other experiments made on real (offshore platform) data 
show that it is possible to get interesting results, at least for the 
global test, with small orders (p = 10, small for that application). 
As far as the number N of instruments is concerned, the present 
experiments have all been done with N = p; N >, p does not 
seem to improve the results in practice (when Z, is used). 
However, it can be shown that the theoretical optimal number of 
instruments for the global test (15) is infinite; this issue is 
currently under..investigation, and results are similar to those 
obtained by Stoica et al. in [14] for the identification problem. 
Finally, Tables II and III show that it is possible to (empirically) 
choose a threshold which discriminates between null and altema- 
tive hypotheses. The global test t, (15) is theoretically distributed 
as an x2 with p degrees of freedom, thus with mean value p. In 
practice, for simulated data, the mean value of t, is of cornpara- 
ble order of&magnitude (possibly larger because we use Z (19) 
instead of Z (9)); for real data, the thresholds are basically 
relative, and not absolute, partly because of the underestimation 
of the AR order. 

V. CONCLUSION 

The problem of detection and diagnosis of changes in modal 
characteristics of nonstationary (scalar) digital signals has been 
addressed. An equivalent problem is to detect changes in the 
poles of an ARMA model having nonstationary unknown mov- 
ing-average coefficients. New tests have been derived and studied 
via a simulation study. The main idea underlying our approach is 
to use a likelihood ratio technique, but based upon an instrumen- 
tal statistic (rather than the observations themselves) which is 
more robust with respect to the nuisance parameters. The main 
conclusion is that detection and diagnosis of small (one percent) 
changes in eigenfrequencies are possible. provided that the size of 
the sample is large enough (several thousands) and that there is 
no “masking effect,” namely that the poles to be monitored are 
not less close to the unit circle than other ones. This latter point 
is to be investigated further. Finally, the extension of these tests 
to the case of vector signals [2] may be used as a solution to the 
problem of vibration monitoring and will be reported later. 
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An Algorithm for Solving the Extended Yule-Walker 
Equations of an Autoregressive Moving-Average 

Time Series 

BYOUNG-SEON CHOI, MEMBER, IEEE 

Abstract-A new form of the extended Yule-Walker equations of a 
stationary autoregressive moving-average (ARMA) scheme is proposed. An 
algorithm using the new form is also given for calculating the parameters of 
the ARMA process from its autocovariance function without a proof of its 
convergence. 

I. INTRODUCTION 

A stationary autoregressive (AR) process { xr } of order p can 
be fully identified from the first p + 1 autocovariances, that is 
cov(x,, x,+k), k = O,L* * -9 P, by the Yule-Walker equations. 
Moreover, the Yule-Walker equations have been employed in 
estimating the AR parameters and the disturbance variance from 
the first p + 1 sample autocovariances by means of the 
Levinson-Durbin algorithm [l], [2] or Pagano’s algorithm [3]. 
However, since the extended Yule-Walker equations of a sta- 
tionary autoregressive moving-average (ARMA) process { x, } of 
order (p, q), q > 0, contain the cross covariance function be- 
tween the process { x, } and the white noise process [4, p. 751, it is 
hard to calculate p AR parameters, q moving-average (MA) 
parameters, and the disturbance variance from the first p + q + 1 
autocovariances, that is cov(x,, x,,~), k = 0,l; . ., p + q, by 
dint of the extended Yule-Walker equations. Additionally, any 
method to estimate the parameters of the ARMA model, particu- 
larly the MA parameters, from the first p + q + 1 sample auto- 
covariances through the extended Yule-Walker equations has not 
been used yet [5]. In this correspondence we derive another form 
of the extended Yule-Walker equations of the ARMA model, 
which does not contain the cross autocovariance function. This 
new form of the extended Yule-Walker equations shows the 
explicit relation between the p + q + 1 parameters and the first 
p + q + 1 autocovariances. Finally, we propose a simple iterative 
algorithm to solve the extended Yule-Walker equations; the 
algorithms convergence is an object of further study. 
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