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We present a method for detecting changes in the AR parameters of an ARMA
process with arbitrarily time varying MA parameters. Assuming that a collection of
observations and a set of nominal time invariant AR parameters are given, we test if
the observations are generated by the nominal AR parameters or by a different set of
time invariant AR parameters. The detection method is derived by using a local
asymptotic approach and it is based on an estimation procedure which was shown to
be consistent under nonstationarities.
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I. INTRODUCTION

The problem of detect'ng changes in the spectral parameters of
processes is frequently encountered in practice. Most methods (likeli-
hood or innovation based techniques) solve this problem by using a
complete description of the spectral parameters, (see for example
[2. 8. 11]). Sometimes this description is not possible for all para-
meters, this is for instance the case when nonstationarities are present.
In such situations one is mainly interested in those parameters that
can be described, while regarding the others as nuisance. A problem
of this type is the problem of vibration monitoring. Here one is
interested in detecting changes in the vibrating modes of a system,
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without taking into account the cause that generates these vibra-
tions. If we use an ARMA model to describe the system then the
problem translates into detecting changes in the AR parameters
{assumed time invariant) while the MA part is assumed nonstation-
ary and unknown. Clearly the classical techniques do not apply
directly here because of the high variability of the MA part. In this
paper we give a solution to this problem. The method that we
present is based on an estimation method for the AR parameters
that is known to be consistent even under nonstationarities. To
derive the detection scheme we use asvmptotic techniques assuming
that the number of observations goes to infinity and the magnitude
of the change goes to zero. Similar asymptotic techniques are used in
[5.9], but they are mainly applied to the likelihood function,
something which is not possible here.

II. PROBLEM STATEMENT
Let us consider the following system of difference equations

X1 =FX,+ Wy Xo=0
(1)

n=c’X;

where F is a real square matrix of dimension m, ¢ is a real vector of
dimension m and {W,} is a sequence of zero mean independent
nonstationary vectors. With the superscript “T” we denote the
transpose. The model in (1) is often used to model real systems. The
vector X, is called the state of the system. W, the input and the
scalar y, the output (observations). The process y, is an ARMA
process and if we write it in this form then we have

V=% Vkm 1= = Lk m =Pt B ey (2)

where (e} is a standard iid. sequence. The vector o’ =[x,...x,] is
the vector of the AR parameters and the vector A7 =[B°...8" '] is
the vector of the MA parameters. The vector « is related only to the
matrix F, its components are the coefficients of the characteristic
polynomial of this matrix. Since the roots of this polynomial are the
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spectral modes of the system. all the spectral information is con-
tained in the vector x. The vector f3, is related to the input W, thus it
is time varying. Notice that with the model in (1) we can have a MA
part in (2) of order at most m— 1.

Since any change in the spectral modes reflects into a change in
the vector x we concentrate on this vector. Thus we are interested in
detecting changes in the vector x in a nonsequential way, assuming
that we have available the observation sequence {y,}. We will
assume that a nominal vector x=z, is known and that we do not
know the vector x after the change. More specifically we will assume
that a collection {y,,....y,} is given and we would like to decide
between the two hypotheses. Hyt2=x, and H:2=%, As we said in
the introduction we will follow an asymptotic approach, thus we
suppose that under change. x is of the form x=1x,+6/,/n, where 0 is
an unknown direction of change. Although for our test we will never
use the matrix F we w1ll assume that %o corresponds to some
nominal F, and 10+()/V nto Fo+0Or, ‘n. Let us now consider the
following vector:

1 n
n == Z Oks1— Yizo)Zs (3)
VLS

where Y/ =[yi.. Vi -meid and ZF=[1v, . o1 ... Vi—m—u+2]. Equation
{3) can be used to estimate the AR parameters of the observation
process. Since U, (disregarding I/V/E) 1s the sample correlation of
the MA part with delayed enough observation and since this
correlation is zero, we can estimate x by solving the system U,=0
(in the mean square sense if M >m). This estimate is known to be
consistent even under nonstationarities [4]. We use a similar idea
to derive a test. We expect that under no change the vector U,
will have a zero mean and under change a nonzero mean. Indeed we have

T MU, S N under H,
(4)
VXU, —H,0)% N(0,I) under H,

where % means convergence in distribution, N(0.I) is the standard
vector Gaussian density and X, is the covariance matrix of U,. The
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matrix H, is defined as

1 n
H,=-Y Z, YL (5
Nry=1

We can see that under both hypotheses U, has asymptotically the
same variance Z, but not the same mean. Next step is to use U, as if
we had equality in (4) and define a log-likelihood

T,=UTS, 'H 0—10THTZ 'H,0. (6)

Notice that Z, is of length M thus H, is of dimension M xm,
assuming M2=m let us substitute 6 by its maximum likelihood
estimate, this yields

L=UL 'H(HZ, 'H) ' HZ'U,. (7

The quantity T, will be our test statistic. To define the threshold we
have that under H,, T, is asymptotically y?> with m degrees of
freedom. Under H,, T, is a noncentered x> with noncentricity equal
to 0HTZ 'H 0. Our test will be able to detect the change if the
noncentricity is nonzero. As we will show in Section IV, with our
assumptions this is always the case. The covariance matrix Z, is not
known and thus we must estimate it. We can for example use the
sample covariance matrix defined as

N 1 n lm—l n
L,== Y iZZI+- Y Y e fLZ i+ Ze 2D, (8)
Rk=1 nj=1%=1

where v, =y, — Y7_ o Thus everything is defined in terms of known
things. In the next sections we will prove the validity of (4), i.e. that
the Central Limit Theorem (CLT) holds for U, under both hypo-
theses. Notice also that in (7) we take the inverse of the matrices X,
and HIS 'H, We will show that these two matrices are full rank.
For X, this will be necessary for the proof of the CLT, for the other
matrix it is important in showing that the noncentricity factor is
nonzero. Notice that the second matrix will be full rank if H, is full
rank and X, is nonsingular and bounded from above. The proofs
will be presented in several steps.
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. ASSUMPTIONS

Let us now introduce our assumptions. Let {y,} be an ARMA
process generated by a system of the form of (1) or (2). Let F,, 2, be
the nominal values of F and «. We assume:

Al. The matrix F, is full rank and has all its eigenvalues distinct
and strictly inside the unit circle.

A2. The matrix 0=[cFXc...(FT)™ 1c] is of full rank.

A3. There exists a real p> 0 such that for every vector 4 and every
integer k we have E{[ATW,]*} <p(AT4)%, where by E{ } we denote
expectation.

A4, If Q,=E{W,WT} is the input covariance matrix at time k and
if 0,=(1/n)> 7-,0, is the average input covariance up to time n, we
assume that there exists a real >0 such that for every eigenvalue r,,
i=1,...,mof F, we have

lim {(z—r)cT(zl = Fo) '@,z 1 —Fo) " 'c}| = 6.

F 2nd N
i

A5. There exists a nonzero vector s such that for every k we have
Q,=ssT.

Assumption Al is to ensure the stability of our system, ie.
bounded inputs will produce bounded outputs. A2 is an observa-
bility condition, it ensures that any mode excited by the input will be
observed in the output. Assumption A3 is rather technical: it requires
that the input has uniformly bounded fourth order moments. A4
means that in the average the input excites all the modes of the
system and that these modes are present in the second order
statistics. Finally Assumption A5 is to ensure that the input excites
constantly at least at the direction of the vector s.

Discussion We will comment now on our assumptions. In Al the
assumption that the eigenvalues are distinct was made only to
facilitate certain proofs; it can be relaxed to include multiple
eigenvalues. Notice also that we assume knowledge of the exact
system order m. A2 seems necessary. Assumption A3 is quite strong,
probably it can be relaxed to conditions involving only second order
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moments. Assumption A4, as we said before, ensures that all the
modes are present in the second order statistics. This assumption is
very important since our test is based on second order statistics. If
for example A4 was not true for some mode, in other words, if a
mode even though excited by the input was not present in the
second order statistics (this is the case when the MA part of a
stationary ARMA process has zeros that are mirror images, with
respect to the unit circle, of poles of the AR part), then any change
on this mode cannot be detected by simply using second order
statistics. Notice also that A4 involves only the average input
covariance, that is, instantaneously we can have cancellation of
modes. As one can see this assumption will be the base for proving
that H, is of full rank. In the stationary case usually the assumptions
up to A4 are sufficient to show the same things we like to show here.
When nonstationarities are present this is no longer true, one can
find examples where only with the first four assumptions we have a
nonsingular covariance matrix X,. Thus, it seems that an assumption
of the form of A5 is also necessary.

V. RESULTS

Before going to the proof of the CLT we will first present some
lemmas that will be useful for this proof. Let us denote by A and B
two real square matrices of dimension m, with distinct eigenvalues.
Let ¢, denote the eigenvalue of a square matrix X with the
maximum magnitude and Dy a constant that depends only on X.

Lemma | There exist constants D, D, p such that for any two
vectors a, b and any integer k=0 we have

-

i) a7 A*B| D ,| J[¥(aTa) 2 (bT )" 2

i) |a’(4*~BY(A*—BY"a|'» <D, p|¢ 4, o*||A— B||(aa)"/?

where by ||X|| we denote the maximum singular value of the matrix X.

Proof The proof of (i) is easy. Notice that it is obvious when A4 is
diagonal. When it is not diagonal we make a diagonalization and
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proceed in a similar way. Inequality (ii) can be proved by using (i)
and that 4*—B*=4*"Y4—B)+ A* " A—B)B+ - +(A—B)B* . we
omit the details. . : :

Lemma 2 Ler F, W, satisfy Al and A3, then we also have that X
has uniformly bounded fourth order moments.

Proof From (1) we have that
k-1
X = Z F'W,
i=0

thus using the fact that {W,} is a sequence of independent vectors,
we have for every vector 4 that

E{[A7X.]%}

E{kil kil kil kil [ATF'W,_] [;VTFjVVk_j] [ATF'W,_ ] [ATF‘W,‘_S]}

i=0 j=0150s=0

k—1 k—1k-1
Y E{[ATFW,_J9+3 Y Y E(IATFW,_ 3 E(LTF'W,_ %)
i=0 j=01Z0

JFl

k

1 2

=

v

E{[ATF'W,_J% + 3["21 E{[/‘.TF‘M_JZ}:'

0

1

Using Lemma 1(i) and A3 and the fact that |£f/<1 (from A1), we
have that there exists constant D such that for every k we have

E{[ATX,J*) < D(ATA)%.

LemMMa 3 Let F, W, satisfy A1 and A3. Consider the following
sequence of covariance matrices P,

Pk+1=FPkFT+Qk+1, Py=0. 9
The matrix P, is the covariance matrix of the state vector X,. Let now

Q.=1/nY7_,Q, and P,=1/nY7_ P, Let P be the solution of the
equation P=FPFT+Q,, then ||P,—P||—0. The matrix P is nothing
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but the state covariance matrix of a stationary system with input
covariance Q, {assumed constant).

Proof Since W, has uniformly bounded fourth-order moments, it
will also have uniformly bounded second order moments, thus from
(9), assuming J,=0 we have

n k—

p_1¢ 1 n
P= % P ) X, PO (FTy= zo FJ(1 2 Qk_,)(FT)J

nk 1j=0 Nyg=

8

- % roury-$ PoEy-S E( o)y o

=n—j+

The first term in (10} is equal to P, the second is uniformly of order
|€¢]*" and the third term of order 1/n. Thus both last terms tend to
zero. And this concludes the proof. Using this lemma we can show
that we can approximate (order 1/n) any average of matrices of the
form V,=1/nY - E{[ye--- Y- 1 -+ Ye-j-i1}, by the corres-
ponding matrix ¥ of a stationary system with input covariance @,
(assumed constant). This is true because E{y.y;+,}=c"F/P,c and
thus we can approximate every term in V, by the corresponding
stationary term.

Lemma 4 Let Q,Q' be two nonnegative definite matrices with Q=Q'.
Let F satisfy Al. Consider the following two systems in stationary
situation.

Xe1=FX, + Wiy p=c"X,
(11)
X1 =FXi+ Wiy, y=c'X,,

with W, having covariance Q and W covariance Q'. For any integer N
we then have

E{[yk"'yk—N]T[yk"'yk-N]}gE{[y;c'-'y;c—N]T[y;c"-y;c—N]}' (12)

Proof The proof is easy. Since we consider only second order
statistics we can decompose W, into two independent processes
Vi Ry such that E{V,VT}=Q', E{R,RT}=Q—Q and E{V,RT}=0.
Because of linearity, the process y, can be also decomposed into two
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independent processes one due to V, and the other to R,. The
process due to V, will have exactly the same second order properties
with y,. Thus we conclude that the left hand side of (12) is equal to
the right hand side plus another nonnegative term due to R,.

LemMmAa 5 Let F,F' be two matrices satisfying Al and W, a process
satisfying A3. Let X, be the state vector of a system of the form of (1)
and X another state vector of a similar system but F replaced by F'.
For any vector A with ATA=1 we have

E{[AT(X,— X)) =O(||F - F

¥
uniformly in k. Where by z=0(x) we mean z is of the order of x.

Proof By writing X, =) f2) F'W,_,, using uniform boundedness
of {Q,} and Lemma 1(ii) we have

k—1
E{[AT(X —X)]*} = ,=ZO AT(F =(F))Qu—{F' —(F))TA
k=1
=p _=ZO AT(F = (F))(F'=(F))TA

<Dpl[F~FI § ¢ ¢ =D F -]

And this concludes the proof of the lemma.

LEMMA 6 Let s be a nonzero vector, let F satisfy Al and A2 and let
E{W W} =ssT. Consider the system in (1) in the stationary situation,
then for any fixed integer N the covariance matrix

V=E{[yk"-yk—N+1]T[yk"'yk—N+ 1]}

is of full rank.
Proof Let A=[4,...Ay]" be any vector, then

2n
ATV =§1; [ A+ + Ay &N V2T (e~ Io] — F)~1s]2 doo,
1]
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If ATVi=0 then we will also have that the product under the
integral is identically zero. Since the first term in this product is a
trigonometric polynomial, if it is not identically zero, it can have
only a finite number of zeros in the interval [0,2z]. Thus if we
assume that A#0 we conclude that ¢"(e /*I — F)~'s must be identi-

cally zero. But we have that

e I—F)~1s= ) elot+DeTF,
i=0
The above can be identically zero only if ¢"F's=0 for every i. This is
not possible since because of A2 we have that for at least one i
between zero and m—1 we have c¢TF's+0, contradiction. Thus V is

of full rank.
With the next theorem we prove the Law of Large Numbers for

expressions that appear in the proof of the CLT.

THeOREM 1 Let F, W, satisfy Al and A3, let X, be the state vector of
a system of the form of (1). If {a}, {b} are two uniformly bounded
real vector sequences, then for any fixed integer j

1 n
Anzzkzl ka[XHijT_E{XHijT}]ak—’O a.s.

Proof Since X,,;=F'X,+Y 1., F/"'W,,, and W,,, is independ-
ent of X, for i=1 we have

- 1
b{F WyriXTac+— Y BIFIXX] ~E{XX[Ya. (13)
k=1

The sums of the form Y 7_, bfF/~'W,, ;X [a, are martingales. Follow-
ing Feller ([6], page 243) in order to show that these sums
normalized by n go a.s. to zero, it is enough to show that

TFj'-i xT 2
E{[bn u/rl+anan] }<w‘ (14)

,,Zl n2
But (14) is true because

E{[brF'"'W,,. X a1’} = E{[by F'~'W, . ]*} E{[ X[ a,]’}
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and from Lemma 2 we have that both terms in the product are
uniformly bounded. Thus the first j terms in (13) go to zero as.
To show that this is also true for the last term we will use the theory
of mixingales (see Hall [7], page 41). If {#,},>, is a sequence of
c-algebras with #, the o-algebra generated by {W,...W,} and if
V,=bTFI[X,XT—E{X,XT}]a, then if we can find ¥, —0 and f,20
such that

1) ||V, — E{Vi/Fsidlls SWis ],
2) |E{Vi/Fuoi}|a S,

3) i :li"z<oo and y, = o(k~2(log k) ~2)

then 1/n) 7_, ¥ —0 as. For a proof of this statement see Hall ([7],
page 41). We will show that we can define f, and ¢, to satisfy
conditions 1 through 3. First notice that 1 is trivially satisfied for
any nonnegative y,, f, because E{V,/#,..}=V, Let us now for
simplicity denote df =bIF/, then d, is also uniformly bounded. We
can see that

E{(V/F, i} =d,[FNX, . X7 — E{X, . X[ D(F)a,  (15)

Using the fact that the second moment of a random variable is
larger than the variance we have from (15)

|E{VyF i }|5 £ E{[dTF*X,_J*[aT F*X,,_,]?}
SE{[d]F*X,_ J*}+E{[a]F*X,_,1*}.  (16)

Using now Lemma 1(i) and Lemma 2 we have from (16) that there
exists a constant D such that |[E{V,/%,_,||3 < D?|¢f*. We can thus
define f,=D and y,=|¢f**. Clearly with this definition we have
validity of conditions 2 and 3 and thus the Strong Law of Large
Numbers holds also for the last term in (13).

We are now ready to prove the CLT defined by (4). This is done
in the following theorem.

THEOREM 2 Let {y,} be the observation process defined by a system
of the form of (1). If F, and W, satisfy conditions Al through AS, then
(4) holds.
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Proof We first show the CLT under hypothesis H,. We will use
a version of the martingale CLT, thus we will put U, defined in (3)
under a martingale form. Let 4 be a vector with ATi=1. What we
would like to show is that 47X 12U, % N(0, 1). Notice that

E{[ATL; U7 =1, (17)
this is true because X, was defined as the covariance of U,. From

(17) we see that we have the right variance required by the CLT.
Dropping for simplicity the subscript “0” we have from (1)

m—-i-2
yk_i=CTFm_i_1Xk_m+1+CT -20 FjVVk_j. (18)
i=

Substituting (18) in (3) and using the Cayley—Hamilton theorem we
have

'«T n
e i
ATz, l/ZU.F\/"- Y etWii + Wt +ciWii s 21Z, (19)
nk=1
where AT=ATZ, Y2 and I =cT[F~!'—a F" 2~ —a,_,I]. Let us

for the moment assume that the covariance Z, is uniformly bounded
away from zero for large enough n. We will prove this statement in
Theorem 3. With this assumption 4, is uniformly bounded. Now
rearranging the sum in (19) we have

Al & 1
ATES U, === 3 [Ziel+ + Zksm-1Cm]Wiry +0<—)~ (20)
=1

nx Jn

Since in (20) W, is independent with whatever is in the brackets,
the sum in (20) is a martingale. Defining

De=inlZicl + + Ziem—160]War (21)

in order to show the CLT. it is enough to show Lindeberg’s
condition for v, and that

1
=Y 2ol (22)
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in probability (see Hall [7], page 52). Lindeberg’s condition is the
following, for any ¢>0 we want

Zn: Pr{%’% (v >£\/ri)}—»0
k=1

where with I{4) we denote the indicator function of the set 4. To
show Lindeberg’s condition we have

{ 1(|uk|>ef)} {”“}.

Applying now the Schwarz inequality at (21) yields vZ S[(ATZ)*+

A (AT Z s )T W )2+ +(cIWi+1)?]. And  thus  using
Lemma 2 and the independence of W, with the Z, ., vectors, we
can easily see that E{v§} is uniformly bounded by a constant D. This

yields
n 2 D
Y Pr{v—k (v >£\/;)} <—4—-0
k=1 n en

and thus Lindeberg’s condition holds. To show (22) since using
(17) and (20) we have 1/nY ., E{vf}=E{[A"E; *U,}? }+0(1/n)—
1+0(1/n), it is enough to show that 1/nY s, [vi—E{vi}]1—0 in
probability. The random variable v} is a finite sum of terms of the
form b,y Vi- AcT W4 1)(c] Wi ,) where b, depends on the vector 4,
Thus we can write

;" Z iyk—j(c;ka+ 1)(CqTWk+ N _E{yk—iyk—j}E{(c;u/k+1)(CZVVI:+ OH

= S e e Wi W)~ B W ) Wi )]

b, &
+ ;—kgl E{(cpTWH 1)(CqTWk+ 0} [}’k—i}’k—j"‘E{}’k—i}’k—j}]- (23)

The first sum in (23) is a martingale. Using similar reasoning as in
Theorem 1 we can show that it converges to zero a.s. For the second
term in (23) we apply Theorem 1 and thus this term also goes to
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zero a.s. With these arguments we have shown that (22) is true not
only in probability but a.s.

Up to this point we have shown the CLT under H, To prove it
also under H,, notice that the observation sequence {y,} is now
generated not by the nominal matrix F, but by the matrix F that
satisfies ||F —Fo||=0(1/./n). Let us call {y9} the observation se-
quence generated by the nominal matrix F, when as input we have
exactly the same like the system with F. If we show for every vector
4 with ATZ=1 that we have

1 ¢ \ 1 & 2
E{[_ L D=2 WM 2= —= ) (y;?+1-d§YE)ATZE] }_’O,
\/;"21 \/;k=1
(24)

where Y2, Z? are the Y,, Z, vectors corresponding to the nominal
system, then this means that the two terms in (24) have the same
asymptotic distribution. Since the second term, as it was shown in
the first part of this theorem, is asymptotically Gaussian, the same
will be true for the first term as well. To show (24) define

W=k 1 =T YATZ = (30 — g Y)ATZ.
The terms y,,,—aTY, and yp, , —al Y? are the MA parts of the two

observation processes and since they are at most (m— 1)-dependent
we have that E{w,w,_;} =0 for j=m. Thus (24) is equivalent to

k= n j=1k=

Since 2|w,w, - |Swi+wi_;, in order to prove (25) it is enough to
prove that the first term in (25) goes to zero. Notice that we have

O =her1 — 2" B [ANZ = ZT+ (s 1 — 2" F) = (0041 — 2 YD) IATZE.
The two MA parts are independent of Z, and Z?, thus
E{0f} S2E{[ i+, —“TKJZ}E{UT(Zk—ZE)]Z}

+2E{[ATZ I E{ (v =0T X) = (0041 — 2 YO)T?}. (26)
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Using Lemma 5 the quantities y,.,, Y, and Z, differ from the
corresponding nominal quantities (in the mean square sense) by an
amount O([|F — Fol|*)=0(1/n). Thus for every k<n we have E{w}}=
0(1/n) which yields l/nZk_lE{wk =0(1/n). And thus we have
shown that (24) is true. What is left now to prove in order for
Theorem 2 to be complete is that the covariance matrix X, is
uniformly bounded away from zero. This is shown in Theorem 3.

TueoREM 3 Let Fg, W, satisfy Al through AS. Let X, be the
covariance matrix of U, defined in (3) and H, the matrix defined in (5),
then for large enough n the matrix X, is uniformly of full rank and
uniformly bounded from above also H, is a.s. uniformly of full rank.

Proof The proof is based on certain properties that hold under
stationarity. From Eq. (20) we have that

1 & 1

Uy=—= Z [chlT+'“+Zk+m—lcr€]VVk+1+o(——)‘
\/1—1k=1 \/ﬁ

We first prove that Z, is full rank. Let A be a vector with A7A=1.

Letuscall t,=A"Z, and TY =[t, tys1..-tysm-1], then

1 & 1
U=—= 3, T,ZﬁWerO(—),
nk=1 \/;t

where 07 =[c,...c,]. Using A5 and that W,_, is independent of T,,
we have

E{[i"U,1%} nkzlE{[rm }+0<> %g::lE{ETElJZHO(%)’ (27)

where |=0s. Notice that 0 comes from the matrix 0 defined in A2 by
using linear operations. Since 0 is assumed full rank so is 0, thus the
vector I is nonzero. Let I"=[1,...],] and AT=[4,...4,,], then we can
see that
L.y ... L, 0 ... 0 Vi

R P P (] _
TT=[y ... hy] Cor Yert 123

0 0 oo 0 Ly oo Il | Vecwoniaa
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Denote with L the matrix in (28). This matrix is of dimensions
M x(M+m-1). It is easy to see that ATL gives the convolution of
the two sequences {4,,...,4y} and {I,,...,l;}. It is known that the
convolution of two sequences cannot be identically zero unless one
of the two sequences is. Since /#0 this means that there is no A#0
such that ATL=0 or, that L is of full rank. Let us call 6,>0 the
smallest singular value of LIT. Now define

R Q.
I{,z;kgl E{lye Ve-m-m+21 D Viom-p+21} (29)

the average covariance matrix of the random vector in (28). From
Lemma 3 ¥, can be approximated (order 1/n) by the corresponding
covariance of a stationary system with input §,. Since from A5 we
also have Q,=ssT, using Lemma 4 this last covariance can be lower
bounded by the corresponding covariance V of a stationary system
with input ss”. The covariance V from Lemma 6 is of full rank. Call
oy >0 the smallest singular value of V. Going back to (27) and using
(28) and (29) we have

E{[ATU,J3 2ATLV,IT)2 6y0, +0<1>, (30)
n

and thus for large enough n, £, is uniformly bounded away from
zero. Notice that for the proof of the nonsingularity of £, we did not
use A4. To prove that £, uniformly bounded from above we proceed
in a similar way but we use the uniform upper bounds of the
covariance matrices involved. We omit the details.

To prove that H, is as. of full rank notice that because of
Theorem 1 we have that H,—E{H,} -0 as, thus it is enough to
show that E{H,} is of full rank. Using Lemma 4, E{H,} can be
approximated by the corresponding matrix H of a stationary system
with input Q,. We will show that this matrix H is of full rank. We
have that H=E{Y,ZT}, where Y, and Z, are now generated by a
stationary system with input Q, (assumed constant). We would like
to show that there exists real >0 such that for any vector A with
ATi=1 we have ATHH"/ >¢. Since Z, has length M >m we consider
only the first m components of this vector, that is, we will show that
E{Y,YI_ ..} is of full rank. Consider the vector E{ATY, YT ...}
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using similar ideas as in [1, 10], the ith component of this vector
(say d) is given by

1 ~ d
di=T§(,{1+.“ +;~m2_m+1)CT(2_II—FO)—IQ,,(ZI—FO)‘ICZ"‘_2+‘—£
) z

| S - i~ -1 g4z .
=Z7§A(z)cr(z —Fy) 10zl —Fo) ez 17 i=1,....m (31

where A(z)=4,z""'+---4+4, and the integration path is the unit
circle. The only poles inside the unit circle in (31) are the eigenvalues
r; of Fo. Thus from (31)

d= 32 i m (32)

k=1 Ty

where p =lim,., {(z—r)c"(z7'—Fo) '@zl —Fo) " 'c}. Since the
Vandermonde matrix

is of full rank, call ¢, its smallest singular value. Notice that the
vector [A(r,)...A(r,)] can be written as A7V, where AT=[4,...4,].

Let us call
Ar Ar,,)
pT=[ 1)#1”. Hm |5

ry T

then using A4, ie. that |u|2 6 and also from Al that |r/<1 we have

d2=p"V,(VIp)*202pTp*2 028 Y |Ar)f?
k=1

3

=c2?TTVIV¥I2at6*ATA,

where by the superscript “*” we mean complex conjugate. And this
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concludes the proof. As we have proved, X, is uniformly bounded
from above and H, is uniformly of full rank, thus we have that
HIT. 'H, is also uniformly bounded away from zero.

V. CONCLUSION

We have presented a method for detecting changes in the AR
parameters of a nonstationary ARMA process. The detection scheme
was derived by using the same idea that is used for the estimation of
these parameters, i.e. that the MA part of an ARMA process is
independent from delayed enough observations. Following a local
asymptotic approach the detection of a change in the AR parameters
was reduced to the detection of a nonzero mean of a Gaussian
random vector. With the assumptions we have introduced here we
can actually show a stronger result, namely that the CLT in (4)
remains valid if , is replaced by £,. This is true basically because it
is possible to show that the difference between the two matrices goes
to zero a.s. The proof of this last statement is unfortunately long,
thus we have decided to present only the weaker version of the CLT
defined in (4). To say a few things about estimating the covariance
matrix X, Even though £, has expectation equal to X, it has the
drawback that it is not always positive definite. This can lead to a
negative test statistics 7, (Eq. 7). For practical purposes we can for
example use only the first term of £, which is positive definite. This
method was successfully used in detecting changes in vibrating
modes of linear systems [3]. Finally another practical problem is the
knowledge of the system order m. In simulations our method
performed very well even when the true order was overestimated.
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