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In this chapter, we investigate a non classical change detection 

problem, for which there is a strong coupling effect between nuisance 

parameters and parameters to be monitored. As maximum likelihood me- 

thods cannot be used in this case, we derive a so-called instrumental 

statistics which, together with a local testing approach, gives a new 

test of ×2 type. The extension of this test for the problem of diagno- 

sis is also described. 

Only the scalar case is investigated here. The extension of the 

proposed tests for vector signals is currently under study and may be 

used, for example, as a solution to the problem of vibration monitoring 

for offshore platforms. 
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I ~ -  INTRODUCTION I 

The purpose of th is chapter is the presentation of a possible solution 

to a change detection problem such that : 

- the value, af ter change, of the parameters of interest (or monitored 

parameters) is unknown ; 

- the change is possibly small ; 

there is a strong coupling effect between the nuisance parameters 

and the monitored parameters ; 

- in addition to the 9lobaZ testing problem ( i .e .  decide whether the 

parameters, taken in the i r  entire set, have changed), the d~z~gnos~ of 

which special features have changed is also of interest .  

The solutions we propose is based upon an "instrumental" s ta t i s t i cs ,  

which is not extracted from the l ikel ihood of the observations ; for de- 

r iv ing the decision function, we use thelocal approach for testing s ta t i s -  

t ica l  hypotheses which has been presented and investigated in chapters 

4 [5] and 7 D2]. 

Before presenting the solut ion, le t  us describe further the problem 

at hand. In some practical s i tuat ions, such as vibrat ion monitoring, i t  

is of interest to detect changes in the characterist ics of a system without 

knowing the characterist ics of i ts  exci tat ion,  which can be nonstationary; 

for example, in vibration monitoring, one wishes to detect changes in v i -  

brating characterist ics of systems subject to nonstationary unknown exci- 

tat ion (swell, wind, earthquakes...). In such cases, the change detection 

problem can be formulated as follows ; using an ARMA model with (highly) 

nonstationary unknown MA coeff icients to model the excitat ion D3],  de- 

tect a change in the AR part (assumea stationary) and, i f  possible, de- 

termine which AR coeff icients or which poles and modes have changed ( i .e .  

diagnosis problem). 



Because of the time scales of our application on offshore platforms, 

namely because the sampling rate is very much higher than the change 

rate, we describe here an off-l ine change detection procedure, which is 

in fact a statistical hypotheses test procedure : we decide whether a 

new (~hal f  an hour) record of measurement signals (accelerometers or 

strain gauges), containing typically 40000 sample points, behaves in 

conformity with a reference model of the structure identified on a pre- 

vious (several months before) record. But, i t  should be clear (see, for 

example, the discussion in chapter 4 [5]) that this decision procedure 

we propose may be implemented in a competely on-line framework : for 

example, using the GLR method [5] or the so-called two models approach 

of chapter 6 ~ ] .  

As discussed in chapter 7 D2], because the model after change is 

unknown and because simple procedures are of interest, the use of the 

maximum likelihood (of the observations) test, or f i r s t  version of CSA, 

is not possible. Moreover, as small changes are to be detected, the use 

of the so-called local approach [8] is more convenient ([5], ~2]).  Further- 

more, as far as nuisance parameters are concerned, namely the MA coeffi- 

cients in our ARMA model, i t  has been seen in chapter 7 D2] that the 

local approach applied on the likelihood of the observations is not con- 

venient because of the strong coupling effect between the AR and the MA 

parameters (the Fisher information matrix is not block diagonal). On the 

other hand, as the unknown MA parameters are not only nonstationary but 

may also be subject to jumps, standard elimination methods for nuisance 

parameters [3], such as for example maximization of the likelihood with 

respect to the unknown parameters, seem to be of no help for the present 

test problem. 

For all these reasons, the test statistics we propose is derived using 

the local approach not applied to the likelihood of the observations, but 

rather to an instrumental statistics U. This statist ics comes from the 

so-called instrumental variable identification method D4] which has been 
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proved [4] to provide with consistent estimates of the AR part without 

knowing (or using estimates of) the varying MA part. The central l imit  

theorem is shown to hold D~ for this statistics U, under both hypothe- 

ses, null H 0 ( i .e. no change) and local alternative H I ( i .e. small change). 

This gives a x2-type global test, without diagnosis. Using the effect of 

specific parameters changes (poles or vibrating modes for example), on 

the mean of U under HI, specific tests for monitoring vibrating modes 

separately may be designed. 

In this paper, we investigate only the scalar case. The extension to 

the vector case wi l l  be reported later. 

I l l  - DETECTION OF CHANGES IN THE AR PART OF AN ARMAMODEL WITH NONSTATIONARY I 

I UNKNOWN MA COEFFICIENTS 

Let  us cons ider  the f o l l o w i n g  model : 

P q 

Yt : Z ai Yt- i  + Z bj(t) (I) i =I j=O et-j 

where (e t) is a gaussian white noise with constant variance ~ , and where 
t 

the unknown MA coefficients bj(t) are time varying and possibly subject to 

jumps. The problem to be solved is the (off-l ine) detection of changes in 

the AR parameters (ai). Let us f i r s t  recall the main result concerning 

the identification problem, because as stated in the INTRODUCTION, i t  is 

the starting point of our detection procedure. 
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1. - Identification of the AR coefficients without knowinq the non- 

stationary MA coefficients 

Assume that a single record (Yl . . . . .  ys ) of the process (yt) is available. 
The so-called instrumental variable method for identification has been re- 
cently proved [d] to provide with consistent estimates of the autoregressive 

parameters in the present framework. More precisely, let : 

Rq_p+ I (s) Rq-p+2(s) ,Rq+1(s) ,Rq+2(s) -'-RN+q_p(S) 
/ / I 

/ / I 

/ / I / 
] 

/ I / 

/ / I / / 

/ I / 

" / I 
/ 

I 

Rq+2(s) I RN+q(S) 

Rq.p+2(s) 

= Rq.p+3(s ) 

/ 

Rq+ I (s) i 

~p,N-1 (s) 
C2) 

the (p+1)xN empirical Hankel matrix of the process (yt) where 
o,<t~s 

N>tp is the number of instruments and 

s-k 
Rk(S) = ~ Yt+k Yt (k ~ O) , 

t=O 

Then the least squares solution (~p(S), ~P-1(s) . . . . .  ~1(s)) of the equation : 

(-ap-ap_ I . . .  -a I I)  ~p,N-1(s) = 0 

is a consistent estimate of true vector parameter : 

0 = ( a p  a p _ l . . . a l ) '  (3) 



264 

of model ( I ) .  See [4] for a complete proof and precise statement of the 

consistency result. This result does not require any stationarity assumption 

about the moving average parameters b j ( t ) .  In this sense, this ident i f i -  

cation method of the AR part may be thought as being robust with respect 

to the unknown MA part. 

2. - The change detection problem 

The use of standard observation-based likelihood ratio techniques 

for solving this problem would require either an identif ication of the MA 

coefficients bj( t)  using for example a forgetting factor, or maximization 

or integration of the likelihood with respect to a prior distribution of 

these unknown parameters [3]. Because of their highly varying features 

(related for example to the shock or turbulence effects of the sea on an 

offshore platform), these approaches do not seem to be appropriate. (Remem- 

ber also that in [6] Bohlin assumedthat convenient values of the MA coef- 

f icients were available). 

Moreover, the Fisher information matrix of an ARMA model is not 

block diagonal : there is an interaction between the AR and the MA coef- 

f icients. In other words, there is a coupling effect between the detection 

of changes in poles or zeroes, and therefore i t  is not convenient to use 

( loca l )  l i ke l ihood methods ( [ ~ ,  [9] ,  [5], O~)for detecting chanqes on 

poles when the zeroes have to be viewed as nuisance parameters. 

Keeping in mind the "robustness" properties of the identif ication 

procedure with respect to the nuisance parameters, we propose the following 

of f - l ine change detection procedure. Let us now assume that a "reference" 

o model parameter 00 = (ap . . . a ) '  has been estimated on a record of signals y, 

and le t  us consider the following problem : given a new record of signals y, 

decide whether they follow the same model or not. The solution we propose 

is the following : compute again the empirical Hankel mat r i x~p ,  N corres- 

ponding to this new record, and loqk at the "size" of the vector U N 
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defined by : U~(s) 0 0 I )  ~ (s) ¢43 
= (-ap" "'-al p,N-1 

I f  there has been no change in the AR part, this U vector should 

be "close" to zero ; in case though of a change in the AR parameters, 

this U vector should be "significantly" different from zero. 

Let us rewrite UN(S), in a numerically more efficient way, as : 

S 

UN(S) = Z w t Z t (5) 
t=q+N 

where : wt = Yt - al Yt-| -. . .-ap Yt-p (6) 

is the "moving average part", and : 

Zt = (Yt-q-| Yt-q-2 "''Yt-q-N )' (7) 

Under the hypothesis of no change (i.e. e 0 s t i l l  represents the AR 

part of the actual process), Z t is osut/~ogowz~ to w t and the covariance ma- 

tr ix of U is : 

s-q q 
ZN (s) = Z Z (w t wt_ i Z t Z't_i) (8) t=q+N i=-q IFO0 

because, for I t - r  I ~ q+1 : EeO (w t w r Z t Z~) = 0 

A 
Finally, let ZN(S) be the following matrix : 

^ s-q I ZN(s) = Z w t wt_ i z t z' (9) 
. t - i  t=q+N 1 =-q 

Despite the fact that the process Yt' and thus Z t ,  is ~o~.t~omo.scg, 

i t  turns out that the two following theorems hold DO]: 
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i) Nonstationary law of large numbers 

A 

~N is a consistent estimate of ~N' namely : 

ZN 1(s) ZN (s) s ~  IN (10) 

under both null hypothesis, i.e. the set of AR parameters is Qo~and local 

alternative hypothesis, i.e. the set of AR parameters is e 0 +~s 0 , where 

88 is fixed. 

ii) Central limit theorem 

Under the probability law~80 , we have : 

-1 

IN (s) 2 UN(S) s-~ ~(O' IN)  (11) 

and under the "small" change hypQthesis we have : 

-I 

ZN (s) (UN(S) " - I ,p-I  ~ ) ~ O'IN) (12) 

Basically, the proofs are based upon extensive uses of various l imi t  

theorems for martingales. 

In other words, the use of the local approach for detecting changes 

~ ,  [8], O~)reduces the original problem to the problem of detecting a 
change in the mean value of a gaussian process. 

Let us consider the generalized likelihood ratio ([8], F16-]}as the 
decision rule for this new problem. Maximization with respect to all possi- 

ble "magnitudes" of chanqes nO is straightforward, and lead to the following 
×2 test : 

=u' g z g g z, 0, N ZN -I ,N-I p-1,N-1 P-I ,N- p-1 ,N-I 
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In [2], special cases are investigated, namely the AR case (q=O) 

for which (13) is nothing but the third version of the CSA of Nikiforov 

~2], and the ARMA (p,p-1) case which naturally arises from state space 

models without observation noise (used for offshore platforms). 

Finally, let us emphasize that this test may be extended to the vector 

case. The optimization of the power of this test may be used as a criterion 

for optimum sensor location design. These are currently under study. 

3 - Detection with diagnosis 

We now consider the problem of detecting changes in the AR part, with 

diagnosis upon which AR coefficients or which poles have changed, and 

s t i l l  without knowing the nonstationary zeroes. Even in the stationary AR 

case, this diagnosis problem does not seem to be standard ; as far as 

we know, the only approach which has been investigated is the so-called 

multiple model approach described in chapter 2 06] and DS]. We describe 

here a sensitivity method which looks for changes constrained into a sub- 

space ; another approach (decoupling method) is investigated in [2]. 

We have seen in the previous paragraph that a possible solution 

to the problem of detecting changes in the AR parameters without knowing 

the MA ones, is to solve the equivalent gaussian testing problem for the 

"instrumental" statistics U . Remember (11) and (12) which summarize the 

nonstationary central l imit  theorem. 

The basic idea underlying the sensitivity method is to take into 

account the effect 5B of changes of interest (for example on separate poles) 

on the e parameter (3) and to use the same likelihood ratio approach based 
upon the U vector. 
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We wil l  make an extensive use of the following general result. As- 

sume U is (asymptotically) distributed as ~ (0 ,Z  ) under H 0 and as~/:~p,Z) 

under H I .  For testing p = 0 against p # 0, one has to compute : 

-I 
U' Z U (14) 

For testing p : 0 against p~ Range (A), where A is a given low rank 

matrix, compute : 

-I -I -I -I 
U' Z A (A' Z A) A' Z U (15) 

which is nothing but the maximum value, with respect to ~, of the log 

likelihood ratio between H 0 and H I with p = A~. 

Describing more precisely the diagnosis problem, let  ~ be the 

m-dimensional set of the "free" parameters to be monitored, and ~0 the set 

of their nominal values. Then, changes 6~ in these free parameters induce 

changes in the AR parameters 68 given by : 

60 : f ( ~ )  

where f is  a non l i n e a r  d i f f e r e n t i a b l e  f u n c t i o n .  

Let J = .f'(~0 ) be the pxm Jacobian matrix : 

@a i J 
(BTJ){~j } = ~o (16) 

A f i r s t  order approximation leads to : 

6 8 = J  6@ ; 

in other words the changes on the AR parameters are constrained to the 

subspace Range (J). The corresponding diagnosis test is nothing but (15) 

with 

A = p-1 ,N-I Jp,m 
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For example, i f  the diagnosis problem o f  interest is to monitor 

eigenfrequencies ~j, the corresponding tests are : 

Gtj Wj-I Gj ~ ~ (17) 

where 
Gj = Be' ~ , - I  U 

B~j 

BB' %1 ~-I wj = a~j (18) 

B8 and where ~ may be computed off-line (numerical values of the deriva- 

tives are computed at the nominal poles). The computation of the Jacobian 

matrix J in this special case may be found in [2] and [7]. 

The advantage of this approach is that i t  allows the separate moni- 

toring of asmany poles or subsets of poles as desired, without a priori 

knowing which poles will actually change. The main drawback is that there 

may exist a coupling effect between the poles to be monitored ; namely 

all the separate tests can be non zero even i f  only one pole has actually 

moved. But i t  will be shown in sectionIIIthat the diagnosis decision is 

nevertheless correct, in most of the cases. 

Again, these tests may be extended to the vector case. 

Ii]!, ~ SOME NUMERICAL RESULTS I 

The experiments which have been done are highly motivated by the 

fact that, in view of the application to vibration monitoring, we are in- 

terested in detecting amo~E~ changes in eigenfrequencles. "Small" here means 

one per cent ; in other words, according to the location of the corresponding 

poles, the "observable" change, namely the change in the AR coefficients, 

may be less than four per thousand. 



270 

We have chosen models ofeven order, with pairs of complex conjugate 

poles, of the form : 

i~j  -imj 
(p je  , p j e  ) 

and studied changes in one or more ~j .  In most cases, the pj are equal, 

but the influence of these parameters has also been studied. We wi l l  show 

that a fixed pole close to the unit  c i rc le  can prevent the diagnosis, and 

even the "global" detection of a change in a second pole far from the unit 

c i rc le .  The models which have been used are shown in table I. For each ex- 

periment, the numerical values of the test s ta t i s t i cs  are computed under 

both H 0 ( i .e .  the actual model is the reference model) and H I ( i .e .  the 

actual model is the changed model). 

Table 2 gives the values of the global test and the sens i t i v i t y  test 

for diagnosis in the special case of sJ~vtZon~u~y AR s ~ n ~ .  The reason 

for considering this case is the analysis of the coupling effect during 

diagnosis mentioned in section 11.3). 

Table 3 gives the corresponding results for the ARMA (p,p-1) case, 

where the moving average coeff icients are piecewise constant (lengths of 

intervals randomly chosen). Other experiments can be found in [2] 

F i rs t  results on real (offshore platforms) scalar signals are also 

encouraging. 

IV - CONCLUSION I 

The problem of detection and diagnosis of changes in the poles 

of a pole-zero system having unknown time-varying zeroes has been addressed. 

New tests have been derived, and analyzed via a simulation study. They 

are based upon the local approach ( [5 ] ,  [8], D~]) and an instrumental 

s ta t i s t i cs  which is "robust" with respect to the nuisance parameters, 
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The main conclusion is that detection and diagnosis of small (1%) 

changes in eigenfrequencies are possible, provided that the size of the 

sample is large enough (several thousands) and that there is no "masking" 

effect (different distances from the poles to the unit circle). This 

point is currently theoretically investigated. 

Finally, the extension of all these tests to the vector case is 

possible and currently under study. 

I LIST OF TABLES I 

Table I : Nomin~. and c#~znged models used for the simulation study. 

Table II : Investigation of the coupling effect of the sensitivity method 

in the s;t_zT.~.on~uty AR case. 

Table I I I :  Diagnosis by sensitivity and decoupling methods in the non- 

stationary ARMA case (piecewise constant MA coefficients). 
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Referencel 
model 

~j 

Changed ~. 
model J 

I 
Relative ma- ignitude/~ 
"Observable" 

1 

0.99 

Pj 
0.99 

0.8 

0.6 

0.8 

O. 594 

1% 

4%0 

Table I 

2 3 4 5 

0.99 0.99 0.99 

0.99 

0.99 0.99 O.6 

2.2 0.8 0.8 

0.6 

2.4 0.4 0.6 

2.18 0,8 0.8 0.8 

0.6 0.594 

2.4 0.396 0.4 0.594 

1% 1% I% 1% 

3%° 2%0 4%0 4%0 

Table I I  

I 2 3 

global test 3.32 4.42 7.01 

H 0 1.09 1.37 1.07 
sensit iv i ty 
test 1.39 

0.93 1.06 1.74 

global 17.99 175.69 17.51 
test 

H I 
sensi t iv i ty 1.24 189.32 1.96 
test 1.14 

17.90 1.18 13.50 

Table I l l  
1 2 3 

global test 1.75 4.29 4.11 

HO sensit iv i ty 0.48 0.70 0.17 
test 0.25 

0.59 1.54 0.62 

global test 11.29 237.35 8.99 

H, 0.84 233.03 0.84 
I sensit iv i ty 

test 0.47 
9.27 1.23 4,21 

4 

7.01 

1.07 

1.39 

1.74 

22.10 

1.74 

17.43 

1.68 

5 

4.52 

1.13 

4.12 

0.90 

1.01 
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