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The Asymptotic  Local Approach to Change 
Detection and Model Validation 

ALBERT BENVENISTE, MEMBER, IEEE, MICHELE BASSEVILLE, AND GEORGES V. MOUSTAKIDES, MEMBER, IEEE 

Abstract-We present  a systematic approach for the design of change 
detection and model validation algorithms for dynamical systems. We 
show bow to associate to any identification algorithm a change detection 
and  a model validation procedure, which are optimal in some asymptotic 
sense. The foundations of our method go back to the asymptotic local 
approach in statistics, and our method generalizes this approach. 

INTRODUCTION 

T HE problem of detecting changes in dynamical properties of 
signals and systems has received growing attention in the last 

15 years, as can be seen from the survey papers [21] and [ 11, and 
the monograph [2]. Actually, this problem arises in several areas 
of automatic control and signal processing, which may be 
classified as follows: 

1) failure detection in controlled systems, 
2)  segmentation of signals or images for the purpose of pattern 

recognition, and 
3) gain updating in adaptive algorithms, for tracking quick 

variations of the parameters. 
Many applied fields have been already concerned, as discussed, 

for example, in [l], and a significant amount of methodological 
tools are now available. S e e  the above mentioned reference for an 
extensive bibliography on this subject. 

On the other hand, the areas of system identification and system 
monitoring are primarily concerned with the problem of model 
validation in the following cases. 

1)  Check whether a given model set fits the considered system 
(identify the best model within the chosen model set, and perform 
model validation to ultimately accept or reject the selected model 
set). 

2) Check whether a given nominal model (intended, for 
instance, to describe the ideal behavior of a given system) fits the 
considered system. 

Most of the control softwares provide routines to perform 
model validation; the usual way is to monitor prediction errors, 
equation errors, etc,.. . (see [l 11 for example). However, most  of 
the model validation techniques are rather ad hoc from the 
statistical viewpoint. 

The purpose of this paper is to present a fairly general 
methodology to associate closely to any identification procedure, 
and, more generally, to anyxadaptive algorithm, a change 
detection and a more validation procedure. The foundations of our 
approach are found in Le Cam’s work on contiguity of probability 
measures, which lead to the so-called asymptotic local point of 
view in statistics, see the book [19], and also the fundamental 
papers [ 181 and [9]. This approach provides an effective way to 
design or analyze likelihood ratio based testing procedures when 
the alternative hypotheses become closer as the length of the 
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record goes to infinity. Starting from this idea, [3] and [16] 
studied a situation in which no likelihood ratio approach could be 
effective due to the presence of nonstationary nuisance parame- 
ters; hence, starting from the well-known instrumental variable 
method, they derived a closely related testing procedure using 
again a local asymptotic approach. The present paper shows that 
this situation is indeed general: the asymptotic local  approach 
provides us with a general methodology to associate to any 
adaptive  algorithm  an optimal testing  procedure for both 
change detection and model validation problems. 

Finally, the problem of diagnosing the origin of the detected 
changes has been mainly addressed via the multiple model 
approach [21],  [23]; this approach is, for example, used in 
aeronautics. We shall show that our approach trivially extends to 
this problem, thanks to a sensitivity method suited to the 
identification of the origin of small changes. Moreover, as we 
shall see, this will allow us to recognize the origin of changes in 
terms of nonidentifable models (think of a complex system 
modeled on one hand by a large physical, often nonidentifiable 
model, and on the  other by some smaller black-box identifiable 
model, and try to understand the origin of the changes in terms of 
the physical model). 

The paper is organized as follows. The problem is stated in 
Section I.  The mathematical background of the asymptotic local 
approach is presented in Section II. The local procedures of 
change detection and model validation are, respectively, pre- 
sented in Sections III and IV; the methods are illustrated on 
examples. Finally, the diagnosis problem is investigated in 
Section V. 

I. PROBLEM STATEMENT 

The problem will be stated for the case of change detection; the 
problem of model validation will be directly stated in Section IV. 
Consider a dynamical system subject to sudden changes. Our 
purpose is 

1) to decide on-line whether a change occurred or not, 
2) if a change occurred, to estimate the change time, 
3) to identify the origin and the magnitude of  the change. 

Let us first investigate some examples. 

A .  Examples 

I )  Jump in the Mean of a Signal: Consider a signal of the 
form 

Y n = e * ( n ) + u n  (1.1.1) 

where (u,) is a sequence of i.i.d. random variables with 
distribution p, and t9* is a piecewise constant function. The 
problem is to detect the changes in e*, and to estimate the 
magnitude and the location of the jumps. 

2) Changes  in  an AR Process: Consider an  AR process of the 
form 
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where (u,) is a zero mean i.i.d. sequence of unit variance. The 
model (1.1.2) is summarized in the parameter 

T 0 ,  := ( a l ,  - . a ,  ap; a). (1.1.3) 

Setting 

(1.1.2) can be rewritten under the following state-space form: 

where the unspecified entries of the matrix A(8,) are equal to 
zero. The formulas (1.1.5) express the fact that (4,) is a 
controlled Markov chain with control parameter 0*. This means 
that (&) is a Markov chain the transition matrix of which 
depends on the parameter O s .  Assuming 0, to be piecewise 
constant, it  is desired 1) to detect its jumps, 2) to estimate the 
change times, 3)  to estimate the magnitude of the jumps. 

These two basic examples motivate the following general 
setting, which uses the framework of controlled  semi-Markov 
processes, as used,  for example, in [7]. 

B. Detection of Changes  in a Controlled  Semi-Markov 
Process 

We shall say that (X,,) is a controlled  semi-Markov  process 
with controlparameter 8, if (X,)  is of the form 

Xn =f ( E n )  (1.2.1) 

where roe,(.$, dx) is the transition probability of a Markov chain 
( E n )  depending on a parameter 0,. The model (1.2.1) represents 
the true system. Accordingly, the sequential  change  detection 
problem in the system (1.2.1) is formulated as follows. 

DS: There exists an instant r :  0 < r 5 + 00, such that (X,,) is 
controlled by the parameter 

O * = O o  for n<r 

0,=01 for n 2 r. 

The questions we  want to answer are then the following. Given a 
record X , ,  * -, X,,  

1) detection decide between n < r (no change 
occurred before n )  and r n (a change 
occurred before n); 

2) estimation when r n has been decided, estimate 
the change time r ;  

3) identification if anyone is unknown, identify Oo andlor 
81. 

Of course, only a subset of these problems is of interest in some 
cases. For example, only the problem 1) has to be investigated in 
failure detection when no diagnosis is required. 

C. A Basic Problem and Its Solution: Change in the  Mean of 
Independent Gaussian Vector Random Variables 

This problem is the easiest change detection problem, and will 
illustrate our purpose. As a matter of fact, its solution will appear 

as a basic component of the general change detection problems we 
shall investigate subsequently. Consider a sequence of indepen- 
dent Gaussian vector random variables ( Y , )  with constant 
covariance matrix R,  and with  mean equal to 0 until time r - 1, 
and equal to 8 from time r, where 0 is an unknown parameter. The 
well-known solution to this change detection problem is the GLR 
test (generalized likelihood ratio), see [22]. Recall briefly how 
this test is obtained. First, fuc r and 8. Given the record Y , ,  * e ,  

Y,,, the log likelihood ratio between the hypotheses 

Ho: there is no change until n 
HI: there is a change at time r of magnitude 0 

is given  by 

Replacing 0 by its most likely value under the hypothesis of 
change (with r still fixed), we get 

S F : =  max S : ( O ) = ( A p ) ' R - ' A F  (1.3.2) 
e 

where 

n 

A: : = ( n - r +  I)-"' Y k  (1.3.3) 
k = r  

and 

&n, r )  := arg rnax S:(0)=(n-r+1)-''2Ap. (1.3.4) 

Taking in (1.3.2) the maximum with respect to r yields 

G, := rnax S:, r , = a g  max S:. (1.3.5) 

Finally, the stopping rule to decide that a change occurred is given 

r r 

by 

v = m i n  ( n  : G, 2 A )  (1.3.6) 

while the estimates of the instant of change and the magnitude of 
the jump  are, respectively, given by 

i = f D ,  O=B(v,  i) .  (1.3.7) 

The formulas (1.3.3)-( 1.3.7) defiie the complete change detec- 
tion test procedure for this case. 

II. MATHEMATICAL BACKGROUND 

In this section, we shall associate to any adaptive algorithm a 
fundamental invariance principle which will be the basis of our 
method. 

A.  Some  Useful  Background on Adaptive Algorithm, and 
Problem  Statement 

We shall first introduce the kind of adaptive algorithms we shall 
consider; we shall use the form and related assumptions of [7]; see 
also [15] or [lo] for slightly different assumptions. 

I )  Some  Background on Adaptive Algorithms: The adap- 
tive algorithms we shall consider are of the form 

@ n = O n - l + - r n H ( 6 - ~ ,  x n )  (2.1.1) 
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where 0 belongs to Rd or to some submanifold of Rd,  and the state 
X, belongs to Rk.  The gain y, can decrease to 0, or converge to a 
positive constant limit. The state vector X ,  is generally a semi- 
Markov process  controlled by the  parameter 8; this means that 

P ( t ,  E dt(En-1,  E n - 2 9  ' '.; -%-I ,  en-2, ' 0 .  ) = m s , - l ( E n - ~ ,  dE) 

Xn = f  ( E n  1 (2.1.2) 

where the extended state (4,) is, for 0 fixed, a Markov chain with 
transition probability as(4, dx) which depends on the parameter 
0. We assume that, for every B belonging to the domain of the 
algorithm, the Markov chain ( E , )  admits a unique invariant 
probability measure (i.e., is ergodic). This framework includes 
the case where the state (X,) itself is a stationary semi-Markov 
process with distribution independent of 8. It includes also the 
case of conditionally linear dynamics, such as used  in [ll], i.e., 

Xn=A(en-,)X"-l+B(en-l)W, 
where A(@ and B(8) are matrices, and (W,) is an i.i.d. zero 
mean sequence (in this case, (X,)  is asymptotically ergodic for 0 
fixed if and only if the matrix A (8) is asymptotically stable). The 
function H(0, X )  can be discontinuous, but  we shall assume that 
the following mean  vector field is smooth 

h(0)  : = lim Eo(H(f3, X,))  (2.1.3) 

where Eo denotes the expectation under the law Po of the process 
for 0 fixed. The ODE associated to the algorithm is then 

n-or 

B=h(O), B(O)=z (2.1.4) 

the solution of which will be denoted by (t9(t)),20 or (0(z, t))t20 
accordingly. We are now ready to introduce thi framework we 
shall use for the change detection problem. 

2) Problem  Statement 
a) Investigation of the Least-Squares Algorithm for AR 

Identrjication: The identification of in (1.1.5) can be, for 
example, performed via the least-squares stochastic gradient 
algorithm 

0, = 0,- 1 + 74, [O,Ie, [e,- I ,  e,] 
e,@, 0,) := u,(e,)-dX(e*) 8 (2.1.5) 

where d,[e,] is defined in (1.1.5). In (2.1.5), the dependence on 
the true parameter 8, has been made explicit, to introduce the 
convenient form for the change detection problem. In this form, 
the true system 0, is obviously not available to the user, but 
clearly influences the conditional distribution of the pair (d,, y,). 
Hence, the investigation of this example motivates the following 
form we shall use for the adaptive algorithms instead of (2.1. l),  
(2.1.2) (we shall always in the sequel write z instead of 8, to 
denote the true system): 

& = & - I + Y H ( & - l ;  X , )  

P ( t n  E dtltn-19 t n - 2 ,  * e ' ;  e,-,, 4 - 2 ,  - . a )  

- 
- m a , - l , z ( E n - l ,  dE) 

Xn=f ( E n )  (2.1.6) 

where the parameter z represents the true  sysrem. The second 
equation of (2.1.6) expresses the fact that the true system does 
influence the law of the state 4,; note that the form of the 
algorithm, as available to the  user, has been kept unchanged. 

As usual, more sophisticated gain strategies can be used; for 
example, the classical least-squares algorithm makes  use  of a 
recursively updated matrix gain instead of the crude constant 
scalar one used  in (2.1.5). But the gain strategy is irrelevant for 
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our purpose, only the random vector field H(0, - I ;  X,)  will be 
relevant. 

6) Problem  Statement  and Assumptions: Our starting 
point is now the triple introduced in (2.1.6), namely: 

H(0; X,,), r e , z ( t ,  dx), f (2.1.7) 

where 
8 is the adjustable parameter available to the user 
z is the parameter which represents the true system; z is not 

available to the user 
the state X,  is a semi-Markov process controlled by the pair 

(e, z ) ,  the law of which will be denoted by Po,z. 
This triple will be simply referred to in the sequel as the 

random vecfor field. As usual, we shall assume that the 
transition probability ?ro,Jt, dx) is ergodic and positively recur- 
rent, and hence admits a unique invariant probability. To simplify 
our notations, we shall denote, respectively, by 

4,, and Ea,z (2.1.8) 

the steady-state distribution of the process (X,) under (8, z )  and 
corresponding expectation. As usual for adaptive algorithms, the 
following mean vector field is associated to (2. I .7), according to 
the notation (2.1.8) 

h(e, Z) := r.?o,z(H(e; x,))(= ~ i m  r&,z[H(e; x,)]) (2.1.9) 
n-m 

where Ea,, denotes the expectation with respect to poJ. This is 
nothing but the usual mean vector field of the associated ODE, 
where the dependence of the true system z has been made explicit. 

From now on, we shall distinguish a nominal  model 

e=eo 
chosen by the user. The problem is to detect  small  deviations of 
the true system z from the nominal  model 0, by on& 
monitoring  the  random  vector field H(Bo; X,).  The following 
assumptions will be in force  in the sequel, and we shall denote by 
ho and h,, respectively, the first and second partial derivatives of 
h. 

Assumption NS: The model set matches the true system 
structure in the following sense: for  every 2, 

h(e, Z ) = O  o e=z.  (2.1.10) 

Consequence: The following relationship holds: 

M Z ,  z )  = - M z ,  z )  (2.1.11) 

the proof of which is obvious and left to the reader.  We are now 
ready to present our problem statement. 

Change  Detection  Problem: Given a nominal model Bo 
chosen by the  user, and a record X , ,  * * , X ,  of length n of the 
state vector; test between the following hypotheses by using the 
random vector field trajectory [H(Bo; X & ) ] l s k g n  

H,:Z e 0; 
HI: Z = eo + e/&, where 0 # 0 is an unknown change; 
H,': there exists 7 E IO, 1[, such that 

z = 0, for k< m 

e 
6 z=Oo+- for r n  5 k s n, 

where 0 # 0 is an unknown change. 
Comment: The hypothesis Ho expresses that the nominal 

model is identical to  the true system; the hypothesis HI corres- 
ponds to a constant deviation between the nominal model and the 
true system of magnitude order n - I / * ;  finally, the hypothesis Hi 
corresponds to the occurrence of a change of magnitude order 
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- 112 inside the record. Introducing the scaling factor 6 is 
classical in statistics, and is known as the asymptotic local 
approach. The interested reader is referred to 11 81, [ 191, and [9] 
for further information on the asymptotic local approach for the 
likelihood ratio testing methods. 

B.  Main  Results 

Assumption NS  is in force throughout this section. Fix a 
nominal model Bo, and consider the following cumulative sum, 
where m 5 n 

Dfl(80, e )  : = Dn,n(eo, 0) (2.2.1) 

[cf. (2.131. In other words, the dependence on the true system z 
has been made explicit in the definition of Dfl,m(Oo, e). We shall 
now describe the asymptotic behavior, when the length n of the 
record tends to infinity, of this cumulative sum under the three 
hypotheses Ho, H I ,  and H,'. 

I) Behavior of the  Cumulative Sum Under  the Hypothesis 
of No Change: This behavior is described in the following 
theorem. 

Theorem I: i) Behavior of the marginal distribution: 

(2.2.2) 

where R(0) is given by 

R(B) : = C ~ V ~ , ~ [ H ( B ;  x,,), H(8; xO)]. (2.2.3) 
i m  

n =  --o) 

P0.e denotes the steady-state law of X, when the adjustable 
parameter and the true system are both equal to 8 ,  and C ~ V ~ , ~  is the 
covariance with respect to 

ii) Invariance  Principle: For t E [0, 11, set 

Dn,&'o, 0) : = Dn,,(eO, 0) where m = [nt]. (2.2.4) 

Then, 

[R(OO)I-'/~ * {Dn,r(80, O)}osrs1+(Wt)ocrcl (2.2.5) 

when n tends to infinity, where ( W,) is a Brownian motion, and 
-+ denotes the weak convergence of processes. H 

Proof: Of course i) is a consequence of ii). See the 
Appendix for a proof of this theorem and precise assumptions on 
the random vector field (2.1,7), 

2) Behavior  of the Cumulative Sum Under the Hypothesis 
of Change: We shall directly investigate H,', since H, is  a 
subcase of the former hypothesis. Consider 7 E [0,  11, and let us 
introduce for m 5 n the following cumulative sum: 

z=Oo for k 5 min (m,  [ m ] )  

~ = t I ~ + n - ' / ~ e  for k>min (m,  [ n ~ ] )  (2.2.6) 

in cf. (2.1.7). This cumulative sum reflects the effect on the 
vector field H of a deviation of magnitude order n between 
the nominal model and the true system, which occurred at time 
n7. The behavior of this cumulative sum is described in the 
following theorem. 

Theorem 2: Behavior  of the Cumulative sum under  the 
hypothesis H,'. Let  r E [0, 11 be given. Set 

D,,,(Bo, 8,  7) : = Dn,,(OO, 8, 7 )  where m = [nt]. (2.2.7) 

Then, when n tends to infinity, the process [ D n , r ( e O ,  8 ,  T ) ] ~ ~ ~ ~ ~  

converges weakly towards the process [D,(eo, 8 ,  7 ) ] 0 s r s , ,  
solution of the linear stochastic differential equation 

dDr= -l{rzTl . he - f?dt+R'/2 * dW, (2.2.8) 

where R = R(Oo) is given in (2.2.3), while he = he(Oo, 0,) is 
defied in (2.1.11). 

Corollary 3: Hypothesis H ,  

L 
n + w  Dfl(80, 8 )  -+N[-ho . 8 ,  R(eo)l. (2.2.9) 

This corollary is directly carried out from Theorem 2  by taking 7 
= 0. 

Proof: See the Appendix. 

III. LOCAL CHANGE DETECTION TECHNIQUES 

A .  The  Local  Test 

From the user's point  of view, the cumulative sums Dn,, =' owen 
by the formulas (2.2.1) or (2.2.6) are identical, since they differ 
only via a change on the true parameter z, which is  not observed 
by the user. These cumulative sums will be from now on denoted 
as follows: 

&"(eo)=- y k ( e O ) ,   Y k ( e 0 )  := m 8 0 ;  x k ) .  (3-1.1) 
1 "  

k = l  

We shall interpret Theorem 2 as follows. Assume a change of 
magnitude order n - ' I2 occurred at time r in the direction of 
change 0, and n is large enough. Then, considering the random 
variables Y k ( 6 0 )  as independent, and  distributed as follows: 

Yk(eo)=. [o,  R(eo)i, k<r 

Yk(eO)=:[-ho(eo) . e, ~ ( e ~ ) ] .  k 2 r (3.1.2) 

would  exactly  result in the asymptotic behavior  described by 
(2.2.8).  Hence, we shall  replace the original  testing problem 
(Ho against H ; )  by the asymptotically  equivalent  problem of 
detecting  changes  in  the  mean  of  the  independent  Gaussian 
variables  according to (3. I .   I ) ,  (3.1.2). Restricting the study to 
the case where the direction of change 8 is unknown, we shall 
apply the formulas (1.3.3)-(1.3.7) to the detection of a change 
like (3.1.2).  This gives the formulas of the local  change 
detection  procedure: 

n 
s;(e)=2 [ Y : R - ~ ~ ~  - e] - (n - r+l>eT  - h , T ~ - l h ~  e 

k = r  

(3.1.3) 
where eo has been deleted for simplicity. Fixing r and maximizing 
with respect to 8 yields 

S: : = max SF(@ =(A:) T R - l A n  
e r '  

n 

A: := (n-r+l)-l12 Y k ,  

k=r 

8(n, r )  := arg max s:(e)= -(n-r+ I ) - I / ~ ~ ; I A ; .  (3.1.4) 
e 
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The stopping rule and the estimates of the change time and 
magnitude are given by the formulas 

i) Gn : =  maxS;, v=min ( n  : G, 2 X) 
r 

ii) r, = arg max SF, i= iv, 0 = O(u,  i). 
- -  

(3.1.5) 

Note that (3.1.5-i) is sufficient if the change detection only is of 
interest. The local test is given by the formulas (3.1.1),  (3.1.4), 
(3.1.5).  The threshold X is easily selected by knowing that, under 
the no change hypothesis, we have 

Eeo(S:)=d, (3.1.6) 

since (n  - r + 1)s: is (approximately) a central x2 with d(n - r 
+ 1) degrees of freedom. 

Comments: 1) A probably more commonly used method is the 
following one. 

i) Run the adaptive identification algorithm with constant gain 

e ,=e,- l+~rH(e,- l ,  
ii) Use a X2-test  of the form 

(e, - e,) T C -  yen - e,) 2 A (3.1.7) 

with a suitable matrix C using the fact that 0, - eo is 
approximately Gaussian and zero mean for y small in the 
hypothesis of  no change (use a central limit theorem for stochastic 
approximations to select the proper matrix C; see, for example 
[ 101 and [7]. This latter method is in fact far from being as 
efficient as our method. It is known in fact that the deviation 8, - 
0, is quite complex: t h i s  deviation behaves like a fist-order 
Gaussian Markov process [lo]. But  in this case, it is known [22] 
that the best local test involves the innovations of this Markov 
process, which gives something different from (3.1.7). Our 
method is precisely the right way to test for small changes in the 
true system. We shall now illustrate this method on two nontrivial 
typical examples, and show that it is the convenient  generaliza- 
tion of the local likelihood  ratio  tests introduced by Le Cam 
([IS], [ 191, [9]); other examples can be found in [7]. 

2) The formulas (3.1. l), (3.1.4), (3.1 S )  do define  the local 
test: these formulas have to be applied in practice regardless of 
any asymptotic consideration (i.e.. no small change is needed, 
nor a large delay for detection). The only purpose of the 
asymptotic framework was to provide guidelines for the design of 
local tests. On the other hand, this framework is also used to show 
that (at least for local likelihood ratio model validation techniques, 
see [19]) local methods are asymptotically’ uniformly most 
powerful, which justify their use from the theoretical viewpoint. 
But let us again emphasize that these assumptions no longer have 
to be taken into account in practice. 

B. Examples 

I )  Change Detection in A R  Processes: The objective is to 
detect changes in the parameter 8 in the system 

Yn=+Xe+un, + X = ( Y , - I ,  . . . , y n - p ) .  (3.2.1) 

We apply our method  with the random vector field of the classical 
least-squares algorithm, namely 

N(0, Y n ,  4,) : = d,e,(O), en(6) : = y,-d,TO. (3.2.2) 

The matrix R(0,) corresponding to (2.2.3) is given by 

R (eo) = EBo(Un +,+ p,) = a2z (eo) (3.2.3) 

Here, “asymptotically” means for long sample and small change. 

where uz is the variance of u, and E(&) the covariance of the 
regression vector +n for the nominal model 8,. This gives 

n 

A ; ( e , ) = ( n - r +  1)-If2 dkek(eo). (3.2.4) 

It is easy to verify that u -*A;(e,) is the derivative with respect to 0 
of the log likelihood of the sample y l ,  * * , yn under Ho, while 
u-zE(f30) is the Fisher information matrix. Comparing the 
obtained procedure with  [18] and [8] reveals that (3.1.1),  (3.1.4), 
(3.1.5), (3.2.3), (3.2.4) yields the so-called focal likelihoodratio 
test, which is the convenient procedure to detect small changes in 
the parameters of an AR process. 

2) Detecting  Changes in the Poles of an ARMA Process 
with the Instrumental  Local  Test: This example is much more 
interesting, since we shall derive with our method a new test, 
which  is nonclassical, and has been proposed and analyzed in 
detail in [3] and [16]. Consider an ARMA process of the form 

k = r  

D 0 

(3.2.5) 

where (u,) is a white noise. Our purpose is to monitor possible 
changes  in the AR parameters,  while  considering the MA 
parameters as nuisance  parameters. This is recognized as a 
difficult problem, since the poles and zeros of  an ARMA process 
are tightly coupled (the Fisher information matrix exhibits 
coupling between AR and MA parameters). However, the 
instrumental variable (I.V.) method is known to be an identifica- 
tion procedure which satisfies our robustness requirements; for 
example, it is shown in [6] that the AR parmeters can be 
consistently identified with the I.V. method even if the MA 
parameters are time-varying. Recall briefly this method [20]. 
Setting 

e = : =  (al, a . 0 ,  ap)  

d z : =  ( Y n - 1 ,  * * a ,  Yn-p) 

$I := (Yn-q-1, ..., Yn-q-p) (3.2.6) 

where $, is the instrument, the I.V. method is given by 

The random vector field of interest is here equal to 

(3.2.7) 

where Bo is the nominal model. To apply our method, we must 
calculate the matrices 

R(@o) : = ~ o [ y , ( ~ o ) y ~ ( e ~ ) ~ ~  
n E Z  

= 5 Eo[$nll/l(Yn- ~ p o ) ( Y o - + p o ) ~  
n= -q 

M e , )  = -&($ndI) (3.2.9) 

where EO is a shortage for Ee,oo. The instrumental  test is obtained 
by combining the formulas (3.1.1), (3.1.4), (3.1.5), (3.2.8), 
(3.2.9). As expected, this test exhibits very pleasant robustness 
properties with respect to the nuisance MA parameters: for 
instance, it is proved in [16]  that the instrumental test does 
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z denotes the true system, which is  not available to the user; 
X, ,  the state at time n, is a random semi-Markov process 

with transition matrix controlled by the pair (e, z ) .  
Again Assumption NS is  in force throughout this section. The 

problem VM  is then formulated as follows: assume that a nominal 
model Bo and a record X , ,  . . . , X ,  of the state vector are given. It 
is desired, by monitoring the random vector field (W(Bo; 

C k  s,, to decide between the hypotheses: 

H~ : z=eo 

effectively detect changes in the AR parameters, while ignoring 
possible changes in the MA parameters, a property which is 
certainly not satisfied by the likelihood ratio tests associated to 
ARMA processes! Hence, our general method allowed us to 
derive a new, nonclassical method  of change detection. It is  not 
our purpose here to discuss the details of practical implementa- 
tions. The interested reader is referred to [3] for further details. 

IV. LOCAL MODEL VALIDATION TECHNIQUES 

Model validation is often considered as a must to verify the 
relevance of a given identification procedure for a given plant or 
system; but in fact model validation is also useful for other 
purposes. The main purposes of model validation can be indeed 
classified in the two following classes. 

1) Verify that the selected model set is convenient to capture 
the behavior of a given plant or system. The usual procedure is 
then as follows: first identify the best model within the considered 
model set, second check (via model validation techniques) if the 
so obtained model describes the true system in a satisfactory way. 
For example, model validation is certainly needed  when oversim- 
ple model sets are used to identify a given system. 

2) Try to detect a possible inconsistency of a given system with 
respect to a given prespecified behavior; this a priori behavior 
could be a specification of the designer, or could also be the result 
of a previous identification performed when the system was 
supposed to be safe. Furthermore, perform a diagnosis on the 
origin of the possible changes. This second point of view  was for 
example taken in [3], [4] for monitoring offshore structures 
subject to vibrations. 

We shall now show that our local framework does apply for 
model validation as well, and further leads to 'theoretically sound 
model validation techniques, compared to the classically used 
ones. 

A .  Problem Statement 

We use the same framework as  for change detection. Consider 
a semi-Markov process (X,)  with conditional density parame- 
trized by according to the formulas 

(4.1.1) 

where r e 8 * ( { ,  dx) is the transition probability parametrized by 6'* 
of the Markov chain ({,). The model validation problem is then 
simply formulated as the following hypothesis testing problem. 

VM: Given a nominal model eo, decide between the hypothe- 
ses 

f?* = B o  : the  nominal  model is valid 

O* #eo : the  nominal model is not valid. 

Here, eo denotes the model to be validated (nominal model), while 
f3* denotes the (unknown) true system corresponding to the 
observed record X , ,  . . . , X*,. 

B. Local Validation Method  Associated io an Adaptive 
Algorithm 

The problem VM is formulated in the local framework as 
follows. We consider again as in (2.1.7) the random vector field 
associated to the adaptive algorithm: 

H ( &  X I ) ,  *&At, w ,  f (4.2.1) 

where 
0 is the nominal model, chosen by the user; 

e 
HI : z = eo + where 0 f 0 is a fixed but  unknown change. 

It is then clear that the problem VM is a particular case of the 
change detection problem we have studied before: just set r = 0 
and delete the maximization with respect to r in the formulas 
(3.1.3),  (3.1.4). This gives the following formulas, where the 
explicit dependence on 80 was deleted for the sake of simplicity. 
For a fixed 0, the log likelihood ratio between the hypotheses HI  
and Ho is given by 

n 

n 

s,(e)=2 [ Y , T R - I ~ ~  . e ] - n e T .  h ; ~ - l h ~  e (4.2.2) 
k =  1 

where Y is defined in (3.1.1). Finally, the following x 2  test is 
derived 

(4.2.3) 

Again, the threshold X can be chosen by using the fact that, under 
the hypothesis Ho of validity of the nominal model Bo, nA;R -'A,, 
is a x' with n degrees of freedom. The same examples as before 
can be used to illustrate our method. See [4] for an extensive 
application of the instrumental test as a model validation method 
to check fatigues or failures in a vibrating structure. Furthermore, 
other examples are proposed as exercises in the book [7]. 

V. DIAGNOSIS 

The diagnosis problem can be formulated for change detection 
as well as for model validation. Its goal is to identi@ the most 
likely origin of the change among a list of a priori fixed directions 
of change. For example, it can be desired to monitor a specific 
pole  of a high order ARMA process. Furthermore, it can be 
desired to recognize the origin of the changes in terms of 
parametrizations which are not identifiable (this is, for example, 
the case when nonidentifiable physical models are referred to for 
the diagnosis). Let us first investigate this problem on a simplified 
example, borrowed from [4] and [17]. 

A .  The Example of Vibrating Sysiems 

Consider a vibrating system subject to external disturbances, 
and monitored via accelerometers or strain gauges. A relevant 
finite element approximation yields the continuous-time linear 
model 

MZ+CZ+KZ=E Z, E E R" 

Y = L Z  Y E  Rd, d + 0 (5.1.1) 

where Z is the vector of the displacements (or accelerations), M is 
the mass matrix, C specifies the damping, and K is the stiffness 
matrix; E is the excitation, and the second equation expresses the 
fact that only a few components of the state are observed. We 
assume that the excitation is a white noise with a given unknown 
covariance matrix. The discrete-time version of (5.1.1) is, in 
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hypotheses: 

(5.1.1) and (5.1.2)  are related as follows: 

h(F)=exp [T . X(Ms2+Cs+K)], H6x=L$x (5.1.3) 

where T is the discretization step, h( a )  denotes an eigenvalue, & 
the corresponding eigenvector of F, and the eigenvector of the 
polynomial matrix (Ms2 + Cs + K ) associated to the eigenvalue 
exp ( ~ h ) .  Finally, the eigenstructure of (5.1.2) reflects the 
eigenstructure of the vibrating system (5.1. l) ,  while the excitation 
noise V, is a byproduct of the excitation E. The problem is to 
diagnose the origin of changes in the vibrating characteristics of 
the system by simply monitoring the signal Y .  Such a diagnosis 
can be formulated 

in  the modal domain: the corresponding parametrization is 
in terms of the observed eigenstructure of the system, and is 
identifiable [because of (5.1.3)] if the model (5.1.2) is minimal. 

in the physical domain: the corresponding parametrization is 
in terms of the physical parameters M ,  C, K (or of related ones), 
and is generally not identifiable. 

The two problems are not  of the same difficulty. In the first 
case, it is for example possible to use the formula (3.1.4) in order 
to estimate the most likely change 8, since the corresponding 
parametrization is identifiable, while it is not possible to do it  in 
the second case, since the corresponding model set is not 
identifiable. This is even more true if a model reduction is 
performed when replacing (5.1.1) by (5.1.2), which is always the 
case in practice. We shall thus propose a suitable general 
approach to solve this problem. 

B. Some Prerequisites 

Recall the following elementary result in Gaussian hypothesis 
testing. Let U be a random variable distributed as N ( p ,  E). 
Consider a full column-rank matrix M ;  for testing p = 0 against p 
= Mv, where v # 0,  the log likelihood ratio is 

1 1 
2 2 

T =  -- (U-MV) 'E- ' (U-MV)+-  UTC- 'U 

= UTE- 'Mv--  vTMTC-"v. 
1 
2 

The maximum likelihood estimate of v is 

Y^=(MTE-'M)-'MTE-'U. 

So that we get the following x2 statistics to test ,u = 0 against p = 
Mv, v # 0 

x= UTE-'  M[MTC-"]-'MTC-'U. (5.2.1) 

We shall now apply these elementary formulas to our asymptotic 
local approach. For simplicity, we shall investigate the case of 
model validation only, but it should be clear that the whole 
analysis extends to change detection as well. 

C. Diagnosis of Changes on Identifiable Model Sets 

Going back to the statement of the local method for model 
validation, the general diagnosis problem is formulated as 
follows. Assume that a nominal model 0, and a record X , ,  . . - , X,, 
of the state vector are given. It is desired, by monitoring the 
random vector field (El (&;  X k ) ) l c k , c n ,  to decide between the 

HI : z = Bo + - , where 8 # 0 is a fixed but unknown change 
0 
&l 

inside  some  specified  subspace 8. 

Choose a full column rank matrix Me such that 8 = range (Me); 
keeping (3.1.2) in mind, we can directly use the formula (5.2.1) 
to get the suitable version of the formula (4.2.3) 

A ~ ~ R - ~ M [ M ~ R - ~ M ] - ~ M ~ R - ~ A ,  2 x 
M=he(Bo) * Me (5.3.1) 

where A, is defined in (4.2.3).  This can be used as follows. If 8 is 
the subspace spanned by a subset of the coordinates of the 
parameter 8, choose Me as being the corresponding projection 
matrix. If 8 is the subspace spanned by a subset of the coordinates 
of another identifiable parameter set \k = {$} such that there 
exists a change of coordinates 

0 = F($)  (5.3.2) 

with F being a local diffeomorphism, build Me as being the 
corresponding subset of the columns of the Jacobian matrix 

F'($O) (5.3.3) 

where Go is the nominal model in the parameter set \k. This was, 
for example, the approach taken in  [3], [4] for diagnosing changes 
in specified poles of a vector ARMA process. 

D. Diagnosis on Nonidentifiable Model Sets 

I) A Rough Procedure: Assume now the parameter set \k to 
be monitored is not identifiable, which means that Fin (5.3.2) is 
C' and onto, but is not a diffeomorphism (since it is  not 
bijective!). Then, it is no more possible to apply the preceding 
method, since the nominal model $o used in (5.3.3) to compute 
the Jacobian cannot be derived from eo. The suitable modification 
of the method is then the following. 

Step I: Select a nominal model do in the (identifiable) 
parameter set of the adaptive algorithm. For example, the nominal 
model can be simply identified, say, on a previous reference 
record. 

Step 2: We assume that a coarse nominal Go is available: 

0 0  = W o )  (5.4.1) 

(this is, for example, the case when $o is an approximate physical 
model  of the system provided by the designer). We compute the 
Jacobian F'($o) at this coarse nominal model, and we select the 
proper columns. This provides us  with c o m e  directions of change 
to be monitored, which are sufficiently accurate in practice. 

Since the parameter space \k is assumed to be much larger than 
the identifiable parameter space 8, the selection of proper 
subspaces in \k must be taken with some care; otherwise the 
selection rule (5.3.2) could lead to subspaces el, 02, - . which 
might  not be distinguished by our testing method. To overcome 
this difficulty, the following method is proposed in [17] and 
currently implemented for the application to vibration monitoring. 

2) An Improved Procedure: Step 1 of the former procedure 
is kept. Step 2 is refined as follows. 

Step 2.1: Assume a coarse nominal model $o in the sense of 
(5.4.1) is available; select candidate changes A$', 8G2, - - to be 
monitored in the large parameter space \k and compute the 
corresponding changes 

Mi=F'('@o) . S$i (5.4.2) 
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in the identifiable parameter space 9. Let  us emphasize that the 
magnitude of these changes is of importance: some realistic 
changes in the parameter set 9 may result in too small changes in 
the identifiable parameter set 9, so that there is  no hope to detect 
them. Consequently, such changes have to be removed from the 
monitoring procedure, this is the purpose of the next step. 

Step 2.2: Selection of the monitorable changes. Given a 
change 68 obtained via the Step 2.1, the noncentrality parameter 
of the x2 statistics (5.3.1) corresponding to Me = 68 is equal to 

6 e T .  h;(eo) . R - I  . he(Oo) 68. (5.4.3) 

Compare to a chosen threshold this noncentrality parameter for all 
the 68;’s obtained in Step 2.1, and keep only those changes for 
which the threshold is exceeded: these are the monitorable 
changes. 

Step 2.3; Perform any clustering method to replace by a single 
unit vector 8 each subset of Mi’s that are close to each other in the 
sense of the following distance measure (we write 8 for short 
instead of 68, and we remove the dependence on the nominal 
model eo): 

d(ei ,  e j )=  1 - p i , j  

1,’ ( ~ ‘ h ; ~ - l h ~ e ~ ) ( e , f h ; ~ - ’ h ~ e , )  . p? .= 
(OTh;R-1he8j)2 

Note that p i , j  is nothing but the cosine of the angle between the 
subspaces spanned by the vectors 8; and 8,. The final subspaces to 
be monitored are the spaces spanned by  the-unit  vectoJs 8 obtained 
in Step 2.3: denote these subspaces by e,, - .  e ,  gN, they are 
guaranteed to correspond to hypotheses which are both monitora- 
ble and distinguishable from each other. 

Step 2.4: Monitor in parallel all the corresponding x2-statistics 
to decide the origin of the possible changes in terms of the large, 
nonidentifiable, parameter set P. The resulting procedure can 
allow the diagnosis of small changes with a good accuracy. 

This method is currently implemented on the vibrating system 
example mentioned above. Primary results show that2 1) the 
clustering step produces classes that are coherent from the 
mechanical viewpoint, 2) the local tests built according to the 
described procedure do allow the isolation of changes occurring in 
the considered classes. 

VI. CONCLUSION 

We have introduced a general method to associate to any 
identification procedure a change detection and a model validation 
procedure. This general approach is based on the so-called 
asymptotic local approach used  in the  area of statistics as a tool to 
analyze or design likelihood ratio testing procedures. Our method 
extends the former one to procedures which are no more based on 
likelihood ratios. Furthermore, this method provides as a direct 
byproduct correctly sounded procedures for the diagnosis of the 
origin of the changes, even when those changes are formulated in 
terms of (nonidentifiable) larger models. The method was 
illustrated on two typical examples: the least-squares algorithm, 
where the classical local likelihood ratio approach was rederived 
in this way, and the instrumental test, a procedure, recently 
proposed by the present authors, which is associated to the well- 
known instrumental variable method, and was used on a signifi- 
cant practical application in vibration mechanics. 

APPENDIX A 
ASSUMPTIONS AND PROOFS 

In this Appendix, we give the assumptions and proofs of 
Theorems 1 and 2. The basic references are  the  three papers by 
Mac Leish given hereafter. 

single one among several simulation examples. 
* When no numerical ill conditioning occurs, such as encountered on a 

A .  Mixingales, and a Theorem of Mac Leish 

Mixingales: Mixingales have been introduced in [I21 and are 
probably the largest class of dependent random variables. Let { Q ,  
F, F,, P )  a probability space endowed with an increasing 
discrete-time indexed family of a-algebras. The conditional 
expectation E (U/F,) will be denoted for short by E, U, and 1 1 .  112 
will denote the L2-norm. 

Definition A. l :  The sequence of random variables Z ,  is a 
mixingale if,  for sequences of finite nonnegative constants c, and 
3, where $m + 0 as m .+ 03, we have for all n 2 1, m 2 0 

a) IIEn-mZnll2 s rl.mcn 

b)  1IZn-En+mZnII2 5 rl.m+lCn* 0 (6.4.1) 

For example, $, = 0 corresponds to martingales. Strong laws 
and invariance principles are given in [ 121, [ 131 for mixingales 
with exponentially vanishing $,,,’s. The class of mixingales 
contains all the classes of mixing processes, and also the functions 
of mixing processes introduced by Billingsley. However, we shall 
need stronger results, namely invariance principles for triangular 
arrays of mixingales; such results are found in 1141 and will be 
stated now. 

Triangular Arrays of Mixingales: Let { Zn,i]i = . .,= . . 
be a double array of zero mean random variables defined on a 
probability space { Q ,  F, P I .  Let k,(t) be a sequence of 
nonrandom integer valued, nondecreasing, right continuous func- 
tions on [0, m). We form a random function 

(6.4.2) 

and  we  wish to show the weak convergence of Wn(t) to a standard 
Wiener process W. Suppose 

a:,i= E(Zn,iZn,j) (6.4.3) 
i 

does exist, and is such that the following conditions hold for each 
T <  03: 

k, ( 0  z 4 ;  

a) sup lim sup k (SI ~ O3 

scIcT  n-m t-S 

is uniformly  integrable 
n = I , 2 ; ~ ~ i ~ k n ( T )  

(6.4.4) 

These conditions are sufficient for the Lindeberg condition to hold 
for the considered array. We also require that the sequence 
(Zn, i ) i= 1,2,. . . constitutes a mixingale with respect to some double 
array of increasing a-algebras F,,;, namely 

IIE(ZnilFn,i-k)ll2 5 $‘kani 

I I zn i -E(zn i IFn , i+k) l12  S $‘k+lani-  (6.4.5) 

lleorem  fi4]: Suppose conditions (6.4.4),  (6.4.5) are in 
force, $k 1 0 exponentially fast, and, for each s < t < u 

as n + 03, then W, converges weakly to a standard Wiener 
process. 
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B. Assumptions for Theorems 1 and 2 

To apply the theorem of Mac Leish, we choose 
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T =  1, k,,(t) = t (6.4.7) 

where X is an arbitrary unit vector, and 

The conditions (6.4.4) are obviously satisfied. We shall further- 
more assume that the conditions (6.4.5),  (6.4.6) hold, with 
constants $k that are uniform in X and n large enough, and that the 
function z + R(Bo, z )  is continuous and bounded from below. 
These are very weak conditions: stationarity of (X,,) is  not 
required, discontinuities are allowed on the random vector field 8 
-+ H(0, X,,), and the mixingale condition is satisfied for every 
reasonable Markov chain f , .  Verification of the assumptions 
(6.4.5),  (6.4.6) can be a heavy task on difficult examples, but 
such a verification is beyond the scope of the present paper. See, 
for  example, [5] for the verification of the stronger function of 4- 
mixing condition on nontrivial examples. 

C. Proofs 

Let us begin with the proof of Theorem 1. First, notice that 

(6.4.8) 

for n and i large. 

implies that 
Using the notations of (2.2.4), the theorem of Mac Leish 

Since X is arbitrary, this proves the theorem. In fact, a simple 
invariance principle for mixingales would have sufficed for 
Theorem 1. 

The proof of Theorem 2 requires the stronger result on arrays 
of mixingales. It is obviously sufficient to prove Theorem 2 for 7 
= 0. We shall write On,,(@ for short instead of On,,(O0, 8 ,  T ) ,  and 
delete the dependency on 0, when no confusion can occur. Taking 
into account (6.4.8), the theorem of Mac Leish implies here that 

Finally, a first-order Taylor expansion 

Albert Benveniste (“81)  was born in  Paris, 
France, in  1949. He graduated from  the E o l e  des 
Mines  de  Paris in 1971. 

From 1971 to  1973, he  was  with  the Centre 
d’Automatique  de  1’Ecole  des  Mines, 
Fontainebleau.  From 1974 to  1976, he  was  with 
INRIA, Rocquencourt. Since 1976, he  has  been 
with IRISA,  Rennes. After some work  in 
probability  theory  (Markov  processes  and ergodic 
theory)  for his “thkse d’Etat” in 1975, his interest 
moved towards the area of applied  mathematics 

(signal processing,  identification and adaptive  algorithms, speech  and image 
coding, data communication systems).  He is  the author of numerous papers in gives Theorem 2 .  



592 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO. 7, JULY 1987 

identification,  adaptive algorithms, data transmission  systems,  image coding, 
and change  detection. 

Michele Basseville was born in Paris, France, in 
1952. She graduated from the  Ecole  Normale 
Supirieure, Fontenay-aux-Roses, France. 

Since 1976, she has  bezn  with  IRISA,  Rennes. 
Until  her “thise d’Etat” in 1982, her main  interest 
has  been  on-line  segmentation of digital  signals.  and 
then  has  moved towards change  detection and 
diagnosis  in  dynamical  systems. She has coedited 
(with A. Fknveniste)  a  Springer-Verlag LNClS 
issue  devoted to the  design of statistical  algorithms 
for change detection. 

Georges V. Moustakides (S’79-M’82-SM‘82- 
”83) was born in Drama, Greece, on  April  16, 
1955. He received  the  diploma  in  electrical 
engineering  from  the  National  Technical 
University, Athens, Greece, the M.Sc. degree  in 
systems  engineering  from the Moore School of 
Electrical Engineering, University  of  Pennsylvania, 
Philadelphia, and the Ph.D. degree in  electrical 
engineering from Princeton  University.  Princeton, 
NJ, in 1979,  1980. and 1983, respectively. 

From 1983 to 1986, he  worked  in  the  Institut de 
Recherche en Informatique et Systttmes  Aleatoires.  Rennes, France. His 
interests include detection of signals in  dependent noise. detection of changes 
in systems, and theory  of  optimal  stopping rules. 

. .  


