
IEEE  TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32, NO.  12, DECEMBER 1987 1067 

Optimal Sensor Location for Detecting Changes in 
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ANNE  ROUGEE 

Abstract-We address  the problem of  optimal  sensor  location for 
monitoring  the  eigenstructure  of a multivariable  dynamical  system.  The 
criterions  which are optimized are  the power of new tests designed  for 
detecting and diagnosing  changes  in  the  eigencharacteristics  of a system 
[3], [121. The  key  points are the  choice of the  parameterization  for 
computing  the  criterion  and the comparison of designs with a different 

’ number of  sensors.  The  discussion  of  the numerical  results for  sensor 
location  includes  the  analysis of the  effect  of the  geometry  of  the 
unknown excitation. 

1. INTRODUCTION 

T HE problem of optimal sensor location is of crucial 
importance in system design. In order to reduce the cost of 

instrumentation and increase the efficiency of the identifiers, state 
estimators or detectors are implemented for monitoring the 
system. Except for distributed parameter systems, this problem 
seems to have received little attention in the literature. Further- 
more, it has been addressed more in view of good parameter 
estimation or state reconstruction, than for optimum monitoring of 
the system parameters and for change or failure detection. 

A .  Short Review of Exkting Results 

The results which are available so far, up to our knowledge, 
may be classified as follows. 

1) Optimal Sensor Location for  State Reconstruction: The 
problem is to find a measurement matrix H which optimizes a 
criterion reflecting the performances of the optimum state 
estimator (or smoother) for  the considered linear dynamical 
system. Various criterions have been investigated. Using a direct 
sensitivity analysis of the state estimate covariance matrix P ,  [ 11 
suggested to solve the nonlinear programming problem 

min tr ( WP)  
H 

where W is a weighting matrix. 
Several other authors [4], [7], [8] used indirect measures of 

performance r, such as Fisher information matrix (for state 
estimation) or observability matrix. Furthermore, several scalar 
performance indexes related to r were studied. The most general 
one is [8], [7] 

ms= ( - tr I’r)l’s, s50, n = state  dimension 
1 
n 
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which, in some special cases, reduces to the following 
used criterions: 

widely 

lim m, = )r 1 (determinant  norm) 

m-,=n/tr  (I-’) (trace norm) 

s-0 

m-, = her) (extremal  eigenvalue) . 
Finally, the case of nonlinear systems was studied in [ 5 ] ,  with the 
aid of the trace norm for the Fisher information matrix of the 
unknown parameters to be estimated. 

One common feature of all these investigations is that the 
measurement matrix H is supposed to be of “continuous” type, 
namely to have real (and not integer) coefficients. 

The dual problem of optimum controller location was investi- 
gated in [8], with the aid of the above-mentioned general norm for 
the controllability matrix. 

The problem of optimal sensor location for state estimation is 
closely related to the problem of optimal sensor location for 
control of systems, which has been extensively studied, especially 
for large space structures. Some significant references are [16]- 
V81. 

2) Optimum Sensor ana‘ Controller  Location for  Distrib- 
uted Parameter Systems: 

These problems have been widely investigated for the last 15 
years, as can be seen from the survey paper [6]. Sensor location 
for state estimation was studied, for example, in [lo], using the 
trace norm of the error covariance of the optimum filter. The 
sensor location problem for identification of unknown parameters 
was solved in [9] with the aid of the determinant of the Fisher 
information matrix, and with application to a bubble-column loop 
bioreactor. Many other studies concerning these two types of 
problems are reported in [6], together with the solutions given to 
the problem of optimum Controller and sensor location for 
optimum control of a distributed parameter system. 

3) Optimal Sensor Location for Parameter  Identification: 
Up to our knowledge, the only study made from that point of view 
is reported in 1131, and is concerned with structural identification 
for both linear and nonlinear systems. The proposed solution is 
based upon an optimization of the trace norm of the Fisher 
information matrix. It is important to note that, in this case, the 
measurement matrix H is a selection matrix (with coefficients 
equal to 0 or I), and that the optimization is done by exhaustive 
search. 

4) Optimal Sensor Location for Failure Detection: This 
problem is investigated in [I51 in the framework of nonlinear 
systems. A reduced-order time-varying linear observer is de- 
signed for full state estimation in such a system. Inspection of the 
state estimates and/or several observer residuals leads to detection 
and diagnosis of the faults, without any statistical test. The 
optimum sensors location problem is then solved by exhaustive 
search for minimizing the observation cost associated to each set 
of measurements which is convenient for this fault detection 
strategy. 
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This problem, together with the dual problem of optimum 
actuator location, is considered in [ 141 for  large space structures. 
A degree of controllability (respectively, observability) which 
accounts for possible component failures, is defined and opti- 
mized over the admissible set of actuator (respectively, sensor) 
locations, either by exhaustive search or by solving an integer 
programming problem. 

B. Our Approach:  Optimum Sensor Location for Change 
Detection 

In this paper, we address the problem of optimal sensor location 
for detecting changes in the eigenstructure of a dynamical system. 
This problem may be thought to belong to the same class as 
problem 4) in the sense that they both imply a change.in the model 
which describes the system. Because of our detection and 
identification approaches, we actually also address problem 3). 
The underlying application is vibration monitoring for offshore 
platforms; the interested reader is referred to [3] for a presentation 
of this application. We derived statistical instrumental tests for 
detection and diagnosis of changes in the vibrating characteristics 
of a structure subject to an unknown nonstationary excitation. The 
numerical performances of these tests are reported in [2] for 
scalar signals and [3] for multivariable systems. The theoretical 
properties of these tests are investigated in [ 121 under stationarity 
assumptions: the criterion which is used for evaluating the 
performances of the tests is the classical detection power for a 
fixed level (false alarm rate). 

The purpose of this paper is the investigation of the possible 
uses of such a type of criterion for designing optimal numbers and 
locations of sensors. We especially emphasize the key points of 
choice of parameterization for optimization  in  Section II, compari- 
son of designs with different number of sensors in Section 111, and 
influence of the geometry of the excitation upon the optimal 
design in Section IV. Numerical results obtained on a simulated 
structure are also reported in Section IV. Conclusions are given in 
Section V. 

11. PROBLEM STATEMENT-CHOICE OF PARAMETERIZATION 

We consider a dynamical system described by the following 
discrete-time state-space representation: 

X,+ I =FXr + vr+ I  
Y, = HX, (1) 

where the state X is of dimension n, the observation Y is  of 
dimension r 4 n ,  and where V, is a Gaussian white noise with 
covariance matrix Q. The observation matrix H is a selection 
matrix, i.e., we observe a limited number of state variables. The 
change or failure detection problem we solved in [3] is as follows: 
given a measurement matrix H ,  detect and diagnose changes in 
the eigenstructure of the system, i.e., the eigenvalues and the 
observed components of the eigenvectors of F, without knowing 
or using  any estimate of the noise covariance matrix Q (which is 
furthermore time-varying in [3]). 

A .  New Test for  Change Detection and Diagnosis 

For this purpose, we derived new statistical tests which may  be 
summarized in the following way. The multivariable process (1) 
may be equivalently represented by the ARMA model: 

P   P -  1 

Y , = z  AiY,-i+ B,E,-j (2) 
i =  I j = O  

where (E,) is a standard white noise. One possible way  is to solve 

the following linear system of equations: 

P 
A;HFP-;= 0 

;=0 

with A .  = - I , .  
In such a case, the change detection problem is to detect 

changes in the AR parameters A i  of (2), while considering the MA 
parameters B, as nuisance parameters; furthermore, deciding 
which poles and corresponding eigenvectors have changed would 
solve the diagnosis problem.  We use a model validation approach. 
Given a nominal AR model eo, where 

or a nominal observable model (Ho, Fo), and a sample of 
observations Y l ,  * a ,  Y,, we consider what we call the 
instrumental statistics 

where 

We also introduce the corresponding vectors 

e 2 col ( V )  

%,&) & col (cy\&)) 

2 - Z;' @ W, (Kronecker  product) . (6)  
l S  

4 , = I  

1) Detection: Our approach is based upon the following 
remark. If the nominal  model eo still matches the new observa- 
tions Y l ,  * * a ,  Y,, then the two vectors Z y  and W, in (5) are 
uncorrelated, which is no longer the case if a change occurred. 
This remark has been exploited in [3] according to the following 
lines. 

The two hypotheses to be tested are: 

;lo:e=e0 no change 

+j l :e=eo+ - 68 small  change  in  direction 68, 
& Le., local  alternative. 

It may be shown [3] that, under HJO, U&) ( 5 )  is zero-mean, and 
that, under N l ,  we have 

WMSN = x;,se (7) 

where 

is the Hankel matrix of the process (2) under i$lO. 
We assume that this Hankel matrix may be factorized as 

x p , . ~ =  op(H09 Fo)~,v(Fo,  GO) (8) 
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where 0, is the observability matrix, is the controllability 
matrix of system (l), and Go is the cross-correlation between X 
and Y under MO. 

Because of (7) and (8), using u&), we are able to detect all the 
changes 60 except those satisfying 60T. 8,(H0, Fo) = 0. 

But, as shown in  [3],  it turns out that, under assumption (8), all 
these changes 60 are precisely all the changes in the minimal 
representation of the system (l), which are the only changes of 
interest. 

Furthermore, we also use the following local asymptotic 
normalities: 

where 

is the covariance matrix of CUN. 
We have thus transformed the initial change detection problem 

into a problem of detection of a change in the mean of a Gaussian 
process. As discussed in [ 31, the convenient test is then 

where 

and D is such that M is  of full column rank nr. We  refer the 
interested reader to [3] for details concerning the implementation 
of the global test (9) in the (real) situation where the noise 
covariance matrix Q in (1)-or equivalently the MA parameters 
Bj in  (2)-are time-varying. 

2) Diagnosis: For solving the diagnosis problem, namely 
deciding which eigenvalues and eigenvectors-of F in (1) or 
equivalently of the AR part  in (2)-have changed, our approach is 
the following. We still use the instrumental statistics c U N  (6), (5) ,  
together with a relationship between changes in the eigencharac- 
teristics of the system and changes in the AR parameters 8. As we 
look for small changes, we use first-order Taylor expansions for 
8. L e t  q5 be a minimal parameterization of the AR part of the 
process, for example, the modal characteristics, namely the 
eigenvalues p of F and the observed part EZ$ of the corresponding 
eigenvectors. Assume that q5 --* 8 = f(4) is continuously 
differentiable in the neighborhood of the nominal model 40. For 
monitoring a particular subset 6 of the coordinates of 4, we use 
the test given by formula (9) with 

M =  (XL,DT @ ZJ,g  (1 1) 

where 3 is the matrix obtained by selecting the convenient 
columns of the Jacobian matrix f'($o). For example, it may be 
shown [3] that writing (3) in the modal basis and differentiating it 
results in  the following relationship: 

+ (a) dc+ ( - i;ih "> do (12) 

where 0;is the observability matrix of the system (1) in the modal 
basis 

X, = cj -k io, c,: damping  coefficient; 
oj: vibrating  pulsation 

P P -  I 
A ( X ) =  -E AjXP-J; A ' ( X ) =  - X  (p-j)AjXP-J-l . 

j = O  j = O  

$Ie and $im are the  real  and  imaginary 
parts of the  eigenvector $ . (13) 

For monitoring the subset p, we select columns in the J matrices 
of the right-hand side of (12) in order to build a full column rank 
matrix Ja such that 

(0:' @ Zr)dO = Jade (14) 

and then we use the test (9) together with M defined by 

M=(e;T @ Zr)JO (15) 

where e;, is the controllability matrix of the system (1) in the 
modal basis. Examples of such Ja may be found in [3]. We call 
such type of tests "sensitivity tests." They will be of  key 
importance for the sensor location problem, as will be seen in the 
next paragraph. 

This approach for detection and diagnosis turns out to be very 
powerful, even for small changes in the eigencharacteristics. We 
emphasize that any change in the eigenstructure of the system can 
be detected with this method, even in the  case of a loss of 
observability due to the change. Numerical results may be found 
in [2]: [3]. A detailed theoretical analysis of the performances of 
these tests may be found in [ 121. Some experimental results 
concerning the coupling effects between close modes are reported 
in  [2]. 

B. The Criterion to be  Optimized 

We now discuss the problem of optimal sensor location with 
respect to the aim of detecting changes in the dynamics of the 
system (1): given a reference model Fo in (l), how to choose the 
best measurement (selection) matrix H in order to maximize the 
detection performances of the global test to (9), (10) and/or the 
sensitivity tests (9), (11).  As for investigating the theoretical 
properties of these tests T, the criterion we consider is the test's 
power p for a fixed false alarm rate a,  which is a standard 
criterion in statistics. More precisely, we maximize 

where the threshold X is chosen according to 

Let us now emphasize that all the tests we have introduced have 
the following form. Let U be a Gaussian random variable 
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Assume first that 

p =Mu (1 8) 

is one parameterization of the mean value of U such that M is of 
full column rank m and u E R". 

The test of Ho:p = 0 against H l : p  = Mv is defined by 

T =  U T E - '  M(MTC-1  M)-'MTC-' u (19) 

and is asymptotically distributed as a x* variable with m degrees 
of freedom under both Ho and Hi. Under Ho, T is centered, but 
under H I  the distribution of T has a noncentrality parameter equal 
to 

y2= U T ,  (20) 

where 

r =MTC-IM.  (20 '1 

IfwenowassumethattherankofMin(18)isq < m , l e t D b e  
the matrix containing the basis vectors of a complement of the 
kernel of M .  Then 

u=Dt+u* 

where u* E Ker ( M )  and thus 

p=Mu=MDt 

with MD of full column rank q and 5 E Rq. 
The test of p = 0 against p = MDC; is 

UTE-' MD(DTMTC-I  MD)-'DTMTC-I U .  

The corresponding noncentrality parameter is still (20) because 
tTDTMTZ-IMDZ: = vTMT.-'Mv. In other words, whatever 
the rank of M in ( 18) is, the noncentrality parameter is defied by 
(20). 

Consequently, the threshold A depends only upon the number of 
degrees of freedom [which is equal to nr for the global test (9) 
(lo)], while the power fl is an increasing function of y (20), for a 
given A. We will thus concentrate our  efforts on the optimiza- 
tion, with  respect to the  measurement  matrix H,  of the 
quadratic form defined by r (20'). 

1) Choice of Parameterization: In order to optimize the 
quadratic form defined by J? (20'), we have to choose a scalar 
criterion. As many other authors (see Section I), we have chosen 
the trace norm and thus the following criterion: 

C(M) = Tr (r) 
=Tr (MTC-'M) . (21) 

This choice may be justified using the following remark [8]: 

j v E R m  uTMTCS1 Mudv=- C(M) 

where C,,, is the  area of the unit sphere in R". In other words, the 
criterion C ( M )  is nothing but the mean value of the noncentrality 
parameter when v covers the unit sphere in R". 

The key point here is that the criterion C ( M )  does depend upon 
the parameterization which is chosen for  the mean value p of the 
instrumental statistics U under H I ,  since C(MP) is generally 
different from C ( M )  even if P is a change of basis. The first 
basic consequence, as far as optimal sensor location is concerned, 
is that it is necessary to choose aparameterization of the mean of 
U which does not depend upon the location of the sensors. 
From (3) we can see that the ARMA representation (2) depends 

C m  
m (22) 

J v =  I 

upon the sensors location. Thus, we conclude that the criterion 

C N = ~  ( r ~ ) = T r  [ ( X P , , ~  @ I,)C,I (X;& @ L)l 
which was used in [ 121 for optimization over N for futed H ,  is no 
more convenient for optimizing over H .  

From now on, we will thus consider parameterizations related 
to the characteristics of the system: eigen (or modal) parameters, 
state transition matrix F. Before doing that, we notice that the 
following invariance property of the criterion C (21): 

ppT=rm C(MP) = C ( M )  . (23) 

2) Several  Possible  Criterions: According to the previous 
discussions about the choice of parameterization for sensors 
location in 1) and, on the other hand, about diagnosis via 
sensitivity tests in A.2), it results that several criterions of the type 
(21) may be considered, using various Jacobian matrices Ja in M 
(15). 

a) Global  Modal  Sensitivity: One subset of parameters 
which is of particular interest, as far as vibration monitoring is 
concerned, is the set of the modal parameters, namely the 
vibrating pulsations wj and the eigenvectors lCj. Of course, only 
the observed part Ht,hj of the eigenvectors can be monitored, but 
we nevertheless choose the whole set ( w j ,  ICj> to parameterize the 
system independently of the observation matrix H .  We have 
chosen not  to monitor the damping coefficients cj (real part of the 
eigenvalue Aj)  because they are usually not precisely identified. In 
this case, using (12), (15), and (7), the mean value of U N  under 
H I  has the following parameterization: 

where 

S=( 0 Z , @ H  :) Z , @ H  0 

0 0 4 

and 

with J+ and J h  given in (13) and 21 = n. 
Since H is a selection matrix, we have 

C C T = I .  

Thus, because of the discussion following formulas (20) and of 
(23), the global modal criterion is defined according to (21) as 

It is  of interest to notice that, because J6 and JA are block- 
diagonal, we have 

I 

e,,+ = cj (24 ' )  
j =  1 

where Cj is the sensitivity Criterion corresponding to only one 
mode, i.e., one pulsation and one eigenvector. 

Numerical results concerning the criterion (24) will be pre- 
sented in Section IV. The optimization is done by exhaustive 
search. 

b) Sensitivity w. r. t. the F Matrix: Using the same approach 
as in the previous paragraph, we now differentiate (3) to obtain a 
connection between variations in 8 and variations in F. Thus, we 
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get 

d e r  . O p ( H ,   F ) =  - AjHd(FP-j) 
P -  1 

j = O  

where Op(H, F )  is the observability matrix of system (1). Using 

d F k = c  Fk-1-1 . d F .  Fi 
k- 1 

i = O  

and introducing the MA parameters 

Bk = HFk - A ,  HFk - 1 - . . . A k H  

we finally obtain 

d o r .  O,(H, F ) = C  Bp-k-l d F .  Fk 
P -  I 

k = O  

or equivalently 

(O,T(H, F )  8 I r ) d e =  J,G C O ~  ( d F )  

where 

P -  1 

J F =  2 (Frk C3 Bp-k-l) . 
k=O 

Using the factorization (8) of the Hankel matrix, we get 

E,( %.x) = (e,\, @ Z,) JF . C O ~  (dF)  . 
Therefore, the sensitivity criterion with respect to the variations in 
F is thus 

CF= Tr [ J i (  e,v @ zr)E.;’ (e,: @ &)JF]  . 

As 3 in (24) and JF have, respectively, (2r + 1)1  and (21)2 
columns (n = 2 / ) ,  and because r Q I, the criterion CF is much 
more computationally expensive than the criterion Cy,+ (7.4). 

HI. COhlPARISONS OF DESIGNS WITH DIFFERENT NUMBER OF 
SENSORS 

According to  the  discussion  presented  in  Section 11-B, up to now 
we have basically been able to compare different sensor locations 
corresponding to the same number of sensors: recall that the 
criterion (21) is directly related to the test power p (16), which  is 
defined for a fixed threshold X ,  and that X depends upon the 
number q of degrees of freedom. 

The purpose of this section is to define a correcting factor 
which allows the comparison between different number of 
sensors. We emphasize that we do not take into account the cost of 
an additional sensor. Our criterion only compares the detection 
performances of different designs. 

First notice that the power p (16) is computed as 

p = P ( X ; + - + x ; g X )  g P(9, )  

where xi = zi + yi and (ZJ are zero mean independent identically 
distributed Gaussian variables, and yi is the mean of xi. Because 
of symmetry, we have 

P ( 9 , ) = P ( x ~ + - . . + x ; ~ X ) = P ( ( z l + y ) ~ + z ~ + . . . + z ; ~ x )  

(25) 

where y 2  = y: + + is the noncentrality parameter. Since 
we consider only small changes, Le., y is small, we can keep only 

107 1 

the first two nonzero terms of the Taylor expansion of (25) 

where 

But 

.. * dx, 

where x i  is a x 2  variable with 4 degrees of freedom. Since q is 
usually large, we may use the following Gaussian approximation: 

On  the other hand, let 4 be the Gaussian cumulative distribution 
function. If we define 6 by 

then, because of (27), the threshold X in (17) is approximately 

k g + & .  

Thus 

Therefore 
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Fig. 1. Simulation system. 

In other words, we have proved that 

p=a+--+qr3) 
2 e - s2/2 

2 *  

Since 6 (28) does not depend upon q, the convenient quantity to 
compare locations of different number of sensors is 

which is equal to 

YZ 
2* 

up to second order. 

equality leads to 
Because of (20) and (22), integrating the two sides of this last 

Therefore, the criterion (21) has to be divided by the square 

Numerical results involving this criterion will be presented in 
root of the number of degrees of freedom. 

the next section. 

IV. NUMERICAL RESULTS 

In this section, we present numerical results concerning the 
criterion (24) computed for a simplified platform model. This 
simulation model is a nonsymmetric tied down system of 18 
masses of one degree of freedom, connected by springs, as shown 
in Fig. 1,  with  known weights, stiffness and damping coefficients. 
No signals were generated; the theoretical values of the criterion 
were computed from the physical characteristics of the system and 
for a given excitation. Actually, it  may be shown that everything 
in (24) can be computed as functions of (H,  F )  and the theoretical 
covariances Rk of the observation Y.  We insist upon the fact that, 
even though the tests (9) may be computed without knowing the 
excitation V in ( l ) ,  our criterion does depend upon the excitation 
(through its covariance Q). This dependency is analytically 

complex, and thus will  be studied only via numerical computa- 
tions made with four different covariance matrices Q. 

In order to mimic the effect of  the swell, and assuming that the 
excitations at different points are independent, we selected 
diagonal covariance matrices Q, (i 5 i 4); the diagonals are 
given in Table I, together with the values of the 18 masses. 
Excitation 1 is stronger than excitation 2 on  the top level of the 
structure. Excitation 3 tries to simulate a dominant excitation on 
the ‘‘leg’’ 3-9-15. Excitation 4 acts in a similar way on the leg 6- 

As  we have previously mentioned, the optimization has been 
done by exhaustive search among a set of possible sensor 
locations. According to experiments currently performed on real 
offshore platforms, the locations which  we have used correspond 
to the selection of r = 2, 3 ,  or 4, a total number of sensors located 
on each of the two opposite “legs” 1-7-13 and 6-12-18, with 1 or 
2 sensors on each leg. resulting in a set of 36 possible locations. 

The four global modal criterions C, (1 s i 5 4) have been 
computed applying formula (24’), and then multiplied by the 
correcting factor 1 / r m  according to (30). Here m = 36r - 18, 
because we have chosenp to satisfy rp = n = 36 and N = p and 
because we have omitted the damping coefficients cj. Since the 
computations were done with the aid  of the additive decomposi- 
tion (24‘), for each sensor location and each excitation, we 
display in fact 19 criterions, namely the 18 modal criterions Cj 
which monitor separately the 18 eigenvectors and frequencies, 
plus their sum CG,i. Figs. 2-5 correspond to the excitations 1 to 4, 
respectively. They are drawn with automatic scaling. The x-axis 
is devoted to the 36 sensor locations listed in the second block 
column of Table 11, the y-axis to the 19 criterions, with the global 
model criterion on the back. The values of these four global 
criterions are listed in the first block column of Table 11, and 
plotted  in Fig. 6. 

We first notice that the four “profiles” of Figs. 2-5, and the 
four curves of Fig. 6, are quite similar, showing a not too strong 
dependency of the criterions upon the excitation. Another way  of 
checking this relative independency consists in sorting, for each 
excitation, the different locations according to the decreasing 
values of the global modal criterion. This is shown in the third 
block column of Table 11.  If the criterion C*,$ was independent 
upon the excitation, we would  get the same rank value ai on each 
row (i.e., for each location). We can see that the real situation is 
not dramatically different from this ideal situation. 

Two other important facts may also be deduced from Table II. 
First, it does not seem really necessary to have 4 sensors for good 
detection, because good scores are obtained with 3 sensors 
conveniently located. Second, sensor locations which do not 
involve mass number 1 always get bad scores. 

Finally, we checked another important point, from a numerical 
point  of view. It turns out that the covariance matrix C, of size 
36r, may be ill-conditioned for certain sensor locations [3]. Thus, 
it  has been inverted using a singular value decomposition together 
with a test concerning the singular vectors: retain only the singular 
values which correspond to a pair of singular vectors (U,, V , )  such 
that 

12-18. 

UT. yzXS1. 

All the previously reported computations were made with X = 
0.99, which results in keeping very small singular values (D  - 
15). A more severe choice X = 0.999 was tried in the case of 
excitation 2. The corresponding “profile” is in Fig. 7, and the 
comparison between the two global  modal criterions correspond- 
ing to these two choices of X is made in Fig. 8. This effect seems 
to be negligible. 

V. CONCLUSION 

We have addressed the problem of optimal sensor location from 
the nonstandard point of view of failure detection with statistical 
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TABLE I 
THE 18 MASSES AND THE 4 EXCITATIONS 

Masses 

1 2 8  

61: 

64  

64 

64 

-6 4 
32 
32 

32 
32  

32 

32 

32 

32 

32  

32 

32  

32 
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Fig. 4. Criterions for excitation 3. 

Fig. 3. Criterions for excitation 2. Fig. 5. Criterions for excitation 4 
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GLOBAL MODAL CRITERIONS, SENSOR LOCATIONS, AND RANKS OF 
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Fig. 6. The four global modal criterions. 
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tests. We have derived criterions based upon the power of the 
detection and diagnosis tests we recently developed for vibration 
monitoring [3]. Several key points have been discussed and 
solved, namely: choice of parameterization for optimization of 
sensor location, comparison of designs with different number of 
sensors, and influence of the excitation. 

Further investigations should include a deeper understanding of 
the adequacy of the mean criterion (22); actually, we compute the 
mean power of our test for detecting any type of change with  unit 
“magnitude.” It turns out that some locations, corresponding 
nearly to local minima of the criterion, actually are more 
convenient (than optimal ones) for detecting some types of 
physical changes. Our opinion is that a more convenient criterion 
could be obtained using Jacobians with respect to physical 

Fig. 7.  Excitation 2. Higher  threshold for inverting X.  

parameters (masses and stiffness parameters). This point is 
currently under investigation. 

Finally, it is of interest to notice that, because of our approach 
for change detection and diagnosis, we have also addressed in this 
paper the problem of optimal sensor location for parameter 
identification. Actually, we show in [12] that the inverse of the 
matrix r in (20), which characterizes the asymptotic power of the 
instrumental test (19), is equal to the asymptotic covariance 
matrix of the estimation error of the optimal instrumental variable 
identification method. As we have addressed the optimal sensor 
location problem using as a criterion the power of the instrumental 
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