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C(q-')  [l]. In a  previous  paper [5],  we have shown that in fact  the 
coefficients of the polynomid Gk can be characterized  very simply for all 
k 2 1. The purpose of this note is to  give  a  similar  characterization  for 
the  coefficients of the  polynomial Fk for  all k 2 1. It will turn out that the 
characterization of F ,  is directly  obtained as  an intermediate  step  to 
determining  the  coefficients of G k .  This result,  together with those of [5 ] ,  
give  a very simple  formula  for  determining  optimal ARMAX predictors. 

n. CHARACTERIZATION OF  THE POLYNOMIAL Gk 

In this section, we introduce  some  notation  and  review  the  formula  for 
the  coefficients of Gk. These will be used later. 

Let 

A =  

C=[O ... 0 11. 
These matrices will be recognized as those which feature in the 

observable  representation of the ARMAX equation (1) [4]. It is  proved in 
[5]  that  if we denote Gk(q-') by 

Gk(q- ' )=gk, ,+gk, ,q- '+ ' . '+gk, ,q- '" -"  krl 

then  the  coefficients & i  satisfy  the  formula 

We note also  the  following  relations, which are used in [5] and also  can  be 
easily  verified 

IJI. THE CHARACTERIZATION OF THE POLYNOMIAL Fk 

From (2), it is readily  seen  that  the  polynomial Fk can be written as 

Fk(4-')=l+fk,lq-'+'..+fk,k-,q-"-". (7) 

Our task  is then to determinefkj, i = 1, * , k - 1. From (2), we have 

Similarly, 

Substituting (10) and (1 1) into (9) gives 
m m 

F , ( q - l ) = ] + C  q-ti'1)AiK-C  q-U-klA~+k-lK 
j = O  j = O  

k -  I 

= 1 + C q - J A J - ' K .  (12) 
/ = I  

On comparing (7) and (12), we see  that 

fk , j=CAJ-IK lsjsk-1. (13) 

This simple  formula  completely  determines  the polynomial Fk. 
On comparing (13) and (4), we see  that the coefficients f k j  are 

determined on route to the  determination of g k j .  w e  also s e e  that the two 
sets of coefficients  can be determined by the  solution of the  equation 

p( t+  l ) = A p ( t )  trl 

p(1) = K .  (14) 

In particular, 

fX.,=Cp(j) ,  lsjsk-1. (16) 
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Optimum  Robust  Detection of Changes in the AR Part 
of a  Multivariable ARMA Process 

ANNE ROUGEE,  MICHELE  BASSEVILLE, 
ALBERT BENVENISTE, AND GEORGES  V.  MOUSTAKIDES 

Abstruct-We investigate  the  theoretical  properties of new  instru- 
ments-based  test  statistics  recently  proposed [31 for detection  and 
diagnosis of changes in the AR part of a  multivariable ARMA process. 
The  design  flexibilities are analyzed,  and  the  optimum  design of the  test is 
exhibited.  The  connection  with  the  accuracy of the I.V. identification 
method [14] is established,  and  the  comparison  with  the  local  likelihood 
ratio  tests is done. These  tests  have  been  developed as a  solution to the 
problem of vibration  monitoring for  offshore platforms. 

I. INTRODUCTION AND  PROBLEM  STATEMENT 

Consider  a  multivariable  process,  described  either by the  state-space 
representation 
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Xr+I=FXI+ V ~ + I  

Y, = HX, (1-1) 

where X ,  E R", Y, E R', cov (V,+J = Q, or equivalently by the 
ARMA representation 

A ( q - ' ) Y , = B ( q - ' ) E ,  ( 1-2) 

where (Et) is a white noise with covariance matrix A, and 

i= I 

n- I 

j =  I 

In [2] and [3],  a procedure, called instrumental test (I.T.)  has been 
introduced to detect and isolate changes in the  state transition matrix F 
(respectively, the AR parameters (Ai ) l s i sp)  while the  state covariance 
matrix Q (respectively, A and  the MA coefficients ( B j ) l s j s p - l )  are 
unknown. We refer the  reader  to [3] for  the application of I.T. to 
vibration monitoring whose features motivated the introduction of our 
instrumental test: in this application, Q is moreover time-varying and the 
use of I.T. in such a case has been justified both theoretically in [9] and 
experimentally in [2] and [3].  

As the reader may guess, the  I.T. is related to the instrumental variable 
(I.V.) method of Stoica et al. [I41 in a way which is enlightened in [6]. 
Following the lines of [14],  the  purpose  of  the  present note is, in the  case 
of a time-invariant Q, to  explore  the design flexibilities of the  I.T. 
(Section n), to investigate the relationships between I.T. and I.V. 
(Section ID), and to design I.T.'s that are optimal in a robust sense and 
compare favorably with the min-max optimal local likelihood ratio tests 
(Section IV). 

II. THE INSTRUMENTAL TEST: DESIGN FLEXIBILITIES 

Introduce the pr2 vector 

obtained by stacking thepr columns of (Apr . . . , A , )  on top of each other. 
Assume we have a nominal model eo. For detecting changes in eo, we 
follow the asymptotic local approach of [PI, [7], [lo], [6], i.e., given a 
new record Y , ,  - . . , Y,, we want to decide between the hypotheses 

H,:O = eo (no change occurred) 

where 619 # 0 is an unknown possible direction of change. In the  sequel, 
we shall, respectively, denote by 

Po and P M , ~  (2-3) 

the law corresponding to the hypotheses HO and HI, and by EO,  EM,^ the 
corresponding expectations. 

A .  Introducing I. T. 

Introduce 

P 

Wl= Y , - x  A/OYl-;. 
i= I 

The instrumental statistics is defined as  the Nr2 vector 

l 5  
Us(N)=-  Zr(N) @ Wr (2-5) 

Js ,=, 
where €9 denotes the  Kronecker product. For convenience, in the sequel 
we shall make use of the following notation, for any matrix A : 

A = A  C3 I ,  (2-6) 

where I, is the r-dimensional identity matrix. 
The following result is proved in [9]. 
Theorem I [9]: Assume  the integer N is such that the pr X Nr Hankel 

matrix 

Hp,N=Eo(Prz:(N)) (2-7) 

is of rank n [cf. (1-l)]. Then  we have the following asymptotic normality 
result: 

under Ho: U,(N) sz N(0, E,) 

under Hl:U,(N) . 68, EN) (2-8) 

where the notation (2-6) has been used, and 

E N =  x EO[ZI(N)Z;-~(N) '8 WIWT-,]. 
P -  1 

(2-9) 
r = 1 - p  

Hence, Theorem 1 reduces our problem to a Gaussian hypothesis testing, 
since any nontrivial change is reflected in a nonzero mean in U J N )  
thanks to assumption (2-7)  [12]. 

Let us now recall some elementary facts about Gaussian hypothesis 
testing. Let U be a k-dimensional random variable distributed as N(p, 2). 
For testing p = 0 against p = Mv, v # 0, where M is a k X j matrix 
(where j is arbitrary), one proceeds as follows. Choose any reduction 
matrix D such that 

number of columns of MD = column  rank of MD = column rank of M 

(2-10) 

and use the X2-test 

x =  UTC-IA(I@TC-II@)-~I@'~-~U, M=MD. (2-11) 

Remark I :  x does not depend on the particular choice of the reduction 

According to  Theorem  1, for s large, our desired test I.T. is given by 
marrix D satisfying (2-lo), cf. [12]. 

(2-lo), (2-11) where 

U= U,(N), M = A i , N ,  E = & .  (2-12) 

For practical implementation, Hpf l  and E,,, can be replaced by convenient 
estimates according to [3] and [9]. Denote  these statistics by X1.T.. 

B. Design  Flexibiiiiies and Performance  Evaluation 

The design choices are 

1) the reduction matrix D, 
2) the number N of instruments. 

To evaluate these possible choices,  we  introduce  the following classical 
performance index. The  I.T. test statistics is X2-distributed with n r  
degrees  of  freedom, with noncentrality parameter  equal  to zero under Ho, 
and to y under H I ,  where 

y = 60 'rN,D6e 

r , , D = M T ~ - ~ ~ ( I @ ~ ~ - l I @ ) - l M ~ C - ~ M  

I@= MD (2-13) 
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and M ,  C are given by (2-12). Consequently, we choose the positive 
symmetric  matrix rNp as a performance  criterion. The following 
theorem explores the possible choices in designing I.T. 

Theorem 2: 
1) r,v,D does not depend upon D 
2) N --t rNp is an increasing function with respect to the  order of 

positive matrices. 
Proof: 1) is a straightfornard consequence of Remark 1 .  Elementary 

inversion formulas for partitioned matrices [12] show 2). As a matter of 
fact, it can be shown that, when (Y,) is AR. then rNp is constant for N 2 
P .  

ZII. RELATION WITH THF ' .V.  METHOD 

According to [14], the I.V. estimate 01 ;wen the record Y l ,  * - a ,  Y, is 
obtained by minimizing 

where 0, Z,(N),  W, are given by (2-1) and (24 )  with Ai instead of A:,  
and Q is a Nr2 x Nr2 symmetric positive definite matrix to be chosen. 
Setting 

the I.V. estimate is given by 

Under Po we have, for s large, M, = H p 3 ,  which we shall assume in the 
sequel to be of full column rank. I From (2-5), (3-3) and the fact that M, 
-t H p 3 ,  we get under Po that, for s large, 

M=H,rv  

so that the central-limit theorem  of [14] is reobtained 

( 3 4 )  

where M ,  X are as  in (2-12) and PI,v.(N) is the asymptotic covariance 
matrix of the I.V. estimate. From (2-13), ( 3 4 ,  and (3-5) one easily gets 

PAN)  2 ril (3-6) 

with equality iff Q = X,'. Recall that the reduction matrix D is no more 
useful, hence the notation r,. 

An important consequence is that, when M is of full column rank, the 
Cramer-Rao inequality can be applied to  PI.y.(N) to yield 

where 

is the  Fisher information matrix of the ARMA process Y,,  partitioned 
according to the AR and  MA coefficients. 

Remark: We discuss in [6] the reason for which the I.T. is more 
efficient than comparing the confidence ellipsoid to the I.V. estimate 
through a X*-test. 

' This is always the case for scalar signals when p is the tme AR order. 

Iv. ROBUST OFTIMALITY AND COMPARISON WITH THE LOCAL 
LIKELIHOOD RATIO -T 

In this section, we investigate the connection between local likelihood 
tests and instrumental tests. Let us first emphasize for which reason the 
connection between likelihood and insuumental approaches is more 
difficult to  prove for our testing problem than for identification as done in 
[ 141. In the two situations, the problem is to  deal with the AR part of an 
ARMA process, and the key difficulty lies in the coupling effect which 
exists between the AR and the MA parts: the Fisher information matrix is 
not block-diagonal. 
In [14], Stoica et al. consider  the I.V. identification method for 

estimating the AR part  and the likelihood method for estimating both the 
AR and MA parts; and they compare the accuracy, on the AR part, of the 
two methods. As this accuracy is related to  the inverse of the  Fisher 
information matrix,  the coupling effect is implicitly taken into account 
(inversion lemma for partitioned matrices). 

In our testing problem, we want to test for changes in the AR part, 
without  knowing possible changes in the MA part. The likelihood mtio 
test for testing changes in both the AR and  MA parts involves a nontrivial 
dependency with respect to  the MA part.  Therefore, for testing for  the AR 
part only, we follow a min-max approach, i.e., we consider the least 
favorable case for changes in the MA part, in order  to eliminate these 
nuisance parameters.  Thus,  we f i s t  consider the test based upon an 
asymptotic local expansion of the likelihood ratio test, and then apply it to 
the present problem of detecting changes in the AR part of the process 
(Y,) with elimination of the nuisance parameters due to changes in the MA 
Part. 

A .  Local Likelihood  Ratio  Test:  Min-Max  Approach 

To parameterize the ARMA model (1-2), (1-3), introduce the parti- 
tioned vector 

and denote by Po a given nominal model. Consider the normalized 
gradient of the log likelihood 

From [T and [13] we know that 

(4-3) 

where F is the  Fisher infomation matrix (3-8) under the nominal model 
qko. and the associated x 2  statistics (with dim q degrees of freedom) X, = 
As('ko)r. F- .A,(*.,) is the asymptotically uniformly most powerful 
(UMP) test to detect deviations from this nominal model q0. 

However, since we are interested in monitoring the AR parameters 0 
only, we shall follow a min-max robust approach by considering the MA 
parameters 0 as nuisances. Consequently, to each possible change 60,  we 
associate the corresponding least favorable  change 60, and consider 6\k 
= (60 r, 60 z) as a relevant candidate for a possible change in (4-3). It is 
known [7] that, for a fixed level, the power of the above-mentioned x*- 
test is an increasing function of  the parameter 

Accordingly, to 68 we associate 

where F is partitioned according to (3-8). According to (4-3), (44 ) ,  and 
(2-11), the min-max robust likelihood ratio test is given by 



IEEE TRANSACTIONS ON  AUTOMATIC CONTROL, VOL. AC-32. NO. 12. DECEMBER 1987 1119 

(4-5) 

where As(") is defined in (4-2). It is easy to  see  that, under 'ko, XL.R. is a 
centered x* (with dim 0 degrees of freedom) while under 'Po + S\I-/Js 
(with SP arbitrary) x ~ . ~ .  has noncentrality parameter equal to 

6eTF6e, (4-6) 

i.e., independent of So. The following theorem results from the previous 
discussion. 

Theorem 3: Consider again Y,, . . , Y, and choose a fixed level. 
Denote by ?r(x(s)(SP) the  power of a test x(s) to test Ho against HI with 
any possible change SP/Js. Then the following relationships: 

hold for any other test x@), where &3* is given by (44).  

B. Min-Max  Robust Optimality of the I. T. in the Case of a Scalar Y, 

First, recall that no reduction matrix D is required in I.T. in the scalar 
case. The purpose of this paragraph is to prove the following theorem, 
where we refer to (4-5) for  the undefined objects: 

Theorem 4: i) The following relationship holds for s large, under both 
Ho and HI: 

a,(*)='i ( .. .  j . w,. G , ( q - l ) Y ( - p  

*'S 
I =  I G p ( q - ' )  Y r - p  

(4-8) 

In (4-8), the transfer functions Gi(q-')  are given by 

G p - i + l ( q - ' ) = p  dB'( q - 1) 

1 
Qd4-I) (4-9) 

where u2 is the variance of the innovation, while the pair (Ki, Q,) is the 
unique solution of the polynomial equation 

q'-'B(q-')-K,(q-')A(q-l)=q'-PB(q)Q,(q-') (4-10) 

such that d°Ki 5 p - 2 ,  doQ, 5 p - 1. 
ii) Theorem 3 can be reinforced as follows: for any change So, we have 

lim  lim WXI.K(N, s)lSP) = lim W x I  R.(s)IGP) 
.v-m s - 9  s - a  

=lim * ( X L . R . ( S ) I ~ P ~  *-.x 

=;!,iT W X I V . ( N ,  S ) ( S P , ) .  (4-11) 

COMMENTS: 
1) Part i) expresses that the robust likelihood ratio test is in fact an 

instrumental test, since the vector defined inside the brackets in (4-8) 
belongs to the  linear space spanned by the infinite dimensional instrument 
Z,(co). Consequently, part ii) is a direct consequence of part i). 

2) The  formulas (4-8)-(4-10) mean that the statistics & do not 
correspond to  the use of fdtered instruments in I.T. (see Theorem  5): 
since the relationship G,(q-l)  = q"Gl(q-') does not hold in general as 
the investigation of the ARMA (2, 1) case  shows;  see  [12]. 

Basic Steps  of  the Proof (See [I21 for  Details): It is known [IO], 
[12] that the gradient of the log likelihood is 

~ : = ( E r - p + ~ r  . - . )  Er-1) (4-  12) 

and pr  and El are defined in (1-2), (24).  On the other hand. it is easily 

seen that 

where Eo(. I .) denotes conditional expectation. Therefore, according to 
(4-5), (4-12), (4-13), we have 

(4-14) 

Then, calculating J, yields for its ith component 

(r-2 ( i ) -  6, -B(q)G,(q- ' )  Y t - p  (4-15) 

for some  transfer function GI,  and (4-14), (4-15) give finally (4-8); a 
careful use of these formulas  gives,  on  the other hand, the characteriza- 
tion (4-9): (4-10); see [12] for details. 

C,  Using Filtered Instruments in the Scalar Case 

Owing to Theorem 4, we shall now show that it is indeed possible to 
achieve robust optimality with an  I.T. test with finite dimensional 
filtered instruments: 

In fact, the following theorem holds (compare  to  Theorem 4 and [14]). 
Theorem 5: U J p ,  B-2 )  corresponds  to a robust optimal I.T. test. 
The proof given in [I21 relies on the fact that rN- , (G)  = I'N(G) holds 

for N 2 p with G(q- ' )  = B-2(q -1 ) ,  while r,(G) does not depend on G. 
Note that this statistic does not correspond to a local likelihood ratio test as 
the comparison to  Theorem 4 shows. Note that knowing B requires 
knowing the MA part of the  true  system, which is not fully satisfactory 
since our goal in designing I.T.'s precisely was to  ignore this MA part! 

V. CONCLUSION AND DISCUSSION 

We have investigated the asymptotic power of new instrumental tests 
(I.T.) which we recently proposed to detect and isolate changes in the AR 
part of a vector ARMA process. The relationships with the instrumental 
variable method and local likelihood ratio tests have been analyzed. The 
design flexibilities of this test family have been investigated and robust 
optimality has been shown for a subset of the I.T.'s. It has been shown 
that optimality is achieved with a large number of instruments, or with a 
small number of suitably filtered instruments. 
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Periodic Tracking Adaptive Control for Multivariable 
Systems Having More Outputs Than Inputs 

FULI WANG AND SHIJUN LANG 

Abstract-This note presents an adaptive  control  algorithm for 
multivariable systems in which the number of outputs is greater  than  the 
number of inputs. The algorithm can force  the outputs  to track  arbitrary 
given reference signals periodically. This is the best tracking  performance 
for systems lacking output function controllability. It has been shown 
that the  tracking period is the upper bound on  the controllability index of 
the  controlled system. The proposed  algorithm is  applicable to multiva- 
riable systems with arbitrary  interactor matrix but  no knowledge of the 
interactor matrix is required. 

I. INTRODUCTION 

In recent years, many algorithms have been described in the  literature 
for the adaptive control of multivariable systems. But most of them have 
focused on the  case when the  system  transfer function is square,  i.e.,  the 
number of inputs is equal to the number of outputs [I]-[7]. There have 
been few papers [SI, [9] concerned with the  case when the system transfer 
function is nonsquare, especially when the number of outputs is greater 
than the number of inputs. The rationale for this restriction is, as pointed 
out in [SI, that output function controllability requires that the transfer 
function have rank equal to the number of outputs and a necessary 
condition for this is that the number of inputs should be greater than or 
equal to the number of outputs [ I  11. 

In practice, it is sometimes needed to control systems having more 
outputs than inputs. For example, the automatic control system for an 
artificial heart [SI has three outputs and two inputs. It is clearly impossible 
to control the system having more outputs than inputs so that the outputs 
track a r b i t r q  given reference signals at all sampling times since the 
system lacks output function controllability. However, the control 
objective can be stated as that the outputs are controlled to track 
periodically (at regular sampling intervals) given reference signals. The 
key problem is how to determine  the tracking period. It has been shown, 
in this note, that the tracking period is the upper bound on the 
controllability index of the controlled system. 

Manuscript received Januap  5, 1987: revised April 22. 1987. 
The authors are with the Depamnent of Automatic Control. Northeast Universie of 

IEEE Log Number 8715601. 
Technology, Shenyang, Liaoning. People's Republic of China. 

The organization of  the note is as follows. In Section II we discuss the 
periodic tracking algorithm for known systems and the determination of 
the tracking period. In Section III, we discuss the adaptive implementation 
of the algorithm. In Section IV we give a simulation example. Some 
conclusions are summarized in Section V.  

II. PERIODIC  TRACKING ALGORITHM 

Consider a process described by the following matrix polynomial 
ARMAX model 

A ( q - ' ) y ( t ) = B ( q - ' ) u ( r ) + C ( q - ' ) e ( t )  (2.11 

where u( t )  E Rm, y( t )  E RP, e ( t )  E RP are the control, output, and 
disturbance variables, respectively. Disturbance e(t) is assumed to  be 
white with zero mean value. A(q-I) ,  B ( q - ' ) ,  and C(q- ' )  are 
polynomial matrices in the delay operator q -  I .  

A(q-')=I+A,q-l+...+A.,q-"', A, E R P " P  ( i = l ,  ..., n,) 
B ( q - ' ) = B , q - l +  * .. + B n b q - " b ,  B, E R p x m  ( i = I ,  " ' 9  n b )  

C ( q - l ) = I + C , q - L + . . . + C , , q - n c ,  Ci E R p x p  ( i= l ,  .-., nc). 

It is assumed that det C (q - I )  has all its roots strictly inside the unit circle. 
In this note, we consider the case when p is greater than rn. 

We shall first  consider  the  case C (q - I )  = I .  The case C (q - 1 )  + I 
will be treated before closing Section II. In order  to obtain the &step- 
ahead optimal predictor of output ~ ( t ) ,  we introduce the following 
equality: 

I = F ( q - ' ) A ( q - l ) + q - d G ( q - ' ) ,  d> 1 (2.2) 

where 

F(q-')=I+F'q-'+...+F"/q-"/, n / = d - l  

G(q~' )=Go+GIq-L+. . .+C.eq-n ' ,  n,=n.-l .  

Multiplying (2.1) from the left by F ( q - ' )  and using (2.2) gives (note 

We consider the situation at time t and assume U ( t )  has been specified 
as a function of the data up to time t. Since F(q-')e(r + d) represents 
future noise, the optimal prediction, say P(t + d/ t ) ,  for  the quantity y ( t  
+ d) can be obtained from (2.5) 
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