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Abstract--The two problems of detection and dmgnosls of 
changes in the state transmon matrix of a multwanable system 
wRh nonstat~onary unknown state no~se are addressed New 
instrumental tests are derived and shown to be numerically 
powerful, even for small changes The apphcatmn to wbratmn 
momtormg of offshore platforms is described 

1 INTRODUCTION 

THE PROBLEM OF detecting changes m dynamical 
systems has recewed a lot of attention (Wfllsky, 
1976, Mlronovskl, 1980, Isermann, 1984, Bassewlle 
and Benvemste, 1986) m many fields of apphcatton, 
for the purpose of failure detectmn m controlled 
systems or stgnal segmentation for recognmon 
Most of the t~me domam model-based methods 
use the entire set of known or estimated model 
parameters for solwng the two basic steps of change 
detectmn, namely residual generatmn and chome 
of the (statistical) declsmn function (Wdlsky, 1976) 
For  example, both filter mnovatmns and panty 
checks revolve all the model parameters, w~th 
possible mclusmn of parameter uncertainties, and 
classmal hkehhood ratio or bayesmn tests proceed 
similarly 

However, for some appllcatmns ~t may be neces- 
sary to detect changes m one subset of the model 
parameters w~thout knowing or using any estimates 
of the parameters belonging to the complementary 
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subset These last parameters therefore have to be 
considered as nuisance parameters In Sectmn 4, 
such an apphcat~on concerned w~th vlbratmn mon- 
itoring of a structure subject to nonstatmnary and 
unmeasured natural excltatmn will be described 
The related change detectmn problem may be 
formulated m the two following eqmvalent ways 

(t) Constder a multwanable observable system 
described by the &screte time state space model 

{ X,+ 1 = F X ,  + ~+1, cov(Vt+l) = Qt 
(1) 

Yt = H X ,  

where the dimensions of the state X and the 
observation Y are n and r, respectwely, with r 
(much) smaller than n In practice, and where the 
addmve state noise V, is an unmeasured Gausslan 
process w~th time-varying covarlance matrix Qt 
Then the problem is to detect changes in the state 
transmon matrix F, up to a change of bas~s, without 
using the nmsance parameters Qt which may be 
highly time-varying (see Sectton 4) Here the observ- 
ation matrix H ~s assumed to be fixed, the related 
problem of optimal sensor location for change 
detection is reported in Bassevllle et al (1986b) 

(tl) Consider a multl&menslonal ARMA process 

p p - - I  

Yt = ~, A, Yt-, + ~, Bj(t)Et_j (2) 
l = l  j=O 
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with constant autoregresstve r x r parameters 
(A,)I ~,~p and t~me-varymg moving average r x r 
parameters (Bj)o<.j~.p-1, and where (E,), is a Gau~- 
slan whtte no~se w~th ~dent~ty covanance matrix 
The model (2) may be obtained from (1) m a 
classical way (Akalke, 1974) by solving the following 
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hnear system of equaUons 

Let 

p 

H F  v =  ~ A , H F  p- '  (3) 
t = l  

O r = ( A  v, , A O  (4) 

be the set of AR parameters 
In this s~tuatlon, the problem is to detect changes 

in the AR parameters 0 without using the nuisance 
mowng-average parameters Bj(t) (0 <~ j <<. p - 1) 

In each of these two model formulatmns, the 
second problem addressed here is the problem of 
dmgnosls when a change has been detected, one 
must dec~de which pole(s) and e~genvector(s) have 
changed In (1), ~t is of interest to monitor the 
e~genstructure of the system, ~ e the pmrs (2, H~b~) 
where 2 and ~ba are the elgenvalues and correspond- 
lng e~genvectors of the state transmon matrix F, 
which is assumed to be asymptoUcally stable 
In (2), eqmvalently, the generahzed e~genvalues 
and elgenvectors of the matrix polynomml 

I - ~ A , z - '  
l = l  

2 G L O B A L  C H A N G E  D E T E C T I O N  

In this sectmn the two equivalent problems of 
detecting changes m the F matrix of model (1) 
or m the AR parameters (A,), of model (2) are 
investigated, with as much robustness as possible 
w~th respect to the non-statmnary unknown ex- 
citation V, or moving average parameters (B~(t)) s 

As &scussed m Bassevllle et al (1986a) in the 
scalar case, it is not possible to use standard 
hkehhood techmques for solving this problem 
The two key reasons are that, first, the Fisher 
mformataon matrix of an ARMA process ~s not 
block-dmgonal, and thus there ~s a couphng effect 
between poles and zeros, and, second, the highly 
Ume-varylng behavmr of the unknown parameters 
prevents one using nmsance parameter ehmlnat~on 
methods, usually based upon estlmatmn or lnte- 
gratmn Recall that m Bohhn (1977), for example, 
convenient estimated values of the MA coefficients 
were used 

The idea of the authors' approach is to transform 
the problems 0) or (n) mto the simpler problem of 
detecting a change m the mean of a Gaussmn 
process with known covarmnce matrix, which ~s 
then solved by the classical Z 2 (generahzed) hke- 
hhood ratm test 

wdl be considered 
In Section 4, these wdl be the wbratmg character- 

~st~cs of the momtored structure 
Because of the t~mmg characteristics of the 

authors' apphcatlon, namely very slowly occurring 
changes (months or years) and high samphng 
frequency, m all what follows a model vahdatmn 
problem rather than a change detectmn problem 
will be solved namely, given a reference model F ° 
or 0 °, and a new record of observatmns (Yt)l~,~s, 
decide whether this model still adequately describes 
~t (global detectmn) and solve the dmgnos~s prob- 
lem However, the tests which are proposed here 
may be used for on-hne change detectmn purposes, 
as generally explained in Bassevllle and Benvemste 
(1986) this has been done for segmentataon of 
speech signals in Andr&Obrecht (1986) 

The paper is orgamzed as follows In Sectmn 2 
the authors' original approach for solwng the global 
detectmn problem wdl be presented, using both 
an instrumental statistic and a statistical local 
approach for detectmn In Sectmn 3, the diagnoses 
problem will be studied, following the same local 
approach and using a hneanzatmn to relate changes 
m e~gencharactenstlcs to changes m AR parameters 
Numerical experiments on both simulated and real 
data are reported m Sectmn 5, after the descnptmn 
Of the underlying mechamcal engmeenng problem 
of v~bratmn momtormg, which is gwen m Section 
4 Finally, some conclusmns are presented m 
Sectmn 6 

2 1 An instrumental statzsttc 

For the above mentioned purpose, consider what 
we call the instrumental statlst,cs 

UN(S) = ~ Z,W, T (5) 
t = l  

where 

Z I = ( ~ ! , ,  ,~!p-N+O 

~s a vector of N >/p instrumental varmbles, i e here 
simply delayed observations, and where Wt is 

P 
W, = Y , -  ~ A ° Y,_, = Y , -  0°r~b, (6) 

t = l  

w~th 

0 ° Is the reference AR model, which has to be 
vahdated on the new record (Yt), ~,.<s The process 
UN(S) may be alternatively generated m a pracucally 
more attractive way, using the followmg formula 

(oo) 
UN(S) = ~+ ,.N(S) _ I, (7) 



Detectmn and diagnosis of changes 481 

where ;.~p +LN(S) IS the empmcal Hankel matrix of 
the observed process (Yt) 

~,~(s) = 

Ro(S) Rq_ l(s) 

Rp_ l(s) Rp+q_ 2(s ~, 

s - - m  

Rra(S) = E Yt+mYtT 
t= l  

It is well known (Soderstrom and Stoica, 1980) that 
equating the right-hand side of (7) to zero and 
solving, in the least-squares sense ff N > p, the 
resulting system of delayed Yule-Walker equations, 
is nothing but the mstrumental variable I V ldentlfi- 
catmn method, the consistency of which is establ- 
ished under statmnary conditions Benvemste and 
Fuchs (1985) show that the I V method also leads 
to a conststent estimate of the AR parameters 0, m 
the present situation of nonstattonary unknown MA 
coefficients This last robustness property is numer- 
ically proved in Prevosto et al (1982) and m 
Prevosto et al (1983) where favorable comparisons 
with frequency domain methods are made The 
detection problem for the process Us is now investi- 
gated 

Under the hypothesis Ho of no change, l e 
0 = 0 °, Wt defined by (6) is actually a MA process, 
which Is uncorrelated with Z .  and thus UN(S) iS 
zero-mean 

Under the local alternatwe hypothesis Ht of 
small change, l e 0 = 0 ° + 60/x/s, the mean of UN(S) 
can be easily checked to be equal to the mean of 

60 (8) 

because of the mdependance of (Z,, W,) and (Z,, V¢~) 
for It - sl >t p 

p - I  
XN(s) = 

1=1 t= - p + l  
o,,0(Z,Zr_, ® T Wt Wt_,), (lOa) 

where 8o ~s the expectation under hypothesis Ho 
Consider the following estimate 

~N(S ) ~ p--1 = Z ( z , z L ,  ® Wt Wt_,) (10b) 
t = l t = - - p + l  

It Is shown m Moustakides and Benvenlste (1986) 
that (1/s) £N(S) iS a cons,stent estimate of ( 1/s) Y~N(S) 
under both hypotheses H o and H1 (because first 
order approximatmns do not affect covarlances), 
and that (1/x/s)qlN(S) Is asymptotically Gausslan 
distributed under both hypotheses, l e 

~,N. 1/2(S)O~N(S ) ~ ,/~(0, I) u n d e r  Ho 
s ~  c/3 

E~ t/2(s)(alIN(S) -- It(S)) ~ .~(0, I) under Hi  
$ ~ o o  

where 

1 
It(s) = ~ s ( ~ T N ( s ) ®  I , )60  (11) 

It ~S emphasized that these law of large numbers 
and central hm~t theorems are obtamed in the 
nonstauonary framework which has been assumed 
here (time-varying moving average parameters) 
Therefore, as stated at the beginning of this sectmn, 
the lmtml problems 0) and (u) have been transfor- 
med into the classical problem of change m the 
mean of a Gaussmn process with known covarlance 
matrix Precise assumptions and theorem state- 
ments are gwen m Appendix A 

In order to be able to compute covanances, ~t is 
necessary to consider a convenient vector ~'N 
instead of the matrix UN, and from now on the 
notatmns and basic results concerning Kronecker 
products which are summarized for example m 
Yuan and Ljung (1984) will be used 

Let 

'4[N(S) ~ col (U~(s)) 

= ~ Z , ® W ,  
1 = 1  

(9) 

2 2 The changes whwh can be detected 
The changes which can be detected with the aid 

of the instrumental statistics UN(s) (7) are now 
emphasized Because of the mean value (8) of UN(S) 
under Ht ,  none of the changes 60 belonging to the 
kernel of (I/s)~Xp,N(S ) will be detected 

It is assumed that the nominal representatmn 
(Ho,Fo) (1) is observable and that the following 
factonzation of the empirical Hankel matrix holds 

1 
--Wp,N(S) = (Pv(Ho,Fo) C~N(Fo, Gs) + e(s) (12) 
S 

where 

be the vector of size Nr 2 obtained by stacking the 
Nr columns of U~(s) on top of each other, and 
® = col(0 r) be obtained m the same way from 0 
(4) Furthermore, let EN(S) be the covanance matrix 
of alIN(S) under the no change hypothesis Ho Then, 

Cp(Ho, Fo) = 
HoFo 

\HoFg-  1 
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is the observablllty matrix, and 

Cgu(Fo, G~) = (G~, FoG~, , F~-  1G~) 

is the controllability matrix, uniformly of full row 
rank n, G~ being the empirical cross-correlation 
between the state X and the observatmn Y In (12), 
e(s) converges to zero in dlstrlbutmn as s ~ 
Refer to Appendix A for the assumptmns under 
which these properties are true 

In such a case, because of the factorlzatmn (12), 
the only changes on 0 which wdl not be able to be 
detected with th~s approach are those that satisfy 

C~(H o, Fo) 60 = 0 (13) 

But these last changes do not correspond to any 
change in the minimal representation (1) of the 
system, as the following argument shows In fact, 
(3) shows that the representatmns (1) and (2) of 
the system are related to each other through the 
relationship 

(gX~+l(H°'F°)( O° ) 

and any 00 satisfying this relauon gwes rise to a 
vahd ARMA representatmn of the system But two 
different parameters 0o and 0o + 60 saUsfymg the 
above relation are precisely related through (13) 
Further d~scusslons may be found m Benvenlste 
and Fuchs (1985) This property (13) is of parncular 
importance in practice, because it means that, 
for detecting changes in a mmlmal representatmn 
(Ho, Fo) (1) of (Y,) with the md of the instrumental 
statistics UN(S) (7), It IS not necessary to use a 
minimal ARMA representation (2) of (Yt) 

(9p(Ho, Fo) and of columns in Jt~p N(S) lS described 
in Bassevflle et al (1985) and Rougee (1985) 

Therefore, according to the previous discussion. 
the global test for detectmg changes m tO ~s 

^ 

to = ~g/T(s) ~ ;  I(s)M 

x M T ~ I ( s I M  MTF~qsI~UN(s) (16) 

with M given by (15) Under Ho, to is distributed 
as a )C 2 variable with nr degrees of freedom Under 
H , ,  to is distributed as a )(2 with the same number 
of degrees of freedom, and with noncentrahty par- 
ameter 

6tOTMT ~"~ 1 (s)M 6 0  (17) 

which ~s non-zero in all the cases of Interest as 
prewously discussed This X 2 behavior may be used 
for determining a threshold for detection, provided 
that the true model of the monitored system has 
an AR part with the same order as the order used 
for the mstrumental test For  many real systems, 
because of the underestlmauon of the AR order, 
the threshold to be used is basically relatwe, and 
not absolute (Bassevllle et al, 1986a) 

An interesting special case will briefly be men- 
tinned which will be useful in pracuce Assume that 
the number of sensors r divides the state dimension 
n Then generically [if the first n rows of d p(H0, Fo) 
are independent], the AR order of the ARMA 
model (2) is p = n/r On the other hand, the mira- 
mum number of instruments to be used is N = p 
(Benvenlste and Fuchs, 1985) In this situation, M 
(15) is lnvertlble and the global test reduces to 

^ 

to = ~'u~.(s) ~ ;  '(s)%,(s) (18) 

2 3 The global test 
The test for detecting changes In the mean of 

qlN(S) (9) IS now given Recall that, if a vector U IS 
Gausslan with mean p and covanance Y~, for testing 
/~ = 0 against /~eRange(M) where M is a full 
column rank matrix, the (generahzed) hkehhood 
ratio test is 

u T Z  - 1 M ( M T Z - 1 M ) - I M T F . . - I U  (14) 

Consider the apphcatIon of this result to the 
instrumental statistics qlN(S ) 

In order to apply (14), it is necessary to reduce 

M = ~rpN(S) ® I, (15) 

to a full (nr) column rank matrix This is possible 
because the system (1) is assumed to be observable 
A solution involving a selection of rows in 

The efficiency of the test (16) is numerically 
investigated in Section 5, and theoretically analyzed 
by Roug6e (1985) and Roug6e et al (1985) under 
stationanty assumptions It turns out that, in the 
case where n = pr, I e where the dimension of the 
observation is a divisor of the state dimension, the 
asymptotic power of the test to ~s related to the 
asymptotic precision of the instrumental variable 
identification method, as derived by Stolca et al 
(1985) Furthermore, it may be shown that, m the 
scalar case and for a special choice of instruments, 
this test is equivalent to the mln-max opnmal local 
hkehhood test, which is robust with respect to 
uncertainties on the moving average part Finally, 
preliminary numerical results for nonstatlonary 
scalar signals are described by Bassevflle et al 
(1986a) and show that small changes (1%) m 
elgenfrequencles may be detected, using sufficiently 
long records 
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3 THE DIAGNOSIS PROBLEM 

The dlagnos~s problem is now d~scussed, as stated 
m the Introductmn When a change m the AR part 
has been detected by the global test to, the problem 
~s to get insights into which poles and modes have 
changed, again w~thout knowing the nonstat~onary 
MA part As far as the authors know, the multiple 
model approach is the only solution which has ever 
been gwen to the dlagnos~s problem m general, as 
discussed m Wdlsky (1976) and Wfllsky (1986) 

The authors' suggestmn ~s to use the same 
approach as for the global test, together w~th a 
relatmnshlp between changes m e~gen- 
characteristics and changes m AR parameters, to 
be used m the expressmn (11) of the mean value of 
the instrumental statistics q/N under H1 As the 
authors' detection tools are developed under the 
assumption of small changes, first order Taylor 
expansmns for ® are used in the following manner 

Let • be a minimal parametenzatmn of the 
AR part of the process In Sectmn 4, • will be the 
set of the elgen (or modal) characteristics of the 
structure Assume that the apphcatlon 0--, 
O =f(O) ~s continuously d~fferentmble m the 
neighborhood of the nominal model Oo To momtor 
a particular subset of the coordinates of O, consider 
the matrix J obtamed by selecting the correspond- 
mg columns of the Jacobmn matrix f'(Oo), and 
apply formula (16) with 

M = (Jfpr, N(S) ® l , ) J  (19) 

in order to get what we call a sensmwty test 
Several computatmns of Jacobmns of interest for 

the wbratlon momtormg apphcatmn are described 
in Secuon 4 

The mare advantage of th~s method ~s that it 
allows separate monitoring of subsets of parameters 
of interest (for example, one pole together with the 
corresponding elgenvector), without knowing m 
advance which subsets wdl actually change The 
mam drawback ~s that no theoretical argument 
may assess some decouphng property, concerning 
for example separate momtormg of modes the 
corresponding tests (16) computed wRh the relevant 
Jacoblans (19) are not statistically independent of 
each other However, slmulatmn results presented 
by Bassewlle et al (1986a) show that, m the scalar 
case (r = 1), this decouphng property concerning 
poles holds, prowded that the poles are close to 
umt circle In the vector case, this seems to be stdl 
true, provided that furthermore the number of 
sensors r Is equal to the actual number of modes 
(n/2 m this case of real F), see Bassewlle (1985) 

Finally, another approach for the dmgnosls prob- 
lem which is investigated by Bassevdle et al (1986a) 
m the scalar case will be mentioned This approach 
is based upon a theoretical decouphng property, but 

~s difficult to implement because of combinatorial 
problems m the (real) case of no a p r m n  knowledge 
of which parameter subsets are to change 

4 APPLICATION TO THE VIBRATION MONITORING 
PROBLEM 

4 1 Motwatmns 
As mentioned m the IntroducUon, the reason for 

which the problems addressed m this paper were 
studied is a mechamcal engmeenng problem how 
to supervise the vibrating characteristics of a struc- 
ture subject to a nonstatmnary and unmeasured 
natural excitation Examples of such wbratmg 
structures are offshore platforms subject to the 
swell (the purpose of the authors' study), buildings 
or bridges subject to wind or earthquakes, mechan- 
ical objects subject to fired mteracuons, etc One 
of the goals of vlbratmn momtormg Is the detectmn 
of cracks and fatigue The authors' approach for 
solving such a problem revolves the following steps 

(1) On site ~dentlficatlon of the wbratmg character- 
tst~cs of the structure Th~s step ~s necessary because 
the fimte element models prowded by the designer 
have to be s~gmficantly adjusted when the structure 
~s installed m the sea Furthermore, the possible 
model devmt~ons due to fatigue appearance are 
often less ~mportant than the dewatmns between 
the designer's model and the behavior actually 
observed when the structure is installed m the sea 
Therefore the designer's model cannot be used as 
a reference model for fatigue detectmn by modal 
analysis 

(n) Detectmn of changes m the modal characterist- 
ics As explained in the Introductmn, the purpose 
of this task ~s to decide whether the model which 
was ~dentlfied on the safe structure stall adequately 
represents the new accelerometer s~gnals obtained 
during a new mspectmn 

(m) Dtagnosts of the change The problem is then 
to d~scnmmate between changes m the distribution 
of the masses which are of no interest for faugue 
detecuon, and changes m the suffness coefficients, 
and furthermore to estimate the locahzatmn of the 
fatigues m the structure 

From the lmplementatmn point of view, tasks 0) 
and (m) should be done m a remote computing 
center because they are time consuming Task (u), 
previously called global detection m Secuon 2, 
should be done on board 

To the authors' knowledge, ~t seems that no other 
parametric model approach has been followed for 
solwng these types of problems Furthermore, the 
way m which the authors deal w~th the exc~tatmn 
and the fired/structure lnteractmns also seems to 
be nonstandard Because the wbratmg modes of an 
offshore platform he beyond 1 Hz (and thus beyond 



484 M BASSEVILLE et al 

the fundamental frequency of the swell), the struc- 
ture is mainly excited by shock effects and turbu- 
lences which induce nonstatlonantles in the signals 
and which are unmeasurable by the existing swell 
sensors In such a situation, the authors' approach 
is to model the exc~tatmn by a nonstatlonary 
Gaussian white noise, to neglect the fluid/structure 
interactions, and to develop algorithms as robust 
as possible with respect to these assumptions, for 
the three above-mentioned tasks 

where 

(D,] 
X , =  d l m X , = 2 m = n ,  

\ D , /  ' 

A = ( _  0 I , 
M-1K __M-1C)  

(o) 
n t  = ~ 

M -  1~ t 

4 2 The model to be used 
Assuming that the structure may be decomposed 

into finite elements and has a hnear behawor 
(Prevosto, 1982), a vibrating structure is modelled 
by a damped system of masses connected by springs, 
which obeys the following equatmn 

H = (L 0) The discrete time equivalent model is 

( X ,  + a, = F X ,  + Vt 

). Y, = HX,  
(24) 

where F = e a At and 

MD, + CDt + KD, = e, (20) 

where M, C, K are the masses, damping and 
stiffness matrices, respectively, Dt is the vector of 
&splacement of the m degrees of freedom, and et is 
the excitation vector, assumed to be a nonstatmnary 
Gaussmn white noise with covarlance matrix R, 
The modal characteristics (2, Sa) of this structure 
are the solutmns of 

~ t + At 

V, = e A" + a,- OB, dr 
c t  

Because of the above assumption on et (20), V~ is a 
white noise with covarmnce matrix 

~ t + At 

Q, = e at /~ eAT~dz 

det (MJ. 2 + CJ. + K) = 0 

(M22 + C2 + K)q~ 0 
(21) 

As M, C, K are real, the 2m solutions 2 = c + io9 
are palrw~se conjugate They are called mgen- 
frequencies, the e~ are the eigen-pulsatmns, and 

c / x / ~  + tn 2 is the corresponding (negative) damp- 
lng coefficient In case of p ropomonal  damping, i e 
when C = ~tM + ilK, the modes q~a are real 

Let Y, be the observatmn of r ~< m degrees of 
freedom of the system Yt Is described by 

M -  1R~M- 1 

The eigenvalues/~ and elgenvectors %u of F(24) are 
related to the modal characteristms (21) by 

/ l = e  aA' and H~O.=L4h (25) 

and are solutmns of 

P 

(pPlr - ~ #P-JA)Hq/u = 0 (26) 
J = l  

Y, = LD, (22) 

where L,~ is equal to one if sensor i observes the 
degree j, and zero otherwise Then the modal 
identification is the obtainment of (A, Ltl)) where A 
is the diagonal matrix filled by the 2, and Ltl) is the 
observed part of the modes q~a 

The system described by (20) and (22) is equival- 
ent to the following continuous t~me state space 
model 

X, = AX, + B, 
(23) 

Yt = HX,  

where the autoregressive parameters A a, , Ap are 
given by (3) Actually, assuming that At = 1, F may 
be dlagonahzed in the following manner 

F = W  e ° qa-~ 

where 

(: o) (o 
D =  and ~P= ~A OA 

(27) 

Consequently, identifying and monitoring the set 
of (#, H~bu) given by (26) is equivalent to the same 
tasks for the set of (2,L4h) given by (21) The 
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relevance of the problems and methods investigated 
m the previous sections 1s thus stated for the 
vibration momtormg problem 

Before describing the experiments which have 
been done for validating the authors’ approach for 
the detection and diagnosis problems, recall that, 
for the ldentlficatlon problem (1) using (3) and 
(26), strong results have been obtained from both 
theoretical and experimental pomts of view Several 
known ldentlficatlon methods (instrumental vari- 
able, balanced realization, Ho-Kalman) have been 
shown to lead to consistent estimates A, m (3), even 
with a nonstationary excitation (fast changes m 
the geometry of the excltatlon are allowed), see 
Benvemste and Fuchs (1985) From the expenmen- 
tal point of view, Prevosto et al (1983) have 
shown that these methods are more convenient than 
classical Fourier methods for the ldenttficatlon of 
high order modes, and they investigated the stability 
of the identified modes with respect to the waves, 
height and the swell direction Other numerical 
results for the ldentlficatlon problem may be found 
m Prevosto (1982) and Prevosto et al (1982) 

4 3 The diagnoses to be mvestlgated 
With respect to the diagnosis problem statement 

(m) which was given m paragraph 4 1, the purpose 
here 1s more restrictive The diagnoses to be consld- 
ered are only m terms of the vibrating charactenstlcs 
(i,L$,), rather than m terms of the physical par- 
ameters M, C, K This last point 1s currently under 
study, and has not been addressed before because 
It IS a (highly) ill-conditioned problem m practice, 
the number of sensors r 1s between two and five, 
and the size of the M, C, K matrices 1s several 
hundred Notice that Isermann (1985) also assumes 
for diagnosis that the process coefficients of interest 
may be uniquely determined from the model par- 
ameters at hand Therefore, only the problems 
described m Section 3 will be considered, and results 
concerning some Jacobtans (19) of interest for 
momtormg the vibrating or modal characterlstlcs 
(A,L@) (21) will be presented The key point IS the 
computation of convenient differentlatlons of (3), 
which may be written equivalently, 

(OT -Z,)C’,+,(H,F) = f A,HFP-’ = 0 (28) 
J=o 

where A0 = -I, After the change of basis defined 
by (27), the followmg holds 

(OT -Z,)fi,+,(LO,eA) = i AJL@e(P-J)A = 0 
J=o 

(29) 

where 

LO 

O,(L@, eA) = 
i i 

LQeA 

Then, differentiating (29) results m 

deT B&LO, eA) = - t A,L d(cDe(P-J)A) 
J=o 

=- f A,Ld@e’P-J’A 
J=o 

p-1 

- ,go (p -])A, L@ e(p-J)A dA 

The correspondmg equation for d@, where 
0 = col(BT) was introduced m Section 2 1, is then 

(O,(L@, eA)T @ I,) dO 

= - ,to (e(P-J)A 0 A, L) co1 (do) 

p-1 

- 1 (I, @ (p - J)AJLOe(P-J)A)col (dA) (30) 
J=o 

After some computations which may be found m 
Appendix B, 

where Cop* 1s the observablhty matrix m the modal 
basis and 1s easily shown to be 

0; = (O,(L@, e3,O,(L@, eA)), 

where 

Ld+, 

Ld& 

contam the vanatlons of the observed part of the 
modes, 

J, = 



486 M BASSEVILLE et al 

wi th  

# j = e  ~, (1 ~<j~<m), 

and 

P 
A(X) = - Z A j X ' - J  

J = O  

Use of the following 

d~, = d$ '* + i dt#' ' 

and 

d2j = dcj + idogj [see (21)-I 

gives  

(d~* ® I,) dO = f~, _ if**/\de 'mr 

+ ( ~ ) d c  + ( d ~  dco 
\ - I J f f  

(32) 

Various vectors // containing any free modal 
parameters among the tpj, cj, c% (1 ~< j ~< m) may 
then be monitored, by selecting the corresponding 
columns in the nght-hand side of (32), in order to 
get a full column rank matnx Jp such that 

(if* ® I,) dO = Jp d/~ (33) 

Using the factorlzatlon (12) written in the modal 
basis, it turns out that, because of (19) and (33), the 
sensitivity test for monitoring ~ is given by (16) 
with 

M = (c£*T ® I,) Jo (34) 

where ~ ,  = q ' -  I~¢N(F, Gs) 
In the expenments which will be descnbed in the 

next section, the selected vectors // are separate 
vibrating modes together with the corresponding 
vibrating pulsatmn, namely 

re ~ / l m  O) 
~J , J J 

The damping coefficients cj are not monitored 
because they are usually not precisely Identified 

Finally, it will be mentioned that, as for the 
global test to (16), theoretical investigations have 
been made by Roug6e (1985) for computing the 
power of any sensitivity test of the form (16) with 
M given by (34) These results are also discussed in 
Roug6e et al (1985) and are used m Bassevllle et 

al (1986b) 

5 6 

. . . . . .  4 " -  - .  J- - / -  

14 ~5 

1 ' 
FIG 1 S~mulatmn system 

5 EXPERIMENTAL RESULTS 

In this section, results obtained from the com- 
puter implementation of the various tests presented 
m Sections 2 and 3 are presented, using both 
simulated and real vector data related to the 
mechanical engineering problem described m Sec- 
tion 4 Note that experiments done for scalar signals 
are described by Bassevllle et al (1986a) and lead 
to the conclusion that it is possible to detect and 
diagnose small changes (1%) in eigenfrequencies 
provided that the damping coefficients are low, and 
that the record sizes are high enough (several 
thousands) 

According to Section 4 2, the simulation model 
which was used is a tied down system of 18 masses 
of one degree of freedom connected by spnngs, as 
shown m Fig 1, with known weights, stiffness 
and damping coefficients Six-dimensional signals 
(displacements of the masses 1, 7, 13, 6, 12, 18) 
have been generated under different hypotheses, 
including no change, change in mass no 1, change 
in the stiffness of the connection to the ground, and 
change in the stiffness of the connection 8-11 These 
physically different changes are indicated by arrows 
on Fig 1 

The global test to (16) and nine sensitivity tests 
using (34) have been computed, corresponding to 
the nine modes of lowest order, considered together 
with the pulsation ogj as mentioned at the end of 
Section 4 These test computations have been done 
for all the subsets of components corresponding to 
r = 2, 3, 4, 6 and to at least one observation of each 
of the two opposite "legs" of the structure 

For simulated as well as real data, the reference 
AR model 0 o, to be used for the tests, has been 
computed by solving (29) where • and A contain 
the available elgencharacterlstlcs (a small number 
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18M-O 

x 418  1 

Position 

18M-H2 

M a x  ~886 1 

Postt~on 

18M-H3 

FIG 4 A change m the stiffness of the connecUon to the ground FIG 2 The tests under H o 

IBM-  H I 

29  x 3 
x l a g  ~ 8 4 8  3 

FIG 3 A change m mass 1 os,t,on 

for real data) The AR order p ts chosen to be 
the integer part of 2m/r, and not such that 
2m/r <. p < 2ra/r + 1 as done for the identification 
task (1) of Section 4 The reason for doing so is 
that tt is mtultlvely more sensible to monitor the 
structure without introducing other modes than 
those which are available The chosen number 
of instruments is N = p, for reasons whmh are 
discussed in Basseville et al (1986a), and therefore 
to is computed with the md of (18) 

Finally, the Jacobians Jp of Section 4 3 are 
computed with the md of (31), where the eIgenvalues 
and eigenvectors whmh are used are the aomlable 
elgencharactenst~cs, and not the modes associated 
w~th the computed A, 

The results are presented in the three-dimensional 
Figs 2-5, one horizontal axis corresponding to the 
different sensor locations and numbers, from two 
to six from left to right, and the other horizontal 

FXG 5 A change m the connection 8-11 

axis corresponding to various tests, with the global 
test in the back and the nine sensitivity tests from 
the back to the front in the order of increasing 
frequencies As the pictures were drawn with auto- 
matlc scaling, the maximum value is indicated 
Figure 2 shows the behavior of the various tests 
under the no change hypothesis, Fig 3 corresponds 
to a change (14%) in mass l, Fig 4 to a change 
(12%) in stiffness of ground connection, and Fig 5 
to a cancellation of connection 8-11 (which was 
small) These results show that some sensor 
locations may be very poor, in the sense that no 
detection is possible (nearly the same value of the 
tests under Ho and HI), and therefore moving 
sensors (along legs) may be of interest On the other 
hand-, the visually significantly different profiles 
obtained in Figs 3-5 lead to the conclusion that 
these types of tests contain information which 
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allows d~scrimmatton among physically d~fferent 
changes An attempt to get d~rect physical dtagnos~s 
~s currently under development 

6 CONCLUSION 

The authors have presented an ongmal approach 
for solvmg the two problems of detectmn and 
dmgnosts of changes m the elgenstructure of non- 
stattonary multtvanable systems This approach is 
based upon the use of mstrumental stat~sttcs which 
reduces the detectmn problem to a problem of 
change m the mean of a Gaussmn process with 
known covarmnce matrtx The dmgnosls problem 
ts solved m the same manner, w~th the aid of first 
order approx~mattons relating the changes m the 
system parameters to be momtored to the changes 
tn the model parameters whtch are used for mom- 
tormg 

The apphcatton of this methodology to the 
mechantcal engineering problem of vlbratmn moni- 
toring has been described for complex vtbratmg 
structures subject to natural nonstatmnary and 
uncontrolled excxtatmn Experimental results have 
been presented, which show the efficiency of the 
proposed tests, for detecting small changes (typ- 
ically a few per cent m elgenfrequencles) and for 
discriminating different physical changes The 
authors' optmon ts that such an approach for 
dmgnosls ("sens~tlwty" method) ~s general enough 
for a possible dtrect use on physical parameters 
Th~s approach ~s currently under study 
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APPENDIX A ASSUMPTIONS AND THEOREMS 
STATEMENT 

The precise assumptions and theorems revolved in the authors' 
detection approach are stated here 

Let (Y,) be a nonstatlonary multivanable process having as 
state space representation 

(Yt~l = FX ,+  Vr+ l 
(A1) 

Y, = HX, 

where X,e~",  Yf e,dP', cov(Vt+ 0 = Qt, and (VJ is a white noise 
with time varying covariance matrix 

The assumptions concerning the model ( AI ) are as follows 

(C1) F is full rank and asymptotically stable 
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(C2) There exists k > 0 such that, for any vector u and any 
Integer t, 

E(uTVt) 4 < k Ilull' 

(C3) (H, F) is observable, ! e there exists an Integer p such that 

~ ( H , F )  ~ HF 

HF p- 

is of rank n 

(C4) There exists a matrix G of rank r such that, for any integer 
t 

Q~ >1 GG r 

Th~s last assumption, whmh is not a controllabd~ty condition, 
allows changes in the d~rectmn of the excltatmn 

I f  the nominal model (H o, Fo) fulfills the condmons CI-C4,  
then the two following theorems hold 

(1) Nonstatwnary law of  large numbers ZN(S) given by (10a) 
~s asymptottcally uniformly posmve definite and bounded, and 
the estimate :~N(s) g~ven by (10b) ~s consistent 

^ 

EN(s)-'ZN(S) C I as  

under both the no change hypothesis H o 0 = 0 o, and the small 
change hypothesis 

~0 
H~ 0 = 0o + ~-'~ 

(2) Nonstatlonary central limit theorem Under H o, 
.,9" 

Z~ t/2(sFIIN(s) , ~  ~+ (0, I) where 

41N(S) tS gwen by (9) 

Under H1, Z~ 1/2(s) (qlN(S) -- (1/S.Yf~N(S) ~ 1.)~0) , ~  .4/'(0,1) 

If, further, It ts assumed that the following condmon ts fulfilled 

h m l n f a ' ( l ~  ) (C5) , -~  ~s pN(s) > o r > 0  as  

where a.(M) is the nth singular value of M, then with (C3) one 
can ensure the uniform mmlmahty of the state space model (AI) 
to represent (Yt) 

The assumptmns (C1)-(C5) imply the assumptions needed by 
Benvemste et al (1985) for the consistency of the identification, 
and also imply that the factonzatmn (12) of the Hankel matrix 
holds 

APPENDIX B DIFFERENTIATION OF A MATRIX 
POLYNOMIAL 

Here the details of the computations needed from (30) to (31) 
are given, related to the Jacoblans to be used for dmgnosls 
Rewriting (30) 

0Yl,(L~b, eA) r ® / , ) d O  = - f (e (p-J)A ® A~L)coI(dO) 
3=0 

p - I  
- ~'. (I,d ® (p - J)A~Ldp e ~p-~)A) col (dA) 

J=O 

- (Jl + J2) (B1) 

First consider the term Jl  

p 
-- ~ (e fp-'¢' ® A,L) 

/=0 

f lelP-JP'tAjL 0 

~=o t 0 elP-m-A~L 

A(#1)L 0 
= 

0 A(#m)L 

where 

A(X) = XPlr -- A t XP-  t -- -- Ap_IX -- Ap 

and 

Thus 

~j = CAJ 

fA(#I) 0 ) ( L d O l  

Jt =( 
, 0 A(#.) ~Ld0, , 

(B2) 

On the other hand, for computing J2, the following is needed 

d). 0 ) ( d z  I e l 

Col (dA) = Col | = 
\ 0 d2., ~ dAM e,. 

where ej is thejth vector of the canomcal basis oft# m Therefore 

J 2  = 

P(--' [ (p - j)A, L4~ e'P-'~A 0 
2. / 

j = o ~ 0 ('v -- J)A~ LO e ~p- j~a 

0/d l t 

~=o ~ 0 (p --J)A~L~pm e tp-j}'~- ~ di,. 

= ( g t A ' ( # t ) L c k t O ( d ; t '  t 

0 #.A'(#M)Lc~ m ~dz=/ (B3) 

where A'(X) = pX  p- t l ,  - (p - 1)AtX p- 2 _ _ 
Introducing (B2) and (B3) into (B1) gives 

Ap-l 

(6p(Lq~,eA)T ~ / , ) d O  = J ,  dg/+ Jadz 

where J,,J~,d~O, dz are defined below formula (31) 
Finally, using the observablhty matnx in the modal basis 

¢~* = Cp(H, F)~ 

where ~P Is defined in (27) goves (31) 

AOT 23 4-E 


