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Even when the state noise of a multivariable system is unknown and nonstationary, it
15 posstble to momitor changes in its state transition matrix with the aid of new statistical
tests closely related to the identification method suitable in such a situation

Key Words—Time-varying multivariable systems, failure detection, diagnosis, vibration monitoring

Abstract—The two problems of detection and diagnosis of
changes 1n the state transition matrix of a multivariable system
with nonstationary unknown state noise are addressed New
instrumental tests are derived and shown to be numerically
powerful, even for small changes The application to vibration
monitoring of offshore platforms 1s described

1 INTRODUCTION

THE PROBLEM OF detecting changes in dynamical
systems has received a lot of attention (Willsky,
1976, Mironovski, 1980, Isermann, 1984, Basseville
and Benveniste, 1986) in many fields of application,
for the purpose of failure detection 1n controlled
systems or signal segmentation for recogmtion
Most of the time domamn model-based methods
use the entire set of known or estimated model
parameters for solving the two basic steps of change
detection, namely residual generation and choice
of the (statistical) deciston function (Willsky, 1976)
For example, both filter innovations and parnty
checks involve all the model parameters, with
possible inclusion of parameter uncertainties, and
classical likelithood ratio or bayesian tests proceed
similarly

However, for some applications 1t may be neces-
sary to detect changes 1n one subset of the model
parameters without knowing or using any estimates
of the parameters belonging to the complementary

* Received 11 December 1985, revised 21 July 1986, revised
17 January 1987 The oniginal version of this paper was presented
at the 2nd IFAC Workshop on Adaptive Systems in Control
and Signal Processing which was held in Lund, Sweden during
July 1986 The Published Proceedings of this IFAC Meeting
may be ordered from Pergamon Books Limited, Headington
Hill Hall, Oxford OX30BW, England This paper was rec-
ommended for publication in revised form by Associate Editor
Y Sunahara under the direction of Editor P C Parks

t This work was supported by IFREMER grant no 84/7392
and by CNRS GRECO SARTA The authors are with IRISA,
Campus de Beaulieu, 35042 Rennes Cedex, France

1 Also with CNRS

§ Also with INRIA

479

subset These last parameters therefore have to be
considered as nuisance parameters In Section 4,
such an application concerned with vibration mon-
itoring of a structure subject to nonstationary and
unmeasured natural excitation will be described
The related change detection problem may be
formulated in the two following equivalent ways
(1) Consider a multivariable observable system
described by the discrete time state space model

cov(Vs1) = O

{Xr+1=FX:+ Vit 1s (1)

Y, =HX,

where the dimensions of the state X and the
observation Y are n and r, respectively, with r
(much) smaller than n in practice, and where the
additive state noise V, 1s an unmeasured Gaussian
process with time-varying covariance matnx Q,
Then the problem 1s to detect changes 1n the state
transition matrix F, up to a change of basis, without
using the nuisance parameters Q, which may be
highly time-varying (see Section 4) Here the observ-
ation matrix H 1s assumed to be fixed, the related
problem of optimal sensor location for change
Jetection 1s reported 1n Basseville et al (1986b)
(1) Consider a multidimensional ARMA process

P p-1
Y=Y AY- + ¥ BE,., b)

1=1 J

with constant autoregressive r x r parameters
(A)1<.<p and time-varying moving average r x r
parameters (B)o<,<,—1, and where (E,), 1s a Gaug-
sian white noise with identity covariance matrix
The model (2) may be obtained from (1) 1n a
classical way (Akaike, 1974) by solving the following
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linear system of equations

p
HF? =Y AHF"™ 3)
1=1
Let
0T = (Ap’ ’Al) (4)

be the set of AR parameters

In this situation, the problem 1s to detect changes
in the AR parameters # without using the nuisance
moving-average parameters B(f) 0 <j<p— 1)

In each of these two model formulations, the
second problem addressed here 1s the problem of
diagnosis when a change has been detected, one
must decide which pole(s) and eigenvector(s) have
changed In (1), 1t 1s of interest to monitor the
eigenstructure of the system, 1e the pairs (4, H¢;)
where A and ¢, are the eigenvalues and correspond-
ing eigenvectors of the state transition matnx F,
which 1s assumed to be asymptotically stable
In (2), equivalently, the generahized eigenvalues
and eigenvectors of the matrix polynomial

P
I—Y Az~

1=1

will be considered

In Section 4, these will be the vibrating character-
1stics of the monitored structure

Because of the timing charactenistics of the
authors’ apphication, namely very slowly occurring
changes (months or years) and high sampling
frequency, in all what follows a model validation
problem rather than a change detection problem
will be solved namely, given a reference model F°
or 6° and a new record of observations (Y)); <, <,
decide whether this model still adequately describes
1t (global detection) and solve the diagnosis prob-
lem However, the tests which are proposed here
may be used for on-line change detection purposes,
as generally explained 1n Basseville and Benveniste
(1986) this has been done for segmentation of
speech signals in André-Obrecht (1986)

The paper 1s organized as follows In Section 2
the authors’ original approach for solving the globai
detection problem will be presented, using both
an instrumental statistic and a statistical local
approach for detection In Section 3, the diagnosis
problem will be studied, following the same local
approach and using a linearization to relate changes
n eigencharacteristics to changes 1n AR parameters
Numerical experiments on both simulated and real
data are reported 1n Section 5, after the description
df the underlying mechanical engineering problem
of vibration monitoring, which is given 1 Section
4 Finally, some conclusions are presented
Section 6

2 GLOBAL CHANGE DETECTION

In this section the two equivalent problems of
detecting changes in the F matrix of model (1)
or in the AR parameters (A4,), of model (2) are
investigated, with as much robustness as possible
with respect to the non-stationary unknown ex-
citation ¥, or moving average parameters (B (1)),

As discussed 1n Basseville et al (1986a) in the
scalar case, 1t 1s not possible to use standard
likelihood techniques for solving this problem
The two key reasons are that, first, the Fisher
information matrix of an ARMA process 1s not
block-diagonal, and thus there 1s a coupling effect
between poles and zeros, and, second, the highly
time-varying behavior of the unknown parameters
prevents one using nuisance parameter elimination
methods, usually based upon estimation or inte-
gration Recall that in Bohlin (1977), for example,
convenient estimated values of the MA coefficients
were used

The 1dea of the authors’ approach 1s to transform
the problems (1) or (u) into the simpler problem of
detecting a change in the mean of a Gaussian
process with known covariance matnx, which 1s
then solved by the classical y* (generahzed) like-
hhood ratio test

21 An mstrumental statistic
For the above mentioned purpose, consider what
we call the mnstrumental statistics

UM = ¥ Z W 5

t

where

Z;r=(}’!1;p’ ’YtT—p—N+1)
1s a vector of N = p instrumental vanables,1¢ here
simply delayed observations, and where W, 1s

P
W,=Y - ) A%, =Y - 074 (6)

1=1
with

¢I=(Yt1;p’ 5Yt1;1)

0° 1s the reference AR model, which has to be
validated on the new record (Y); <,<s The process
U y(s) may be alternatively generated 1n a practically
more attractive way, using the following formula

00
Unls) = -}f;+ l.N(S)(_I > (7
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where X, , | y(s) 1s the empirical Hankel matrix of
the observed process (Y;)

Ry(5) Rq—l(s)
Hpols) = ’
Rp—l(s) Rp+q—2(s)

Ro(s)= T, Y
t=1

It 1s well known (Soderstrom and Stoica, 1980) that
equating the night-hand side of (7) to zero and
solving, 1in the least-squares sense f N > p, the
resulting system of delayed Yule—Walker equations,
1s nothing but the instrumental variable 1 V 1dentifi-
cation method, the consistency of which 1s establ-
1shed under stationary conditions Benvemste and
Fuchs (1985) show that the I V method also leads
to a consistent estimate of the AR parameters 6, 1n
the present situation of nonstationary unknown MA
coefficients This last robustness property is numer-
ically proved in Prevosto et al (1982) and 1n
Prevosto et al (1983) where favorable comparisons
with frequency domain methods are made The
detection problem for the process Uy 1s now investi-
gated

Under the hypothesis H, of no change, 1e
6 = 6°. W, defined by (6) 1s actually a MA process,
which 1s uncorrelated with Z,, and thus Uy(s) 1s
zero-mean

Under the local alternative hypothesis H, of
small change,1¢ 0 = 6° + 56/,/s, the mean of U(s)
can be easily checked to be equal to the mean of

ﬁ Ay n(s) 56 (®)

In order to be able to compute covariances, it 1s
necessary to consider a convenient vector %y
instead of the matrnix Uy, and from now on the
notations and basic results concerning Kronecker
products which are summanzed for example 1n
Yuan and Ljung (1984) will be used

Let

U n(s) £ col (UN(s))

=Y Z®W ®
=1

t

be the vector of size Nr? obtained by stacking the
Nr columns of Ux(s) on top of each other, and
© = col(8") be obtained in the same way from 6
(4) Furthermore, let X ,(s) be the covariance matrix
of % y(s) under the no change hypothesis H, Then,

because of the independance of (Z,, W,) and (Z,, W,)
forjt—s|=zp
s p—1

I =) Y &(ZZI . ®@WWL)  (10a)

t=1i=-p+1

where & 1s the expectation under hypothesis H,
Consider the following estimate

Sv =3 S (Z.ZL,® WWL) (10b)

t=11=—-p+1

It 1s shown 1n Moustakides and Benveniste (1986)
that (1/5) £x(s) 15 a consistent estimate of (1/s) Zy(s)
under both hypotheses Hy, and H, (because first
order approximations do not affect covariances),
and that (1/\/s)d7/N(s) 1s asymptotically Gaussian
distributed under both hypotheses, 1¢e

Ty V) x(s) S A(0,1) under Hy

X 12 (s) (@ (s) — #(s))si’;m A(0,1) under H,

where
us) = ﬁwz,)v(s) ®1,)50 ()

It 1s emphasized that these law of large numbers
and central limit theorems are obtained in the
nonstationary framework which has been assumed
here (time-varying moving average parameters)
Therefore, as stated at the beginning of this section,
the imitial problems (1) and (1) have been transfor-
med into the classical problem of change in the
mean of a Gaussian process with known covariance
matnx Precise assumptions and theorem state-
ments are given 1n Appendix A

22 The changes which can be detected

The changes which can be detected with the aid
of the instrumental statistics Upy(s) (7) are now
emphasized Because of the mean value (8) of U y(s)
under H,, none of the changes 68 belonging to the
kernel of (1/5) #7 y(s) will be detected

It 1s assumed that the nominal representation
(Hy, Fo) (1) 1s observable and that the following
factorization of the empirical Hankel matrix holds

1

;pr,N(S) = 0,(Ho,F) €n(Fo,Gy) + ¢(s) (12)
where
HO
HyF,

(Op(HO9F0) =

HoFg™!
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1s the observability matrix, and

(gN(FO, Gs) = (Gs’FOGs’ ’Fg— 1Gs)
1s the controllabihity matrix, uniformly of full row
rank n, G, being the empirical cross-correlation
between the state X and the observation Y In (12),
&(s) converges to zero in distribution as s — o
Refer to Appendix A for the assumptions under
which these properties are true

In such a case, because of the factorization (12),
the only changes on § which will not be able to be
detected with this approach are those that satisfy

OT(Ho, Fo)60 = 0 (13)

But these last changes do not correspond to any
change in the minimal representation (1) of the
system, as the following argument shows In fact,
(3) shows that the representations (1) and (2) of
the system are related to each other through the
relationship

0
(QZ+1(H0’FO)(_? >= 0

and any 6, satisfying this relation gives rise to a
valild ARMA representation of the system But two
different parameters 6, and 0, + 66 satisfying the
above relation are precisely related through (13)
Further discussions may be found in Benvemste
and Fuchs (1985) This property (13) 1s of particular
importance in practice, because 1t means that,
for detecting changes 1n a minimal representation
(Hg, Fo) (1) of (Y) with the aid of the instrumental
statistics Uy(s) (7), 1t 1s not necessary to use a
minimal ARMA representation (2) of (Y}

23 The global test

The test for detecting changes in the mean of
U N(s) (9) 1s now given Recall that, if a vector U 1s
Gaussian with mean p and covariance Z, for testing
u =0 aganst yeRange(M) where M 1s a full
column rank matnx, the (generalized) likelihood
rat1o test 1s

UTS 'MMTZ M) !MTE WU (14)
Consider the application of this result to the

mstrumental statistics % y(s)
In order to apply (14), 1t 1s necessary to reduce

M=#;us)® 1, (15)
to a full (nr) column rank matrix This 1s possible

because the system (1) 1s assumed to be observable
A solution 1nvolving a selection of rows in

O,(H,, Fo) and of columns 1n J, 5(s) 1s described
in Basseville er al (1985) and Rougee (1985)

Therefore, according to the previous discussion.
the global test for detecting changes in @ 1s

to = UY(5) X )M
N -1 -
X (MTZ;‘(s)M) MYy S HsHunts)  (16)

with M given by (15) Under H,, t, 1s distributed
as a y? vanable with nr degrees of freedom Under
H,, to1s distnibuted as a y'? with the same number
of degrees of freedom, and with noncentrality par-
ameter

3OTMTY 7 1 ()M 6O (17)

which 1s non-zero n all the cases of interest as
previously discussed This 2 behavior may be used
for determining a threshold for detection, provided
that the true model of the monitored system has
an AR part with the same order as the order used
for the instrumental test For many real systems,
because of the underestimation of the AR order,
the threshold to be used 1s basically relative, and
not absolute (Basseville et al, 1986a)

An interesting special case will briefly be men-
tioned which will be useful in practice Assume that
the number of sensors r divides the state dimension
n Then genencally [if the first n rows of € ,(H,, Fy)
are independent], the AR order of the ARMA
model (2) 1s p = n/r On the other hand, the mini-
mum number of instruments to be used 1s N =p
(Benvemiste and Fuchs, 1985) In this situation, M
(15) 1s invertible and the global test reduces to

to = UX(5) 35 (M) (18)

The efficiency of the test (16) 1s numerically
investigated 1n Section 5, and theoretically analyzed
by Rougée (1985) and Rougée et al (1985) under
stationarity assumptions It turns out that, in the
case where n = pr, 1¢ where the dimension of the
observation 1s a divisor of the state dimension, the
asymptotic power of the test 7, 1s related to the
asymptotic precision of the instrumental variable
identification method, as derived by Stoica et al
(1985) Furthermore, 1t may be shown that, in the
scalar case and for a special choice of instruments,
this test 1s equivalent to the min—max optimal local
hkehhood test, which 1s robust with respect to
uncertainties on the moving average part Finally,
prehiminary numerical results for nonstationary
scalar signals are described by Basseville et al
(1986a) and show that small changes (1%) in
eigenfrequencies may be detected, using sufficiently
long records
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3 THE DIAGNOSIS PROBLEM

The diagnosis problem is now discussed, as stated
in the Introduction When a change in the AR part
has been detected by the global test ¢t,, the problem
15 to get msights into which poles and modes have
changed, again without knowing the nonstationary
MA part As far as the authors know, the multiple
model approach is the only solution which has ever
been given to the diagnosis problem 1n general, as
discussed 1n Willsky (1976) and Willsky (1986)

The authors’ suggestion 1s to use the same
approach as for the global test, together with a
relationship  between changes 1n  egen-
characteristics and changes 1n AR parameters, to
be used 1n the expression (11) of the mean value of
the mstrumental statisics %y under H, As the
authors’ detection tools are developed under the
assumption of small changes, first order Taylor
expansions for © are used 1n the following manner

Let ® be a minimal parameterization of the
AR part of the process In Section 4, @ will be the
set of the eigen (or modal) charactenistics of the
structure Assume that the application @ —
© = f(®) 1s continuously differentiable 1n the
neighborhood of the nominal model ®, To monitor
a particular subset of the coordinates of @, consider
the matrix _# obtained by selecting the correspond-
ing columns of the Jacobian matrix f'(®,), and
apply formula (16) with

M= x6)®1)F (19)

1n order to get what we call a sensitivity test

Several computations of Jacobians of interest for
the vibration monitoring application are described
in Section 4

The main advantage of this method 1s that 1t
allows separate monitoring of subsets of parameters
of interest (for example, one pole together with the
corresponding eigenvector), without knowing 1n
advance which subsets will actually change The
main drawback 1s that no theoretical argument
may assess some decouphng property, concerning
for example separate momtoring of modes the
corresponding tests (16) computed with the relevant
Jacobians (19) are not statistically independent of
each other However, simulation results presented
by Basseville et al (1986a) show that, in the scalar
case (r = 1), this decoupling property concerning
poles holds, provided that the poles are close to
unit circle In the vector case, this seems to be still
true, provided that furthermore the number of
sensors r 18 equal to the actual number of modes
(n/2 1n this case of real F), see Basseville (1985)

Finally, another approach for the diagnosis prob-
lem which 1s investigated by Basseville et al (1986a)
1n the scalar case will be mentioned This approach
1s based upon a theoretical decoupling property, but

1s difficult to implement because of combinatorial
problems in the (real) case of no a prior: knowledge
of which parameter subsets are to change

4 APPLICATION TO THE VIBRATION MONITORING
PROBLEM

41 Motwations

As mentioned in the Introduction, the reason for
which the problems addressed 1n this paper were
studied 1s a mechanical engineering problem how
to supervise the vibrating charactenstics of a struc-
ture subject to a nonstationary and unmeasured
natural excitation Examples of such wibrating
structures are offshore platforms subject to the
swell (the purpose of the authors’ study), buildings
or bridges subject to wind or earthquakes, mechan-
ical objects subject to fluid interactions, etc One
of the goals of vibration monitoring 1s the detection
of cracks and fatigue The authors’ approach for
solving such a problem involves the following steps

(1) On site dentification of the vibrating character-
1stics of the structure This step 1s necessary because
the finite element models provided by the designer
have to be significantly adjusted when the structure
1s installed 1n the sea Furthermore, the possible
model deviations due to fatigue appearance are
often less important than the deviations between
the designer’s model and the behavior actually
observed when the structure 1s installed n the sea
Therefore the designer’s model cannot be used as
a reference model for fatigue detection by modal
analysis

(1) Detection of changes in the modal characterist-
1cs As explained 1n the Introduction, the purpose
of this task 1s to dectde whether the model which
was 1dentified on the safe structure still adequately
represents the new accelerometer signals obtained
during a new inspection

(1) Diagnosis of the change The problem 1s then
to discriminate between changes in the distribution
of the masses which are of no interest for fatigue
detection, and changes 1n the stiffness coefficients,
and furthermore to estimate the localization of the
fatigues 1n the structure

From the implementation point of view, tasks (1)
and (1) should be done mn a remote computing
center because they are time consuming Task (n),
previously called global detection in Section 2,
should be done on board

To the authors’ knowledge, 1t seems that no other
parametric model approach has been followed for
solving these types of problems Furthermore, the
way 1 which the authors deal with the excitation
and the fluid/structure interactions also seems to
be nonstandard Because the vibrating modes of an
offshore platform lie beyond 1 Hz (and thus beyond
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the fundamental frequency of the sweli), the struc-
ture 1s mainly excited by shock effects and turbu-
lences which induce nonstationarities in the signals
and which are unmeasurable by the existing swell
sensors In such a situation, the authors’” approach
1s to model the excitation by a nonstationary
Gaussian white noise, to neglect the fluid/structure
interactions, and to develop algorithms as robust
as possible with respect to these assumptions, for
the three above-mentioned tasks

42 The model to be used

Assuming that the structure may be decomposed
into finite elements and has a linear behavior
(Prevosto, 1982), a vibrating structure 1s modelled
by a damped system of masses connected by springs,
which obeys the following equation

MD, + CD, + KD, = ¢, (20)

where M, C, K are the masses, damping and
stiffness matrices, respectively, D, 1s the vector of
displacement of the m degrees of freedom, and ¢, 1s
the excitation vector, assumed to be a nonstationary
Gaussian white noise with covarance matnix R,
The modal characteristics (4, ¢;) of this structure
are the solutions of

{det(Miz +Ci+K)=0
(21)

(M2 + Ci+ K)g, =0

As M, C, K are real, the 2m solutions 4 = ¢ + 1w
are pairwise conjugate They are called eigen-
frequencies, the w are the eigen-pulsations, and

¢/\/c? + w? 1s the corresponding (negative) damp-
ing coefficient In case of proportional damping, 1 e

when C = aM + BK, the modes ¢, are real
Let Y, be the observation of r < m degrees of
freedom of the system Y, 1s described by

Y, = LD, (22

where L,, 1s equal to one if sensor i observes the
degree j, and zero otherwise Then the modal
identification s the obtainment of (A, L®) where A
1s the diagonal matrix filled by the 4, and L® 1s the
observed part of the modes ¢;

The system described by (20) and (22) 1s equival-
ent to the following continuous time state space
model

{X, = AX, + B,

23
S (23)

where

D,
X, = , dmX,=2m=n,
D,

( . I )
A= R
-M"'K —-M"IC

0
B, = R
Mg,

H = (L 0) The discrete time equivalent model 1s

{XHAr =FX, +V,

(24)
Y, = HX,

where F = e4 %' and
T+ At
I/r — J\ CA(1+Al_r)Bth
t

Because of the above assumption on ¢, (20), ¥, 1s a
white noise with covariance matrix

t+ At
~4 T
Q,=J et R, etdr
t

o <0 0 )
R. =
0 M 'RM™!

The eigenvalues y and eigenvectors y, of F(24) are
related to the modal charactenistics (21) by

where

pw=e*4 and Hy,= Lo, (25)

and are solutions of

Wl - 3 wIA)HY, =0  (26)
1

)=
where the autoregressive parameters A,, , A, are

given by (3) Actually, assuming that At = 1, F may
be diagonalized in the following manner

F=Y¥ ¢’ 9! 27)

where

A0 o )
D= < _> and ¥ = ( _)
0 A OA DA

Consequently, identifying and monitoring the set
of (u, Hy,) given by (26) 1s equivalent to the same
tasks for the set of (4,L¢;) given by (21) The
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relevance of the problems and methods investigated
in the previous sections 1s thus stated for the
vibration monitoring problem

Before describing the experiments which have
been done for vahdating the authors’ approach for
the detection and diagnosis problems, recall that,
for the identification problem (1) using (3) and
(26), strong results have been obtained from both
theoretical and experimental points of view Several
known 1dentification methods (instrumental vari-
able, balanced realization, Ho-Kalman) have been
shown to lead to consistent estimates 4, in (3), even
with a nonstationary excitation (fast changes n
the geometry of the excitation are allowed), see
Benveniste and Fuchs (1985) From the experimen-
tal pont of view, Prevosto et al (1983) have
shown that these methods are more convenient than
classical Fourier methods for the identification of
high order modes, and they investigated the stability
of the identified modes with respect to the waves,
height and the swell direction Other numerical
results for the identification problem may be found
1n Prevosto (1982) and Prevosto et al (1982)

43 The diagnoses to be nvestigated

With respect to the diagnosis problem statement
(m1) which was given 1n paragraph 4 1, the purpose
here 1s more restrictive The diagnoses to be consid-
ered are only 1n terms of the vibrating characteristics
(4, L¢,), rather than in terms of the physical par-
ameters M, C, K Thus last point s currently under
study, and has not been addressed before because
1t 1s a (highly) ill-conditioned problem 1n practice,
the number of sensors r i1s between two and five,
and the size of the M, C, K matrices 1s several
hundred Notice that Isermann (1985) also assumes
for diagnosis that the process coefficients of interest
may be uniquely determined from the model par-
ameters at hand Therefore, only the problems
described in Section 3 will be considered, and results
concerning some Jacobians (19) of interest for
monitoring the vibrating or modal characteristics
(A, L®) (21) will be presented The key point 1s the
computation of conventent differentiations of (3),
which may be written equivalently,

P
6" —1)C,.(HF)= Y AHFF'=0  (28)
=0

J

where Ay = —I, After the change of basis defined
by (27), the following holds

p
(oT _Ir) 6’)p+ I(L(D,CA) = Z AJL(DC(F_”A =0
1=0
29

where

L®

Lde?
0,(LD, ed) =

| L@etr~ 14

Then, differentiating (29) results 1n
4
AT O, (L®,e%) = — Y A,L d(@e?™1%)
J=0

P
= — Y ALdper
0

=

1
Y (p—pA, L& e~ dA

p-
1=0

The corresponding equation for d®, where
©® = col (") was introduced 1n Section 2 1, 1s then

(0,(L®,e* ® 1,)d©
= 3 ("M ® 4,L)col (dD)
1=0
~1
—";o (I, ® (p — )A,LOP"M)col (dA)  (30)

J

After some computations which may be found in
Appendix B,

(0¥ ®1,)dO = (J* ?)(ﬂ) + (JA f)(ﬂ)
o J,/\dy 0 J./\di
(1)

where (0} 1s the observability matrix in the modal
basis and 1s easily shown to be

Oy = (0, (LD, ed), 0 HLD, ez)),
where

da, Ldg,

di,, Ldé,

contain the vanations of the observed part of the
modes,

Aluy) 0
Jw = )
0 A(u,)
1 A'(uy)Loy 0
Jl =

0 UmA ()LD,
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with

and

AX) = ~

J

AJXP'I

P
=0

Use of the following

dw = dwre + ldl//‘m

and

di, =dc, +1dw, [see (21)]
gives
erone-( )yl

J; J;
+( e+ Hldo (32
J;_ —“lJA

Various vectors f contaiming any free modal
parameters among the ¥, ¢,, o, (1 < < m) may
then be monitored, by selecting the corresponding
columns 1n the right-hand side of (32), 1n order to
get a full column rank matnx J, such that

(O ®1,)dO = J,d (33)

Using the factorization (12) written 1n the modal
basis, 1t turns out that, because of (19) and (33), the
sensitivity test for monitoring f 1s given by (16)
with

M=@®y®I1)J, (34)

where €% = ¥~ '¢y(F,G,)

In the experiments which will be described 1n the
next section, the selected vectors f are separate
vibrating modes together with the corresponding
vibrating pulsation, namely

re m

J® j’w

J

The damping coefficients c, are not momtored
because they are usually not precisely identified

Finally, 1t will be mentioned that, as for the
global test t, (16), theoretical investigations have
been made by Rougée (1985) for computing the
power of any sensitivity test of the form (16) with
M given by (34) These results are also discussed 1n
Rougée et al (1985) and are used 1n Basseville et
al (1986b)
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5 EXPERIMENTAL RESULTS

In this section, results obtained from the com-
puter implementation of the various tests presented
i Sections 2 and 3 are presented, using both
simulated and real vector data related to the
mechanical engineering problem described i Sec-
tion 4 Note that experiments done for scalar signals
are described by Basseville er al (1986a) and lead
to the conclusion that 1t 1s possible to detect and
diagnose small changes (1%) 1n eigenfrequencies
provided that the damping coefficients are low, and
that the record sizes are high enough (several
thousands)

According to Section 4 2, the simulation model
which was used 1s a tied down system of 18 masses
of one degree of freedom connected by springs, as
shown mn Fig 1, with known weights, stiffness
and damping coefficients Six-dimensional signals
(displacements of the masses 1, 7, 13, 6, 12, 18)
have been generated under different hypotheses,
including no change, change in mass no 1, change
1n the stiffness of the connection to the ground, and
change 1n the stiffness of the connection 8-11 These
physically different changes are indicated by arrows
onFig 1

The global test t, (16) and nine sensitivity tests
using (34) have been computed, corresponding to
the mine modes of lowest order, considered together
with the pulsation @, as mentioned at the end of
Section 4 These test computations have been done
for all the subsets of components corresponding to
r = 2,3,4,6 and to at least one observation of each
of the two opposite “legs” of the structure

For simulated as well as real data, the reference
AR model 6, to be used for the tests, has been
computed by solving (29) where ® and A contain
the available eigencharacteristics (a small number
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for real data) The AR order p 1s chosen to be
the integer part of 2m/r, and not such that
2m/r < p < 2m/r + 1 as done for the 1dentification
task (1) of Section 4 The reason for doing so 1s
that 1t 1s inturtively more sensible to monitor the
structure without introducing other modes than
those which are available The chosen number
of instruments 1s N = p, for reasons which are
discussed 1n Basseville et al (1986a), and therefore
ty 1s computed with the aid of (18)

Finally, the Jacobians J; of Section 43 are
computed with the aid of (31), where the eigenvalues
and eigenvectors which are used are the available
eigencharacteristics, and not the modes associated
with the computed A,

The results are presented 1n the three-dimensional
Figs 2-5, one horizontal axis corresponding to the
different sensor locations and numbers, from two
to six from left to right, and the other horizontal

Max 7886 1

Max 10283

Tests

Position

FIG 5 A change 1n the connection 8-11

axis corresponding to various tests, with the global
test in the back and the nine sensitivity tests from
the back to the front in the order of increasing
frequencies As the pictures were drawn with auto-
matic scahng, the maximum value 1s indicated
Figure 2 shows the behavior of the vanous tests
under the no change hypothesis, Fig 3 corresponds
to a change (14%) 1n mass 1, Fig 4 to a change
(12%) 1n suffness of ground connection, and Fig 5
to a cancellation of connection 8-11 (which was
small) These results show that some sensor
locations may be very poor, 1n the sense that no
detection 1s possible (nearly the same value of the
tests under H, and H,), and therefore moving
sensors (along legs) may be of interest On the other
hand, the visually sigmificantly different profiles
obtained 1n Figs 3-5 lead to the conclusion that
these types of tests contain information which
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allows discrimination among physically different
changes An attempt to get direct physical diagnosis
1s currently under development

6 CONCLUSION

The authors have presented an original approach
for solving the two problems of detection and
diagnosis of changes 1n the eigenstructure of non-
stationary multivariable systems This approach 1s
based upon the use of instrumental statistics which
reduces the detection problem to a problem of
change in the mean of a Gaussian process with
known covariance matrix The diagnosis problem
1s solved 1n the same manner, with the aid of first
order approximations relating the changes in the
system parameters to be monitored to the changes
in the model parameters which are used for moni-
toring

The apphcation of this methodology to the
mechanical engineering problem of vibration moni-
toring has been described for complex vibrating
structures subject to natural nonstationary and
uncontrolled excitation Experimental results have
been presented, which show the efficiency of the
proposed tests, for detecting small changes (typ-
ically a few per cent 1n eigenfrequencies) and for
disciminating different physical changes The
authors’ opinion 1s that such an approach for
diagnosis (“sensitivity” method) 1s general enough
for a possible direct use on physical parameters
This approach 1s currently under study
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APPENDIX A ASSUMPTIONS AND THEOREMS
STATEMENT

The precise assumptions and theorems imvolved in the authors’
detection approach are stated here

Let (Y;) be a nonstationary multivariable process having as
state space representation

Yo =FX + Vi, (A1)
Y, = HX,

where X, e #", Y. e &, cov(V;,,) = Q,. and (¥}) 15 a white noise

with time varying covariance matrix

The assumptions concerming the model ( Al) are as follows

(C1) F s full rank and asymptotically stable
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(C2) There exists k > 0 such that, for any vector u and any
mteger t,

E@V)* < k|ul*
(C3) (H, F)1s observable, 1¢ there exists an integer p such that

H
O,(H,F) 2
HF? !

1s of rank n

(C4) There exists a matrix G of rank r such that, for any integer
t

0. > GG’

This last assumption, which 1s not a controllabihity condition,
allows changes 1n the direction of the excitation

If the nominal model (Hy, F,) fulfills the conditions C1-C4,
then the two following theorems hold

(1) Nonstationary law of large numbers Z,(s) given by (10a)
1s asymptotically uniformly positive defimite and bounded, and
the estimate £4(s) given by (10b) 1s consistent

YOI M) 2 T as

under both the no change hypothesis H, 8 = 6, and the small
change hypothesis

80
H 1 0 = 00 + %
(2) Nonstationary central hmit theorem Under H,,
Zy Y3(syupts) = 4 (0,1) where

U \(s) 1s given by (9)
Under H,, Zy '3(s) (% y(s) — (1/s K} 4(5) @ 1,)5O) s_—z A(0,1)

If, further, 1t 15 assumed that the following condition s fulfilled

(Cs) llm Lnfa, (é *, N(s)) >06>0 as

where ¢,(M) 1s the nth singular value of M, then with (C3) one
can ensure the umform minmimality of the state space model (A1)
to represent (Y;)

The assumptions (C1)—~(C5) imply the assumptions needed by
Benveniste et al (1985) for the consistency of the identification,
and also 1mply that the factorization (12) of the Hankel matrix
holds

APPENDIX B DIFFERENTIATION OF A MATRIX
POLYNOMIAL

Here the details of the computations needed from (30) to (31)
are given, related to the Jacobians to be used for diagnosis
Rewriting (30)

(C(Lp, e ®1)d® = — ¥ (e~ ® A, L)col (d0)
J=0

AUT 23 4-E

=5 1, ® (p — A, Lée® ) col(da)
J=0
A+ (B1)

First consider the term J,

P
—_ Z (e“"”A®AJL)
=0

eP g L 0
P
-1
U0 errAlL
A(uy)L 0
0 AL
where
AX)= X1, — A XP7 '~ T4, X -4,
and
u, =Y
Thus

Ap,) 0 | (Ldg,
Jy= (B2)

0  A(u)||Ldg,

On the other hand, for computing J,, the following 1s needed

di, 0 da, e,
Col(dA) = Col =
0 di, d4,, e,

where e, 1s the jth vector of the canonical basis of #™ Therefore

Jy=
et (p—NA,Lpelr~ 1 0 e; 0, /di,
=0 0 @ —pA,Loer /10 e, ]! da,

bt (p — DA, L e~ 0 de,
= -T
Y (p — A, L, e® |\ d4,
w A'(u)Lg, 0 di,
Y UmA' () Lby | | dAy, (B3)

where A'(X) = pX?~'I, — (p — )4, X*"* - -4,
Introducing (B2) and (B3) into (B1) gives
(€,(Ld,e) ®1,)dO = J,dy + J,d4

where J,,,J,,dy,d4 are defined below formula (31)
Finally, using the observability matnx in the modal basis

0F = C,(H,F)¥

where ¥ 1s defined 1n (27) gives (31)



