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Robust Detection of Known S ignals in 
Asym m etric Noise 

SALEEM A. KASSAM, MEMBER, IEEE, GEORGE MOUSTAKIDES, STUDENT MEMBER, IEEE, 
AND JUNG GIL SHIN, MEMBER, IEEE 

Abstract-The detection of signals in noise with possibly asymmetric 
probability density functions is considered. The noise density model allows 
a symmetric contaminated-nominal central part and an arbitrary tail behav- 
ior. For detection of known signals, the robust nonlinear-correlator (NC) 
detector is obtained based on detector efficacy as performance criterion. 
The robust M-detector structure for constant-signal detection is also 
explicitly obtained. 

I. INTRODUCTION 

F OLLOWING the fundamental works of Huber on 
robust estimation [l] and robust hypothesis testing [2], 

many further developments and applications of robustness 
theory have been formulated by researchers in the com- 
munication sciences. Concepts of robustness in signal 
processing applications were certainly in existence prior to 
Huber’s results (e.g., [3], [4]). However it is generally 
accepted that the techniques and results in [l], [2] formed 
an important basis for much of the considerable subse- 
quent research activity on robust schemes for signal esti- 
mation, detection, and filtering applications. Two recent 
survey papers [5], [6] list a large number of references on 
robust techniques. 

In [7] Huber’s ideas were applied to obtain the structures 
of asymptotically robust signal detectors. This resulted 
specifically in the canonical limiter-correlator detector for a 
weak deterministic signal in nominally Gaussian noise 
modeled as having a m ixture or contaminated probability 
density. In [S] this result was extended to apply to other 
nominal noise densities. Both [7] and [8] considered detec- 
tion structures of the type where the sum of memoryless 
transformations of each discrete-time input observation 
(the test statistic) is compared to a fixed threshold. For 
example, the lim iter-correlator robust detector for a signal 
vector (s,, s2,. . * ,sn) in an observation vector 
(X,, x2,. . . ,X,) with independent and identically distrib- 
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uted additive noise computes the test statistic T, = 
Zy=,Li( Xi), where Li(Xi) = sil(Xi) and e is a lim iter char- 
acteristic. In general for arbitrary e, we will call such 
detector structures NC-detectors, the test statistic being an 
instantaneous nonlinear transformation of the observation 
correlated with the signal. Note that this is the structure of 
a likelihood-ratio test on the Xi. More recently Huber’s 
results were ysed in [9], [lo] to obtain directly the robust 
M-detectors for both the fixed sample and sequential cases. 
An M-detector structure is obtained when the detection 
test statistic Q, is obtained as that function of the observa- 
tions m inimizing Zy=,M(Xi - siQ,), where M  is some 
appropriately chosen function. Note that Q, may be used 
as an estimator for the signal amplitude, and such an 
estimator is called an M-estimator because of its similarity 
to maximum likelihood estimators in general. 

Two major factors lim it the applicability of such results 
for signal processing schemes. One of these is the require- 
ment of independence for the sequence of discrete-time 
input data to the detectors. This requirement of indepen- 
dence has recently been addressed in [ 111, where it was 
shown that robust detector structures can be derived for 
operation under conditions of weak dependence in the 
input sequence. The results in [l l] were developed for 
detection applications following similar considerations 
which had earlier been applied in [ 121, [ 131 for robust 
estimation. The second main lim itation of many previous 
results on robust detection has been the assumption that 
the allowable noise density functions are symmetric. We 
will be concerned with this latter problem, and will develop 
the structures of the robust NC- and M-detectors for 
robust detection of weak deterministic signals with a noise 
model allowing asymmetry in the univariate noise density 
functions. Our study was largely motivated by some recent 
work on robust estimation with asymmetrically distributed 
noise [ 141, [ 151; in particular we will adapt and draw upon 
the techniques and results in [ 151 for this work. 

To introduce the asymmetric noise density class, let us 
recall some of the pertinent results on robust detection of 
weak deterministic signals. Consider the r-contamination 
class Fg, ( for noise densities f on the real line defined by 

9 g,r={fIf=(l-+T++ he%} (1) 
where g is a strongly unimodal symmetric nominal density 
function, and 6 in [0, 1) is a given maximum degree of 
contamination by an arbitrary density h in the class of all 
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bounded symmetric densities X. The  results in [l], [7], [8] 
show that a  lim iter characteristic 1  = fR exists which results 
in a  robust NC-detector; specifically, 

I 

-g’(x) 
g(x) ’ Ixl<a 

e ,(x) = -g’(a) (2) 
-----w(x), Ixl>a, da) 

where a is a  positive constant depending on  z and g. The  
robustness of fR may be  characterized by its property of 
being the opt imum NC-detection characteristic for a  least- 
favorable density fR E gg,< in terms of performance mea-  
sured by detection efficacy [16]. In addit ion the resulting 
detector can perform within a  maximum false-alarm rate 
constraint depending on  g  and e  [8]. 

The  efficacy &(f, f,) for the above robust NC-detector 
with Li(x) = Q ,(x) and  unit average signal power (a 
normalized efficacy) becomes 

[J co 2 ii( dx 

&Cfy 47) = 
I 

7  e;(x)f(x) dx . (3) 

J-m 

In (3), the numerator arises from the derivative with re- 
spect to amp litude of the mean  of f,(X,) and  the de- 
nominator is the variance of f,( Xi). Even if h  and  thus f 
were not symmetric, the condit ion I?, f,(x)f(x) dx = 0 
on allowable noise densities f, instead of symmetry, would 
also lead to the conclusion that fR is robust. Since g  is a  
nominal symmetric density, this means that the class X in 
(1) can be  enlarged. A simpler extension of the class ‘$, g  
for which robustness of fR also holds gives the class 

s& = {flf= (1 - c)g + dz, h  E FTC} (4) 

with %  the class of all bounded densities h  which are 
symmetric on  [ -d, d] and have equal  tail probabilit ies on  
(- 00, d) and (d, cc), with d 2 a. Note that a  is a  positive 
constant which depends on  g  and E. This extension is also 
applicable for the results on  M-detectors in [9], [lo]. 

Although the class %g  ~ is a  class of densities which are 
not necessari ly symmetric, they are nevertheless symmetric 
in the m iddle. This is usually a  satisfactory assumption. 
The  degree of tail asymmetry is controlled in two ways; 
there is still an  underlying nominal component  (1 - e)g, 
and  the contaminations h  are zero med ian. The  noise 
mode l in [ 151  removes these last assumptions and allows f 
to be  essentially arbitrary outside some interval [-d, d]. 
W e  will obtain results on  robust detection using such a  
mode l. Specifically we consider the class Yg, E, d  of noise 
densities f given by 

%  g,c,d = flf= 
1  i 

(1 -r)g+&,on[-d,d], h  E’%} 
arbitrary, outside [ -d, d] . 

(5) 
Here e  E (0,l) is the maximum degree of contamination of 
a  nominal density function g. The  density g  is assumed to 

be  strongly unimodal (i.e., -log g  is convex) and  symmet- 
ric, and  in addit ion we assume it to be  sufficiently regular 
so that g’ is absolutely continuous. The  parameter d is a  
positive parameter specifying the interval around the origin 
in which the noise density f is a  bounded,  symmetric, 
contaminated version of g. The  class X is the class of all 
bounded,  symmetric density functions. Thus on  [ -d, d] all 
f E ?,c,d 
fat 

are bounded and symmetric. Note that a  valid 
g, 2, d  could be  zero on  ( - co, - d ), and  place a  proba- 

bility of 2(1 - e)[l - G(d)] + c on (d, co), where G  is the 
distribution function corresponding to g. If g  is the zero- 
mean  Gaussian density with variance u2, a  reasonable 
specification of d may be  a  number  between 2a  and 4a, 
and  e  is typically between 0.001 and 0.1. 

In the next sections we will consider the robust NC- 
and M-detectors for the noise mode l of (5). In the next 
section, the results in [15] are appl ied to obtain the robust 
NC-detector nonlinearity with performance characterized 
by detection efficacy. In Section III results on  robust 
M-detection are obtained. These latter results are more 
significant, in spite of the lim itation to constant signal 
detection, because they yield a  stronger statement about 
performance of the robust M-detector. Specifically the 
performance index used (asymptotic variance) implies that 
both detection probability and  false-alarm probability 
characteristics are taken into account [9]. The  robust NC- 
detector performance is characterized by efficacy alone so 
that if the false-alarm probability of the detector cannot be  
ma intained at the design value, then relative efficiencies or 
detection probability comparisons cannot follow directly. 

W e  are concerned with the asymptotic theory of robust 
detection. The  results are applicable in practice to situa- 
tions where sample sizes are large and, for NC-detectors, 
under  the additional constraint of low signal strength. 
Obviously when the sample size is small (of the order of 
five or ten) actual detection performance may not be  
reasonably predicted from such asymptotic results. On  the 
other hand, previous studies [9], [17] on  the type of detec- 
tor nonlinearities we consider show that in many cases for 
moderate sample sizes (of the order of 50) asymptotic 
performance is a  good indication of actual performance. It 
should be  noted, however, that in some cases, convergence 
to asymptotic characteristics may be  quite slow. 

II. ROBUST NC-DETECTOR FOR 
DENSITIES 

For a  vector of observations (X,, 
described by 

Xi = N, + es,, i= 

ASYMMETRIC NOISE 

x2,-. .? X,) of length n  

1,2;.*,n (6) 

where (s,, s2; + ., s,) is a  deterministic signal vector and  
the N, are independent and  identically distributed noise 
components,  we want to test the null hypothesis H, that 
8  = 0  versus the alternative H, that 0  > 0. For an  NC- 
detector using test statistic 

T” = i s,e(xi>> (7) 
i=l 
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we want to obtain the characteristic t? which results in a 
robust detector for allowable univariate noise density func- 
tions f in the class gg, (, d. As a criterion of performance, we 
will use the detector efficacy &( f, E) which is dependent on 
f and I?, and defined as 

&(f, f) = lim  
[ ?hT)I,_,12 (8) 

n-w vare {T,} leEo ’ 

This is an asymptotic measure of detector performance 
applicable in cases where the sample size is large and signal 
amplitude is small. We will not here impose a constraint on 
the false-alarm or type 1 error probability, which would 
lead to a stronger robustness property as in [7], [8]. Thus it 
is implicitly assumed that the detector threshold can be 
adjusted to @ways obtain the desired size for the detector 
for my f E $, f,d’ Under this condition, the detector ef- 
ficacy is directly related to the slope of the detector power 
function at 8 = 0. We will comment further on the false 
alarm probability constraint for the robust NC-detector at 
the end of this section. 

It is clear that for an NC-detector to be consistent for all 
f E $,c,d, the characteristic f has to vanish outside 
[-d, d]. Since %g ( d consists of densities symmetric on 
[-d, d], we additionally require that the allowable f are 
symmetric. Let L, denote the class of all NC-detector 
characteristics f satisfying 

1) f(x) = 0, ] x IL c, 
2) E(x) = -E(-x), 
3) f is absolutely continuous, 

the parameter c being a nonzero cutoff value c 5 d; the 
value of c is set by consistency requirements, as we will 
discuss soon. 

A. Solution for Efficacy-Robust Detector 

We want to find a least-favorable density fR in gg, L, d and 
a corresponding optimum characteristic fR in L, such that 

inf &( f, e,> = &( fR, e,). (9) 
fE~&<.d 

Note that we will then have 

G(fR, 43) = sup&(f,, 0 
IEL, 

00) 

since we require fR to be optimum for fR. 
The following theorem establishes the condition under 

which a pair ( fR, f?,) can be found in Tg, (, d X L,, satisfy- 
ing (9) and (10) with a finite nonzero value &( fR, t,). It is 
directly related to Theorem 3.1 in [15]. 

Theorem 1: If the condition 

E < (1 - r){2cg(O) -[2G(c) - l]} (11) 
is satisfied where G is the distribution function correspond- 

ing to g, the density function 

I 
(1 - M4 

fR(4 = I 

cosh2[$a,(c- Ix])], 

I aO<IxISc 
arbitrary, I4=- 

(12) 
and the corresponding optimum characteristic in L, 

e,(x) = fit(x) 1 
-R(x), lxpc 

I 0, Ixl’c 
satisfy (9) and (lo), with 0 < a, < c and (-g’(a,))/ 
(g(a,)) c ai being the unique solutions of 

E = I”’ fR(x) dx - (1 - z) (’ g(x) dx (14) 

and 

-g’bd 
aIdad 

= tanh :a,(c - aO) . 
[ 1 

Proof of ATheorem 1: The existence of the density 

(15) 

function fR E Tg, ~, d is established in Appendix I. 
The efficacy &( f, f) can be written as 

I 
’ 

I 
2 t’(x)f(x) dx 

&(f,Q = ,’ 2 
/ e (x)f(x)h ’ 

(16) 

-C 
and also 

E(fR’ ‘) = 
(17) 

since f and fR are absolutely continuous; we have assumed 
that 

From (17) the optimality of fR in (10) follows from the 
Schwarz inequality. 

Now &(f, f,)* of (16) is a convex function of f ([l], 
Lemma 6), and Tg, ~, d is a convex set of density functions. 
Let GR(y) g &([(l - y)fR + yf 1, f,). Then to show (9) it 
is sufficient to show that [18] 

&k(Y) lY’O 2 0, f E $,,,d (18) 

which is equivalent to the condition 

~[%(x) - f;(X)] [f(x) - fR(x)] dx 2 0, 

f E $,<,d- 09) 
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TABLE I 
UPPERBOUNDONZASFUNCTIONOFCFORWHICH(~I )HOLDS,  

FOR UNIT-VARIANCE GAUSSIAN DENSITY~ 

c E  Cc) 
I 

1.0 0.103 1.5 0.248 

2.0 0.391 

L-L 2.5 0.502 

3.0 0.583 

Now 

a: + 2eX(x) - e:(x) 2 0, OIxSa,, 

because a, = eR(a,) 2 f,(x) and  f;(x) L  0  for x E [0, ao]. 
Also by direct evaluation, we have 

a: + 2&(x) - t?;(x) = 0, a, < x I c. 

In addition, f(x) - fR(x) 2 0  for x E [0, ao] and /o”( f(x) 
- fR(x)] dx 5 0  because /if(x) dx I (1 - c)jgCg(x) dx + 
c/2 = /{fR(x) dx, from (14). From these, (19) follows di- 
rectly. 

Comments on Theorem 1: If condit ion (11) is not satis- 
fied, then fR can be  picked to be  a  constant on  [-c, c] so 
that &( fR, f) = 0. In ([15], Table I) and  in Table I, some 
numerical values are.given for the upper  bounds c(c) on  e, 
for different c, for which (11) is satisfied with g  the unit 
variance Gaussian density. The  value of e(c) increases with 
c, and  c(c) is larger than 0.1 if c is larger than unity. Our 
proof of Theorem 1  is a  direct extension of the proof of 
Theorem 3.1 in [ 151, which placed more restrictive condi- 
tions on  the allowable density functions and estimator 
characteristics. Our criterion of detection efficacy is used as 
an  estimator criterion in [ 151; however its interpretation as 
an  estimation variance for the statistics in [ 151  requires 
further assumptions which are not simply characterized as 
condit ions on  the allowable density functions. W e  will 
elaborate on  this in the next section. 

F ig. 1  is a  sketch of a  typical eR function for the 
Gaussian nominal density g. 

B. Consistency of Robust Detector and Performance 
Evaluation 

The restriction that e(x) be  zero outside t-d, d] is 
required in order that with a  fixed structure, the type I 
error probability of the detector approaches zero as n -+ 00. 
The solution for the robust detector nonlinearity eR has 
been obtained for c i d. It is clear that the worst-case 
performance of the detector in terms of efficacy will im- 
prove as the value of c gets closer to d. However, while 
detector performance for vanishing signal strengths may be  
important, thus justifying the use of efficacies, we should 
have at the very least a  consistent test so that the type II 
error probability approaches zero as n --* cc for all values 
of signal strength 13  in an  interval of interest. 

Fig. 1. Typical robust detector characteristic for Gaussian nominal noise. 

For c I d, it can be  easily shown that eR of (13) results 
in a  test which is consistent for 8  in a  positive neighbor- 
hood of the origin. To  see this, it is sufficient to show that 
the slope at 8  = 0  of the mean  function of fR given by 

m’(0) = /’ &(x)f(x) dx, 
-c 

is positive for all f E gg, L, d. Now under  the condit ion of 
Theorem 1, &(nfR, lR) is positive, and  jL,lX(x)f,(x) dx is 
positive. Since gg, E, d  is a  convex set, it follows that m’(0) > 
0 for all f E CFg, ~, d. 

Even if m’(0) is positive, the mean  function m(e) = 
i"ceR(x)f(x - e>d x will become zero for some positive 
value em, of 0. In Table II we show the computed values 
of R-m as a  function of c and  c, for the case c = d, with g  
again the unit-variance Gaussian density. These values 
were obtained by considering for each 0  the noise density 
m inimizing m(e). These results indicate that for given c, 
increasing d with c = d leads to a  consistent test for an  
increasing range of values of 8; in the lim it we get con- 
sistency for all 6’ and the solution degenerates to that in [7], 
PI. 

If the lim iter-correlator detector [7], [8] is used when 
asymmetry is present, it is clear that detector performance 
can degrade rapidly with increasing n because of the bias 
introduced. The  robust NC-detector derived here is clearly 
unbiased when signal amp litude 8  is bounded by d - c, 
and in fact has been shown above to remain unbiased for B 
bounded by a  positive &,, even when c = d for the 
Gaussian example considered. 

In this section we have been able to establish robustness 
of the NC-detector using eR with performance being de- 
f ined by detector efficacy. It has not been possible to prove 
a  stronger result which simultaneously bounds the worst- 
case asymptotic local slope of the power function and the 
false-alarm probability as in [7], [8], where the fixed 
threshold of the robust NC-detector could also be  de- 
termined. If it is assumed that the threshold can always be  
adjusted (adaptively) to ma intain a  fixed false-alarm prob- 
ability for all f E fg, (, d, then the efficacy of the detector is 
directly related to the slope of its power function at 8  = 0. 
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TABLE II 
UPPERBOUND~,, ON~ASFUNCTIONOFC,C(WITH~ = d) FOR 
WHICHROBUSTNC-DETECTORIS CONSISTENT(~NIT-VARIANCE 

GAUSSIAN~) 

0.15 

0.20 

~ 0.25 

0.30 

0.35 

0.40 

--- 0.0 2.0 2.7 3.2 

--- 0.0 1.5 2.3 2.8 

--- --- 1.2 1.9 2.4 

--- --- 0.9 1.6 2.1 

--- --- 0.5 1.3 1.8 

--- --- --- 0.8 1.5 

The reason why the stronger result is not possible here is 
that fR is not a monotone limiter characteristic, so that the 
numerator and denominator in (16) are not separately 
minimized and maximized, respectively, by fR when f = fR. 
Nevertheless the results of this section are of interest 
because detection efficacy is a generally accepted measure 
of differential signal-to-noise ratio and has been exten- 
sively applied in robustness studies. In the next section we 
consider an M-detector robust structure which allows a 
stronger robustness property to be derived. 

III. ROBUST M-DETECTOR FOR ASYMMETRIC NOISE 
DENSITIES 

The test statistic Q, for an M-detector is a maximum- 
likelihood-type estimator for the signal parameter 8. In 
general if M is any reasonable function, e.g., M = -log f 
for some density function f, an M-detector test statistic can 
be defined as the function Q, minimizing Zy= ,M( Xi - 
siQ,). If M is sufficiently regular Q, can also be defined as 
the statistic satisfying 

ii,sii(X. - SiQn) = 0, (20) 

the function +L being the derivative of M. In this section 
(20) will be taken to define the test statistic of an M- 
detector, which will therefore be characterized by the func- 
tion 4. We will also restrict attention to the special case of 
constant signals, and without further loss of generality we 
will takesi = 1, i = 1,2; . *, n. The general case of noncon- 
stant signals requires further considerations, as we will 
indicate later. We will therefore be focusing on the special 
case of (6), giving Xi as 

xi = N, + 8, i = 1,2;..,n, (21) 

and our M-detectors will be based on statistics Q, satisfy- 
ing 

i d@i - Q,> = 0. (22) 

We are interested in the class gg, c, d (or a useful subset of 
the class &‘, L, d) of densities, and we impose the following 
reasonable constraints in defining the class qC of allowable 
M-detector functions J/ we will consider: 

1) #(xl = 0,) x p c, 
2) 4(x) = -e-x>, 
3) rl/‘(x) is bounded and piecewise-continuous on 

I-c, cl. 
An additional constraint will be added soon. The value of 
the parameter c < d, which defines the size of \k,, is set by 
requirements we consider next. 

To complete the specification of our class of M-detectors 
a solution scheme has to be specified for obtaining Q, 
satisfying (22). This is necessary because a solution to (22) 
may not be unique. The scheme we specify is a simpler 
iterative procedure than that considered in [ 151. Although 
its numerical convergence rate to the solution may be 
somewhat smaller, it allows us to obtain more explicit 
robustness results than were obtained in [15] (specifically 
note [15, Remark 3.51). 

We define the test-statistic Q, of an M-detector based on 
# E ‘k, in terms of the sequence {Q!} given by 

h(Qi> 
Q;+‘= Q;i+,, j=o,1,2;*., (23) 

where 

(24) 

F, being the empirical distribution function of the n ob- 
servations, with D being a positive constant. The solution 
Q, is defined as Q, = limj+,Qi, with Q,” a sample median 
(or any consistent estimator of the median of the Xi), 
provided the limit exists. Otherwise Q, is taken t,o be Q,“. 

In terms of the quantities g, E, and d defining Gg,r,d, we 
now define a new parameter k, by 

(25) 

with 
r = 2(1 - r)[l - G(d)] + c, (26) 

or directly as 

l-G(d)+ ” 1 2(1 -E) ’ (27) 
G being the distribution function corresponding to the 
density g. Note that as indicated in the Section I, 7 is the 
maximum value of the total probability which may be 
arbitrarily distributed outside [-d, d]. We will assume 
that our model is such as to make 7 < 0.5, so that the 
median of any f E gg, ~, d lies in (-d, d). This implies the 
restriction z < 0.5. From (26) we have 

i=I 
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so that k, < d. Under this assumption (7 < 0.5) themaxi- 
mum value of 1  m 1 , where m is the med ian of f E Gg, (, d, 
satisfies 

(1 - e)[G(] m I) - G(-d)] = i 

so that 

G(I m  I) = 1  - G (d) + 2(1 ! c) y 

and thus the med ian is always in [-kc,, k,], from (27). 
Our objective now is to establish condit ions for the 

asymptotic normality of Q , based on  1c, E ‘k, forf E gg, c, d. 
W e  will finally be  able to define subsets of ‘k, and  
SF g, (, d  over which asymptotic normality holds, and  we will 
obtain the saddlepoint solution for the asymptotic variance 
over these classes. 

W e  consider first the consistency of Q ,. 
Lemma 1: Let c I d - k, and $J be  any characteristic in 

‘k,. Suppose that for a  given f E gg, ~, d  the med ian lies in 
the open interval (-k,, k,) and the function 

A(q) = /I’::k’” - dfb) dx (28) 

is strictly decreasing on  [-k,, k,]. Then for D > 
W2WxI-,, cl I #‘(x) I in (23), the M-detector based on  $J 
has for this f a  test statistic Q , which converges in proba- 
bility to 0; in addition, 

limp  i$(Xi-Q,)=O 
1  I 

~1. (29) 
“-+UZ i=l 

The proof of Lemma 1  is given in Appendix II. Note 
that this lemma implies that the iterations for Q , in (23) 
will converge (and therefore Q , is not def ined as Q ,“) with 
a  probability approaching unity as n + 00. ’ 

The following lemma is concerned with asymptotic nor- 
ma lity of Q ,. 

Lemma 2: Let (#, f) be  a  pair in ‘k, X gg, 2, d, with 
c I d - k,, for which the condit ions of Lemma 1  are 
satisfied. If in addit ion we have A’(q) < 0 in a  closed 
neighborhood of the origin, then fi(Q, - 6) is asymptoti- 
cally normally distributed with variance I’( f, J/) given by 

Lemma 2  follows from results in ([19, Section IV]) where 
general  condit ions are given ensuring asymptotic normality 
of M-estimators. That these condit ions are met under  
Lemma 2  can be  easily demonstrated. 

W e  are now ready to obtain a  least favorable density and  
corresponding opt imum M-detector characteristic which 
together form a  saddlepoint for performance in terms of 
asymptotic variance of a  consistent and  asymptotically 

normal detection test statistic. F irst we define GR E ‘k, by 
#R(~) = f,(x) of (13) where fR(x) was defined in (12). 
Then  we have the following. 

Lemma 3: Let g, z, d be such that r < l/2 in (26) and  
k, of (27) is less than a,/2, for c I d - k, satisfying (11). 
[The parameter a,, is present in the definition of +kR = fR in 
(13).] Then  for f = fR and 1c, = J/R, the test statistic Q , 
obtained from (23) with D > (1/2)maxI-,,Fl 1  #A(x) ( is 
consistent for 8, and  Jli-(Q, - 0) is asymptotically normal 
with variance 

(30 

Proof of Lemma 3: Under condit ion (11) fR of (12) is 
strictly unimodal on  t-d, d], by which we mean  that the 
symmetric function fR is decreasing on  (0, d]. Now & = tR 
of (13) is positive on  (0, c) and  strictly increasing on  
(-a,, a,,). From this it follows that 

= $= &(x)fR(x + q) dx 
-c 

is a  decreasing function of q on (-a,/2, a,/2), and there- 
fore on  [-k,, k,]. Also x’,(q) = -/5,J/A(x)fR(x + q) dx 
is negative and cont inuous at q = 0. W e  also have hi(O) = 
L/i#t(x)fi(x) dx. The result then follows from Lemmas 1  

Let %* g,r,d = ‘g,c,d be the subset of densities in %g ,,,d 
which are strictly unimodal on  [-d, d]. In addit ion the 
parameters z and d are restricted to satisfy the condit ion 
r < 0.5, with r def ined in (26), and  the med ians are as- 
sumed to lie in (-k,, k,), with k, defined in (27). This last 
condit ion requires positive probabilit ies to be  distributed 
both on  (- cc, -d) and on  (d, cc), and  is an  insignificant 
restriction. F inally with c = d - k,, the parameter a, defi- 
ning fR in (12) is assumed to be  larger than 2  k, and also 
(11) is assumed to be  satisfied. It is easy to show that these 
condit ions are satisfied for reasonable choices of g, E, and  
d. For example, let g  be  the zero-mean, unit-variance 
Gaussian density, let z = 0.05 and d = 2. Then  we have 
r = 0.093 and k, = 0.123. W ith c = d - k, = 1.877 (11) is 
satisfied, and  the value of a,,/2 is 0.502. 

W e  finally restrict consideration to the subset #: C \k,, 
containing M-detector characteristics which are nonnega-  
tive on  (0, c) in addit ion to satisfying the three condit ions 
defining GC. This is a  reasonable restriction in view of the 
strict unimodality restriction used in defining ‘% l~, d. 

Theorem 2: a) Let J/R E ‘k,* be  def ined by & = fR of 
(13), and  let Q , be  the test statistic arising from the 
M-detector based on  I& with D > (1/2)max-,, C1 I q;(x) I . 
Then  for any f E GLc,d, Q, is a  consistent estimator for 0; 
fi(Q, - 0) is asymptotically normal with variance 
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V( f, lc/R) satisfying 
(32) 

where V( fR, &) was defined in (31). 
b) For any J/ E ‘k,* which gives a consistent statistic for 

all f E ‘3g: z, d, we have 

V(fR> Ad 5 V(fRY $1 (33) 

where V( fR, #) is the asymptotic variance of the normal- 
ized statistic based on $J. 

Proof of Theorem 2: a) This follows by extending the 
proof of Lemma 3 for any strictly unimodal density, which 
shows that l/I’( f, JIR) is the efficacy E( f, GR) minimized 
in Theorem 1. 

b) To prove (33), we only have to show that V( fR, JI) is 
obtained by replacing J/R with # in (31). This follows from 
the fact that for any Ic, E ‘k,* which is not identically zero 
we have A’(q) -K 0 in a closed neighborhood of the origin 
(see Proof of Lemma 3). The other conditions (including 
consistency) in ([19, Section IV]) being true, asymptotic 
normality and the formula for the asymptotic variance 
follow. 

Theorem 2 provides the main result of this section. We 
started from classes 6”, (, d and ‘k, of densities and detector 
characteristics, respectively, but our least-favorable density 
and robust characteristic were obtained from amongst 
functions in Y* and \k,*, respectively. The essential 
restriction add&? ‘was that the ‘densities considered be 
strictly unimodal on i--d, d]; this is not unreasonable 
because the nominal density g is assumed to have this 
property. In applying the robust statistic Q, arising from 
#R in signal detection, one has to set a threshold based on 
the maximum variance V( fR, &). Thus the false-alarm 
probability constraint is automatically satisfied. In addi- 
tion for any f E Gzc, d, the asymptotic power function or 
the slope of the power function at the origin can be lower 
bounded by the corresponding values for f = fR, depending 
on specific conditions on the signal strength parameter and 
detection threshold values. The details can be found in [9]; 
the main condition has been proved in Theorem 2 (specifi- 
cally the condition in [9, Lemma 21). 

The major reason why we confined attention to the 
constant-signal case in this section is that we need a 
reasonable initial value (e.g., the median Q,“) in starting the 
iterations in (23), to guarantee a consistent statistic Q,. 
Extension of our results to the general case seems possible, 
and would appear to require an initial estimate of the 
median based on some nonparametric or other simple 
regression procedure [20], [21]. The consistency proofs and 
conditions would also have to be extended. 

IV. CONCLUSION 

We have derived the structures of robust NC- and M- 
detectors for known-signal detection in noise for which the 
probability density has a symmetric, contaminated central 
part and arbitrary tail behavior. This model has been used 
previously for robust estimation studies. 

The robust NC-detector was derived for performance 
defined by detection efficacy, a weak-signal large-sample- 
size asymptotic performance measure. Although the detec- 
tion efficacy is directly related to the slope of the detector 
power function, it was not possible to obtain simultaneous 
control on the false-alarm probability. 

For constant-signal detection, the robust M-detector 
characteristic was obtained for performance characterized 
by the asymptotic variance of the test statistic. This result 
for the asymptotic variance together with earlier results on 
M-detectors, allow more interesting robust detection solu- 
tions which can maintain the false-alarm probability within 
desired upper bounds. Our robustness results differ from 
previous results on robust estimation which also examined 
asymptotic variance in that we considered a simpler solu- 
tion strategy and obtained the explicit saddlepoint solution 
for well-defined classes of noise and detector characteris- 
tics. 

APPENDIX I 
EXISTENCEOF SOLUTIONINTHEOREM 1 

The existence of solutions for (14) and (15) has been essentially 
proved in Theorem 3.1 of [15]. For any a, E (0, c), the left side 
df (15) is positive and decreasing from unity to zero as a, 
increases from -g’(a,,)/g(ao) to co. The,right side increases at 
the same time from tanh [ - 1/2(c - aO)g’(ao)/g(uo)] to cc. 
Note that the tanh function is less than unity for finite ar~u- 
ments. For given a0 E (0, c), defining fR as in (12) with u, > 
-g’( u,)/g( uo) the unique solution of (15), the right side of (14) 
is continuous in a, and increases from zero to the right side of 
(11) as a,, decreases from c to zero. 

To show that fa E %s, L, d, it is sufficient to show that h, g [ fR 
- (1 - c)g]/f is nonnegative on (a,, c). Since g is strongly 
unimodal, so that g(x) I g(uO)e-k(x-ao), x 2 a,,, with k = 
-g’( u,,)/g( a,), we consider the difference 

cosh2 
A(x) = [ 

$z,(c - x) 1 
cash’ 

[ 

- e-k(x-ed 
;+ - uo> I 

To show that A(x) 2 0, we prove that for x 2 a,,, 

eW/2)(x--oo) 
cash %(c - x) 

[ I 

cash $(c - u,,) 
[ 1 

L 1. 

Now the left side of the’above inequality is unity when x = ua, 
and its derivative with respect to x has the same sign as that of 
(k - a, tanh[u,/2(c - x)]}, which is positive for x > a,. Thus 
fR of (12) is in ts,,,d. 

APPENDIX II 
PROOFOF LEMMA 1 

We assume 0 = 0 without loss of generality. Note that h(0) = 0, 
and X(q) = -X(-q) for ] qlr k,. The equation X(q) = 0 has 
only one root, q = 0, in t-k,, k,]. Consider the iterative scheme 

qj+l = qj + x( qj)/D, 

withq’E[-ko,ko].IfX’(q)>-2DforO<q<k,thenqj-+O 
as j + 00. This is because with h(q) defined as 

h(q) = 4 + X(q)/D, 
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wethenhave]h(q))<]qIforO<JqjIkofromwhichtheresult 
follows. The condition X’(q) > -2 D for 0 5 q I k, follows if 
D > lP-m=q-,. cl I G’(x) I . 

It can be shown-by extending the proof in [ 151 because here 
#’ is only piecewise continuous-that 

sup 1 A,(q) - h(q) ( * 0 in probability, @ I) 
lqlsko 

and 
sup ) h’,(q) - X’(q) I + 0 in probability. @2) 

14 Sk, 

Let A, be the event (X,(k,) < 0, A,(-k,) > 0, and A’,(q) 5 0 
for all I q IS k,}. Let random variable 2, be defined by 

s E h,‘(O) n (-k,, k,) forwhich 
z, = 

1 

] s I is maximum, if A, true 

Q0 n, the sample median, if A, not true. 

DefinetheeventA,tobe{]Z,]<c},theeventA,tobe{]Q~- 
2, I< k, - I Z, I}, and the event A, to be (1 A’,(q) I< 20, for 
]q]s k,}. Then P(A,) + 1 because P(A,) and P(A,lA,) both 
converge to unity as n -+ co. This follows from (Bl) and (B2). 
Also &A,) + 1 because P(A,) 2 P({l Qz  I< k, - 2 I Z, I}) 
which converges to 1. Finally (B2) implies P(A,) -+ 1. Thus 
P(np=,Ai) + 1. 

Now suppose q E [-k,, k,] is not in X;‘(O) n (-k,, k,), 
assumingA,-A,aretrue.ThenforanyzEX;’(O)n(-k,,k,) 

Iq + A,(q)/D - zl<lq - ~13 
because for q > z we have A,(q) < 0 and - 2( q - z) < A,( q)/D 
from the mean-value theorem, and similarly for q < z. With dj 
defined by 

dj = sup I Qi - z, I 3 
~,~~,‘(OVX-k,,k,) 

we have d,,, < d, if d, > 0. Thus lim,,,d, exists and is non- 
negative. Let p be the length of the interval set X;‘(O) n 
(-k,, k,). If p = 0 it follows directly that Qi -* A,‘(O). If p > 0 
and forj arbitrarily large QL and QL” can be on opposite sides 
of this interval set, then dj 7 d,,, > p; this is a contradiction 
since d? - d,, , -+ 0. Since Q,l is thus eventually (j -+ cc) on the 
same side of the set h;‘(O) n (-k,, k,), it converges to a point 
in this set. 

This completes the proof of Lemma 1. 
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