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Using the least-squares method, we obtain from (14) 

ve4 = - [( ;, Y(rNw-‘8 zJ[ $ut, @Z,)X&) 

i = 1,2;.. , k. (15) 
Having an estimator for vet B,, we may estimate ei( t) from (14) 
by 

Zi(t) =X,(t) + (q!(t) 63 Z,)vec& 

and thus matrix Zi by 

$i = + 
’ 1=l 

i = 1,2;.., k. (If-9 

In practice, not only are the parameters of the model (1) un- 
known but so is the order of the model. We will now consider the 
estimation of the true order qi of the autoregressive equation (1) 
on the basis of a realization X,(l), X,(2); . ., X,(q) of the pro- 
cess {X,(t)), i = 1,2; . . , k. Quinn [9] proposed an expression 
‘p (q,) for the determination of the order of multivariate autore- 
gressive models, of the following form: 

cp(qi) = In@,] + +2q,clnlnT, c> 1, (17) 
I 

where 2, is given by (13) or (16). Quinn shows that the estimator 
4: of the true order of the autoregression q,? belonging to class z=~, 
which minimizes expression (17) over all qi E { 1,2,. . . , Qi> (where 
Qi is an arbitrarily chosen number larger that 4:) is a strongly 
consistent estimator of the true order q;, i = 1,2,. . . , k. Quinn 
presented arguments for the acceptance of c = p2. 

We now propose another method of estimating the true order 
of the autoregressive equation. We make use of the Bayesian 
method for the estimation of the true order q:, i = 1,2,. . -, k. 
Suppose that the order qi of the autoregression equation is a 
random variable with a known prior density function h( qi), 
i = 1,2;.., k. If we have no information as to the choice of 
h ( qi), we assume h( qi) = Q; ‘, where Qi is an arbitrarily chosen 
number larger than qT, i = 1,2; . . , k. An incorrect decision in 
choosing the order of model (1) results in a loss of the form 

s(qif ri> = clqi - rjl, (18) 

where c is an a constant chosen beforehand, which satisfies the 
following conditions: c = 1 for r, < qi and c > 1 for r, > qi, 

where r; is the assumed order the model (1). The loss function of 
the form (18) has the following properties. The cost of choosing 
an order larger than the true one is proportional to the error. The 
cost of choosing an order smaller than the true one is smaller 
than cost of a higher order because lowering the order of the 
model progressively lowers the calculating expense involved in 
the data analysis. 

The estimator @ of the true order of the model (1) is obtained 
by minimizing the posterior risk 

Q, 
R(C) = C s(qi9 ri)z(4ilx(1),’ “9 x(T)) (19) 

4,= 1 

over r, E (1,2;. ., Q,), where z(q,]x(l); . ., x(7;)) is the poste- 
rior density function of the random variable q, 

z(qlx(l),. . ‘3 x(T,)) = 
h(qi)f(x(1)9”‘f x(T)lqi) 

Q, 2 

C h(qi)f(x(l),“‘T x(T)lqi) 

9,=1 

i = 1,2,. . . , k. The function f( x( I), . . . , x( T.)lq,) is a density 

function of the form (8), i = 1,2;. ., k. From (18) and (19) we 
obtain that the estimator 4: of the true order of the model (1) can 
be expressed as 

4: = arg Tq$,clqt - r;lh(C7i)f(x(1),“‘, x(T)lqi) ) 
i , i 

(20) 
i.e., 4: is that values of the parameter r, for which the risk 
function R(ri) takes the minimal value, i = 1,2; . ., k. 

As the true order of the model is not known, we can assume 
that q, E (1,2,. . . , Q,}, i = 1,2,. . . , k. For each assumed order 
we can obtain the estimators of the remaining parameters of the 
model by (12) and (13) or (15) and (16). In this manner we can 
compute the values of the function (8) for each q, E { 1,2,. . . , Q,}, 
i = 1,2;.., k, and we can find the estimator of the order of the 
model by minimizing the posterior risk. 
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Robust Wiener Filters for Random Signals in 
Correlated Nbise 

GEORGE MOUSTAKIDES AND SALEEM A. KASSAM, 
MEMBER. IEEE 

Absnvrcf-Minimax robust Wiener filtering is considered for the case in 
which the signal and noise spectral-density matrix is not completely speci- 
fied. Results are obtained for spectral-density matrix classes which are 
defined by upper and lower bounds on the components of the matrix. These 
results form an extension of earlier results on robust Wiener filtering for 
the case of uncorrelated signals and noise. 

I. INTRODUCTION 

For linear estimation of a random signal which is observed in 
additive noise, the minimum mean-squared-error solution can be 
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obtained through standard procedures if the signal and noise 
second-order characteristics are given. When complete informa- 
tion on the signal and noise second-order characteristics is not 
available, one approach is to design minimax robust filters. In [l] 
and [2] robust W iener filters and smoothers have been considered 
for situations in which the signal and noise processes are known 
to be uncorrelated. For a related problem in [3] robust state 
estimation for linear stochastic systems is considered, again with 
uncorrelated process and observation noise. Under the same 
restriction of uncorrelated signal and noise, a general approach 
for robust causal estimation in the discrete-time case has been 
given in [4]. 

The robust procedures in the above cases are procedures which 
minimize the worst-case error for signal and noise spectral distri- 
butions ranging over specified classes of allowable spectra. Such 
results are very closely related to those on minimax robust 
hypothesis testing [5], as discussed explicitly in [2], [6], [7], and 
many of the available results on robust hypothesis testing for 
classes of probability distributions can be translated directly into 
results for corresponding robust estimation problems. 

In this correspondence we will consider the situation in which 
the signal and noise processes are possibly correlated in a W iener 
filtering (smoothing) problem. Specific results will be established 
on robust filters for classes of allowable spectral characteristics 
described by upper and lower bounds on the spectra and cross- 
spectrum magnitudes of the signal and noise processes. The 
presence of correlation introduces an aspect for which no coun- 
terpart appears to exist in known results on robust hypothesis 
testing. 

In the next section we develop a few basic results, which will 
be then applied in Section III to obtain the robust filters for 
bounded spectral classes. Although all our results are developed 
for the continuous-time case, exactly the same considerations 
lead to direct counterparts of these results for the discrete-time 
case. 

II. PROBLEM~TATEMENTAND GENERALRESULTS 

A. W iener Filter Results 

Assume that s(t) and N(t) are jointly wide-sense stationary, 
second-order, zero-mean processes, and that their spectral density 
matrix D exists, with 

D = D,(w) D,,(w) 
D,*,(w) I D,(w) ’ 

--oo<w<oo. 

Let the received process be 
X(t) = S(t) + TV(t), --oo<t<co. (1) 

If X(t) is passed through a filter with frequency response H(w), 
then the mean-squared error e( D, H) between filter output Y(t) 
and s(t) is given by 

When the signal and noise are uncorrelated, it has been shown 
in [2] that a robust filter H, satisfying (8) can be obtained as that 
filter which is optimum for a least-favorable spectral density 
matrix D’ satisfying (9). Of course, D’ would be diagonal in this 
case. This considerably simplifies the task of obtaining the robust 
filter for any given class A. In the correlated case, the compo- 
nents D:(w), D;(w), and D,‘,(w) of D’ may be such that D,‘(w) 
= D,‘(w) = -D,‘,(w) > 0 on a nonnull w-set, in which case the 
optimum filter for D’ is nontrivially not uniquely defined. We  
can show [8], [9] that when this condition is not encountered the 
optimum filter for an If matrix D’ is a minimax robust filter 
satisfying (8). In the more general case our approach will be to 
obtain a least favorable D’ first, and then consider as candidates 
for the robust filter those filters which are optimum for D’. We 
will prove robustness of our specific solutions directly by showing 
(8). 

-H*(w)D,,(w) + W(w)12Dx(d do. (2) C. Maximization of eOp(  D) 

Here D,(o) is the spectral density of the process X(t), and 
Dsx(w) is the cross-spectral density of S(t) and X(t). The opti- 
mum linear filter characteristic HD( o) minimizing (2) is given by 

From (6) we see that for given D,(w), Dn(w), and IDS,,(w)] the 
worst-case function for Re [D,,(w)] is - ] D,,( w)l, since this mini- 
mizes the denominator. This can happen only when D,,(w) =  
- ] D,,( w)], that is, when OS,,(w) is real and nonpositive. For this 
case the value of eoP( D) is H,(w) = s 

or, in terms of the D matrix components, 

HD(w)= D,(w) +  D,(w) +2Re[D,,(w)] ’ (4) 

The corresponding error e( D, Ho) is the minimum error eop( D) 

for D, and it is given by 

In terms of the D matrix components this is 

(6) 
Note that when D,(w) = D,(o) = -Dsn(o), the integrand of (6) 
is undefined as it is written, but should in this case be interpreted 
as D,(w). Also, H,(w) under this condition may be arbitrarily 
defined, and in particular may be identically zero. 

B. Robust  W iener Filters 
Suppose now that the matrix-valued function D is not precisely 

known for all w. We  assume that D is known to belong to some 
class A of spectral density matrix functions. We  require our filter 
frequency response function H to be in the class X of all 
bounded functions of w. This means that the filter may be 
noncausal. Then a minimax robust filter for our problem is one 
with a frequency response H, E X satisfying 

min sup e(D, H) =  sup e(D, H,). 
HEX D~ih DEA 

(7) 

If the supremum on the right-hand side of (7) is achieved by a 
spectral density matrix D’ E A for which the minimax filter H, is 
an optimum filter, then (D’, H,.) satisfies the saddle-point condi- 
tion 

e( D, H,) d  e( D’, H,) d  e( D’, H) 

for all D E A and all H E x. In this case we also have 
(8) 

e,(D) d e,(D’) (9) 

for all D E A. Any D’ E A satisfying (9) will be called a least- 
favorable (If,) spectral density matrix in A. 

e,,(D) = $y $ 00 OS(w) -D,(w) - ID,,(w)12 
00 D,(w) +  D,(w) - 2[Ds,(w)ldw’ (lo) 

The integrand in (10) for given Ds(w), D,(w) is 

a) increasing with respect to ] D,,( w)I when 

0 G  lD,,(w)l d  ~n{D,(w>, k(w)>; 
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b) decreasing with respect to IDsn(w)l when 

This can be proved by taking the derivative of the integrand with 
respect to ] D,,( w)] and treating D,(w), D,(w) as constants. Obvi- 
ously for IDsn(w)l = min{D,(w), D,(w)} we have a maximum for 
(lo), provided that ID,,( w)l can take this value. In general we 
have to deal with a constrained maximization problem. 

When D,(w) and D,(w) are not given, the above has to be 
considered for each allowable Ds(w), D,,(w) and the worst-case 
obtained. In the next section we will apply these ideas to specific 
classes A of spectral density matrices. 

III. ROBUST FILTERS FOR BOUNDED SPECTRAL 
DENSITY CLASSES 

We now consider specific classes A which arise from an imposi- 
tion of bounds on some or all of the components Ds(w), Dn(w), 
and IDsn(w)l of D E A. In addition, constraints will be imposed 
on the variances of the signal and noise processes. Such classes 
are useful because in many situations total signal and noise 
powers can be measured, although actual spectra and cross 
spectra may only be reasonably assumed to he within some 
confidence bands. The classes A we will consider here are directly 
related to the band models for spectra first considered in [ 11. We 
start by considering a simple class and progress to other classes 
by modifying and adding constraints. 

A. Signal and Noise Spectra Given, Upper Bound on ID,, (w)I 
Here we have classes A of spectral density matrices with 

specified diagonal elements, that is with known signal and noise 
spectra D,(w) and D,,(w). The cross spectrum, however, is known 
only to be bounded above in magnitude as 

0 Q I%(w)l B U(w), --co<w<co, (11) 
where U(w) is a given bound. Note that U(w) can be assumed to 
satisfy 

u(w) G !bzmm -co<w<co. 

The If matrix D’ now has diagonal elements D,(w) and D,(W). 
From the observations in Section II, we conclude that the cross 
spectrum D&(w) in the If matrix satisfies 

IQi(w)l = ~n{~n{D,(w), D,(w)), u(w)) 
= An(D,(w), D,,(w), U(w)> (12) 

and, in particular, 
D,‘,(w) = -Ln(D,(w>, D,(w), U(w)> (13) 

for all w. Now we take H, to be the frequency response of a filter 
optimum for D’. This filter characteristic is defined, from (4), by 

H,(w) = D,(w) - ~n(Q(w)jDn(w), u(w)> 
D,(w) + D,(w) - 2 ~n{Q(w>, D,(w), u(w)> 

(14) 
when this does not reduce to O/O; at such frequencies we can 
assign it any value between 0 and 1. The proof of the robustness 
of this H, is a special case of a more general result we will 
consider next. 

For the special case when min(D,(w), D,,(w)) < U(w), all w, 
( 12) becomes 

IDA( = min{D,(w>, D,(w)), 
all w, and the frequency response of any robust filter is given by 

1, D,(w) ’ D,(w); 
H,(w) = A(w), Q(w) = D,(w); (19 

0, D,(w) < D,(w), 

0.2- 

O.l- 
w  

0 
0 0.5 1.0 I.5 2.0 2.5 3.0 

(b) 

Fig. 1. (a) Illustration of spectra for example in Section III-A. (b) Robust 
and nominally optimum filter frequency responses for example in Section 
III-A. 

where A(w) can take on any value in [0, 11, for example A(w) = 0 
or 1. This means that when there is considerable uncertainty 
about the actual value of Dsn(w), for example when nothing 
beyond the requirement ID,,(w)] < \lD,oD,(w) can be im- 
posed, the simple intuitive two-level filter frequency response of 
(15) is minimax robust. Specific details about D,(w) and D,(w) 
are not used in obtaining this filter. 

Example: Let the known signal and noise spectral densities be 

D,(w) = --&  
and 

D,(w) = &/ 
and let the upper bound U(w) on ] D,,( w)] be a constant value c. 
Fig. l(a) illustrates the situation. Let w, be the value of w when 
D,(w) = c. Then w, = dm). As long as c < 0.467 (see 
Fig. l(a)), we find from the above that the robust filter frequency 
response is given by 

D,(w) - c 
D,(w)+ D,(w)- 2~' 14 =G IWII; 

This frequency response is illustrated in Fig. l(b). 
Let e,” be the mean-squared error when H, is used and Dsn(w) 

= 0. Let e” be the corresponding mean-squared error of the 
nominally optimum filter based on the assumption that Dsn(w) 
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TABLE I 
PERFORMANCEOFROBUSTANDNOMINALLYOPTIMUM 

FILTERSFOREXAMPLEIN SECTION III-A 
MEAN-SQUAREDERROR~~OFNOMINALLYOPTMJM 

FILTERFORD,,( 01s 1.71 

ew, Worst mse of 
c, Upper Bound e,O, mse of e,“, Worst Nominally Optimum 

onlWw)l H,forD,,(w)=O mseofH, Filter 
0.1 1.84 2.07 2.31 
0.2 2.00 2.33 2.6 1 
0.3 2.06 2.40 2.82 
0.4 2.18 2.50 2.98 

C>&i3 2.55 2.55 3.21 

= 0. In addition, define e: and ew to be the worst performances 
(mean-squared errors) for these robust and nominally optimum 
filters, respectively. Table I shows the values for mean-squared 
errors which have been computed for a range of values of c. Note 
that the filter which is optimum for uncorrelated signal and noise 
has a mean-squared error under this nominal assumption of 
e” = 1.71. Even for a small value 0.1 for c, Table I shows that 
this nominally optimum filter’s performance degrades signifi- 
cantly, whereas the robust filter’s performance is relatively quite 
good. When c is larger that m we have effectively no infor- 
mation on D,,(w) except for the requirement ] D,,( w)I 

d IID,oD,(w). 

B. Signal Spectrum Given, Bounds on Noise Spectrum, Upper 
Bound on IDsn(w)I 

We now generalize the above result by allowing D,,(w) to vary 
between upper and lower bounds, with a constraint on the noise 
variance. Thus we assume that upper and lower bounds 
Q(w), L,(w) are given and D,(w) satisfies 

L,(w) d D,(w) d K(w) (16) 
together with 

j- D,(w) dw = 274, 
-m (17) 

where CJ,” is given. The magnitude of the cross spectrum is still 
bound above by some U(w). Here we assume that the signal 
spectrum D,(w) is exactly known. Although we will not develop 
it explicitly here, the case where D,,(w) is exactly known and 
D,(w) lies between upper and lower bounds with a signal power 
constraint can be treated in a very similar way. 

The solution for the If matrix D’ now requires specification of 
D,‘(w) and D,‘,(w). Note that D,‘,(w) can always be express- 
ed in terms of D:(w) and Ds(w), by inserting D,‘(w) in place of 
D,(w) in (13). Therefore in finding D’ we can reduce the problem 
to that of finding the worst case, D;(w), for the noise spectrum 
which maximizes the integral (lo), in which D,(w) is then 
known and ID,,(w)] has been replaced by the function 
min(D,(w), Q(w), U(w)>. 

It can be shown that D,‘(w) is specified according to one of the 
following three definitions; that is, one spectral density from the 
three cases below will make the matrix D’ an allowable matrix 
in A. 

Case A: Here D,‘(w) is defined by 

D;(w) = 
r 

l(w), L,(w) d kn{u(w>, D,(w), Un(w>>; 

L,(w), otherwise, 

where 1 can be any function satisfying the constraint 

L,(w) G I(w) Q hn(u(w), D,(w), U,(w)> 
and resulting in a D,‘(w) with the required variance. Clearly the If 
matrix is not unique in this case. Here we define H,., an optimum 

filter for D’, by 

when this is well-defined; 

\ 1, otherwise. 
Thus H, comes from (4) when it does not reduce to O/O, and is 
taken to be unity otherwise. Notice that this latter condition 
occurs for w values where D,‘(w) is defined as the function 1(w). 
When this happens any choice for H,.(w) results in a filter 
optimum for D,, but the above specific choice makes the filter 
robust. 

Case B: We first define the function 

fk(w) z kD,(w) + (1 - k)min{U(w), D,(w)), 
where k is a nonnegative parameter. 

Then D,‘(w) is defined by 

D,‘(w) = 
l 

f/c(W)? L,(w) Gfk(W) Q u,(w); 
L(w), L,(w) >fk(W)i 
u,(w)7 u,(w) <fk(W), 

if a nonnegative k exists satisfying the noise power constraint. We 
define H, by 

I 
D,:(w) D,‘(w) ’ when this is well-defined; 

H,(w) = 1 

(1 + k)2’ 
otherwise 

Note that another way of describing D,‘(w) for this case is 
D,‘(w) = Ann, m=tfAw>, L,(w)N. 

Case C: For this case D,‘(w) is defined by 

i 
l(w), 

D,‘(w) = un(w) 
D,(w) < U(w); 

D,(w) a U(w), 

where 

~n{V,(w>,m=(D,(w>, L,(w))) G l(w) d U,(w) 

and such that the noise power constraint is satisfied. For this case 
we can define H, by 

i 
D,:(w) 

H,(w) = D;(w) ’ 
when it is well-defined; 

h otherwise. 

Of course, in each of these three cases D,‘,(w) is - 
min(D,(w), D:(w), U(w)>. It is easy to show that one of the 
above three definitions for D,‘(w) will always result in a valid 
spectral density matrix D’ in A. In the Appendix a proof is given 
of the robustness of the filter H, defined in Case B above. The 
proofs for the other two cases are quite similar. 

Note that when U(w) = 0 for all w, that is, when it is known 
that signal and noise are uncorrelated, Case B will always define 
the least-favorable noise spectrum. In this case the result is in 
agreement with earlier results [I]. On the other hand, when 
nothing is known about the extent of correlation, so that U(w) 
> D,(w) U, ( w ) , either Case A or Case C defines the least- 
favorable noise spectrum. In addition, note that when the noise 
spectrum is exactly known, so that U,(w) = L,(w), all cases are 
valid, allowing a choice of any value between 0 and 1 for H,(w) 
when it is not well-defined by (14) (Section III-A). 

As we remarked earlier, it is possible to generate similar results 
for the case where D,(w) is in a bounded class and D,,(w) is 
specified. To get more general results one can impose a lower 
bound L(w) on IDsn(w)I in addition to the upper bound on it. 
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The solution for this case has been obtained, but we omit it here classes defined as 
because it leads to a more involved result stated in several parts, 
and yet is similar in form to the one we have given for L(w) = 0. L,(o) - u(w) Q e(u) d v,(w) - u(w), 
The complete result for this general case is given in [9]. We 
consider next, instead, some special cases of classes A where both L,(w) - u(w) B f&(o) i K(w) - u(w), 

D,(w) and D,(w) are bounded. and satisfying the power constraints 

C. Bouncis on Signal and Noise Spectra, Upper Bound on 1 D,,( w)l: 
Special Cases 

We now allow uncertainty in both signal and noise spectra, so 
that in addition to (16) and (17) for the noise spectrum D,,(w) we 
assume that D,(o) is similarly constrained by 

L,(o) Q D,(w) Q Us(m) (18) 
and 

s O” D,(w) dw = 24, 
-cc (19) 

where the bounds L,(w), U,(w) and the variance u,’ are given. 
Furthermore, we retain the upper bound constraint of (11) on 
IDsn(~N 

The complete solution for the least-favorable D E A with a 
specific lower bound L(w) also imposed on IDsn(o)l, while 
obtainable in principle in the same way as has been illustrated for 
the simpler cases so far, leads to a fairly complicated definition 
for D’. In fact, even with L(w) = 0 here the solution is not easy 
to describe. It is possible, however, to get relatively simple results 
under the condition that L(w) = 0, for two extreme assumptions 
on U(w). 

Consider first the case where the upper bound of (11) is only 
the loose bound arising from the requirement that IDsn(~)I be 
bound above by D, ( w ) D, ( w) . That is, no specific information 
is available about ] D,,, (a)]. This situation corresponds to a gener- 
alization of the special case mentioned in Section III-A, the signal 
and noise spectra now not being known but lying in classes 
defined by the band-model. It is therefore not surprising that one 
robust filter for this situation is a zero-one filter, with gain either 
zero or unity at any frequency w. However, it should be noted 
that the least favorable matrix is not obtained by simply using the 
least-favorable spectral densities (Dl( w), D:(w)) obtained for the 
band-model under an assumption that signal and noise are uncor- 
related. As we had before, the least-favorable matrix D’ has 
components related by D,‘,(o) = - min (D,‘( w ), D,‘(w)>, and (15) 
gives the robust filters with Ds(w), D,(w) replaced with these 
Ds’(o), D,‘(w). We omit the statement of the complete solution, 
which is rather long and involves relationships between the 
bounding functions defining the class A. A detailed solution can 
be found in [LX]. The most significant observation here is that the 
robust filters for these classes can be defined as zero-one filters. 

Now consider the opposite situation when enough information 
is available about IDsn(m)I so that we have 

U(o) < fin{L,(w), L,(o)}. 
In this case we will always have, from (13), that the least-favor- 
able matrix has cross-spectral component given by D,‘,(w) = 
- U(w). Using this in (10) we get that D’ is the matrix with 
cross-spectral elements - U(w) and diagonal elements Ds(w), 
D,, ( w ) maximizing 

where &(w) = D,(o) - U(w) and fin(o) = D,(w) - U(w). To 
maximize (20) we need consider only the second integral involv- 
ing D,(w) and 4(o). Notice that this is simply the minimum 
mean-squared error obtained from the optimum-Wiener filter for 
signal-and noise spectral densities D,(o) and D,(W). Also note 
that D,(w) and D,(w) are spectral densities lying in bounded 

jm fis(o) dw = 274 - jm U(w) dw, 

j’mb,,(m) do = 
-CC 

27ru; - /_mU(m) dw. 
-03 

The least-favorable pair (b:(w), &“( w)) for this uncorrelated 
signal and noise situation can be found directly from previous 
results [I], and the desired components D,‘(w) and D,‘(w) of D’ 
then follow from D,‘(w) = b:(w) + U(w) and D,‘(o) = b;(w) 
+ U(w). Here we find that a least-favorable D’ exists which has 
a corresponding well-defined optimum filter, the robust filter H,. 
The significant result for this special case is that the robust filter 
for this situation can be obtained by modifying the original signal 
and noise spectral classes, obtaining the least-favorable pair for 
the uncorrelated-processes problem, and using this to obtain the 
least-favorable signal and noise spectra for the original problem. 
In fact, we see from the above and from (4) that the robust filter 
H, is, here, the optimum filter for uncorrelated signal and noise 
with respective spectra Dsr( w) and D:(w). 

This last result can be extended to apply for other power-con- 
strained convex classes of signal spectra and noise spectra, 
whenever the upper bound U(o) is lower than the minimum 
value attainable by either signal or noise spectra. 

IV. CONCLUSION 

We have obtained explicit solutions for robust filters for ran- 
dom signals in possibly correlated additive noise under spectral 
uncertainty classes described by upper and lower bounds. These 
results form an extension of earlier results which were obtained 
for the uncorrelated case. A situation which can occur in the 
correlated case is the nonuniqueness of the optimum filter for the 
least-favorable spectral matrix. This does not happen in the 
uncorrelated case, for which characterization of the robust filter 
in terms of a least-favorable spectral density pair is always 
possible. 

In two special cases the results are particularly interesting. In 
one case very little is known about the cross spectrum Dsn(a), 
whereas in the other case the cross spectrum is bound above by a 
relatively tight bound. We found that when D,,(w) is completely 
unspecified (or bound very loosely), a robust filter has unit gain 
when the least-favorable signal spectrum exceeds the least-favor- 
able noise spectrum and zero gain otherwise; it is an ideal filter. 
From the last part of Section III it follows, on the other hand, 
that when the upper bound U(w) on D,,(o) is lower than the 
minimum values of both D,(w) and D,(w), the robust filter is 
optimum for uncorrelated signal and noise with spectra which are 
least-favorable for modified classes defining uncorrelated signals 
and noise. 

APPENDIX 

Proof for Results in Section III-B, Case B 

From (2), noting that Dsx(w) = D,(w) + Dsn(m) and Dxx(o) 
= D,(o) + D,(o) + 2Re[D,,(w)], we get 

e( D’, H,.) - e( D, H,) = & jmm P(w) do 
cc 

where, since EZ,.( w) is real, 

f’(o) = H,2(4[D,‘W - Dn(~)l 
-2ff,(w)(l - &.(~))[Re{D&(~)) - Re(&(w))]. 

(Al) 
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When H,(w) is well-defined we have either D,‘,(o) = 
-min(D,(o), D,‘(w)) or D,‘,(o) = -U(w), from (13). In the 
former case H,.(w)(l - H,(o)) is zero, and in the latter case 
H,(w) and thus H,(w)(l - H,(w)) lies in [O,l], and Re(D,‘,(o)) 
- Re (D,,( o)} < 0. Thus when H,.(o) is well-defined, 

P(w) 2 H,2(o)[D,‘(w) - D,(w)]. (A’21 
Equation (4) does not yield a well-defined H,.(o) when D,(w) 

= D,‘(w) = -D,‘,(w). In this case, using the inequality 

Re{D,,(w)} 2 - DS(w) l Dn(w) 

(from Re(D,,(w)) 2 -ID,,(w)1 > - /Ds(w)Dn(o) > 
- f[D,(w) + D,(o)]) in (Al), we get for 0 < H,(o) < 1 

P(a) 2 Hr(o)[D,‘(w) - D,(w)]. (A3) 
a) When D,‘(o) in Case B is given as D,‘(o) = fk(w), from 

(12) and because min(D,(w), U(w)> < fk(o), we have ID,‘,(w)1 
= min(D,(w), U(w)). 

Now note that if (4) gives a well-defined H,, it is (using 13) 

D,(w) - lD,‘,(w)l 
Hr(w) = D,(o) - lD,‘,(w)l + D;(w) - ID,‘,(w)1 (A4) 

which in this case becomes H,(w) = l/(1 + k). When (4) does 
not define H,., it is taken to be l/(1 + k)*. Thus, using (A2) and 
(A3), we have 

P(w) > (1 : k)2 [X(w) - Dnb)]. 

b) For values of w where D,‘(o) = L,(w), we again have 
ID&( w)I = min (D,( w), U(w)}, and (A4) now gives H,(w) < I/( 1 
+ k), because here D,‘(w) > fk(o). This gives, because D;(w) - 
D,,(w) < 0, the result 

P(w) B ___ (1 : k)2 [Dn’b> - D,(w)]. 

c) When D,‘(w) = Un(w), note that we have D,‘(w) < kD,(o) 
+ (1 - k)lD,‘,(w)l, since here U,(w) < fk(w) Q D,(w) and 
ID,‘,(o)1 = min(U,(w), min(D,(w), U(w))}. Thus from (A4) 
H,(o) > l/(1 t k), and because here D,‘(w) - D,(o) 2 0, we 
get again 

P(o) > -%D,‘(4 - Q(o)]. 
(1 + k)’ 

For all w we have shown that the above inequality is true; the 
result follows, by integrating, that 

e( D’, H,.) - e( D, H,) > 0. 
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A Simple Suboptimum Estimator of Prior Probability 
in Mixtures 

REZA JALALINASAB AND JAMES A. BUCKLEW, MEMBER, IEEE 

Ahtract -A simple relative frequency type estimator of the prior proba- 
bility in a mixture of two known density functions is presented. Examples 
are given demonstrating the ease of design and implementation of this 
estimator structure. 

I. INTR~DUCTJON 

Given that an unknown density function f(x) is a mixture of 
two known density functions f,(x) and f2( x), where the prior 
probability is unknown, the problem is to estimate the prior 
probability on the basis of N statistically independent observa- 
tions. The density f(x) can be written as 

f(x) = rf,(x) + (1 - r>f*(x), (1) 
where n the prior probability to be estimated, is assumed to be 
uniformly distributed on [0, I]. 

This type of problem arises in pattern recognition problems 
where one is studying the distribution of observations belonging 
to individual populations and where the population mix is un- 
known. It also has application in biological and physical sciences. 
(See Choi [l], Makov and Smith [2], Davisson [3], Sakrison [4], 
Yakow [5], Blischke [6], and Makov [7] for examples and further 
references.) 

The estimator is presented in Section III. It is a member of a 
class of estimators first presented by Boes [8]. In Sections IV and 
V we give three numerical examples, and we compare our results 
with a recursive estimation scheme due to Kazakos [9]. 

The calculations involved in designing Kazakos’ estimator are 
moderately complicated. On the other hand, the estimator intro- 
duced in this paper is very simple to design. The examples in 
Section IV are intended to illustrate the simplicity of the estima- 
tor design. We emphasize that Kazakos’ estimate always gives a 
lower variance, but in some applications one has a great number 
of samples and simplicity is more desirable. 

II. DEVELOPMENT 

Let fl, f2, r, and N independent samples {x,; . ., x,~) be as 
stated in the preceding section. Consider a set of the following 
form: 

where T is a threshold to be described later. Define 

P(A) = J,f (x) dx (3) 
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