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Robust Detection of S ignals: A  Large 
Deviations Approach 

GEORGE V. MOUSTAKIDES 

Ahstruct-Robust detection of a signal is considered for the case of 
independent and identically distributed observations. Following an asymp- 
totic but nonlocal approach, the exponential rates of decrease of the error 
probabilities are considered as measure of performance. Under this mea- 
sure a robust detection structure for the symmetric density case is derived. 
This detection structure is a generalization of an existing resylt for the 
local case and is reduced to it when the signal magnitude tends to zero. 

I. INTRODUCTION 

R OBUST DETECTION of signals in noise with uncer- 
tain statistics has been considered extensively in the 

literature from the local point of view. Using efficacy as a 
performance measure, robust detection structures have been 
derived for the small signal case under several noise models 
[l]-[5]. Clearly there is always the question of how these 
structures behave under nonlocal conditions and whether 
they remain robust. The results of [6] are applied in [l], 
detectors that are robust under nonlocal conditions and for 
the finite sample case are treated for the independent and 
identically distributed (i.i.d.) case. The problems with the 
approach in [l] are that the resulting detector is not a shift 
likelihood ratio for any density and that for a signal larger 
than a certain value the detection structure has a trivial 
form. Here we overcome these problems. A robust detector 
is found when the common noise density is symmetric. As 
it will be shown, there always exists a nontrivial detector 
that is the likelihood ratio of a least-favorable density. The 
result is nonlocal but asymptotic. As a measure of perfor- 
mance we consider the exponential rates of decrease of the 
error probabilities. As will be seen in Section III our result 
is a generalization of the local case of [l], and if we let the 
signal magnitude tend to zero it will yield exactly the 
structure that is robust under local conditions. Thus, it 
seems that the measure of performance introduced here is 
the natural extension of the efficacy in the nonlocal case. 

II. PRELIMINARIES 

Let us introduce some notions from the large deviations 
theory for hypothesis testing. Let Xi, X,, * * . be a se- 
quence of i.i.d. random variables with common density f. 
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We would like to decide between the two hypotheses 

H,: x;, hasdensity f(x) =fO(x) i = 1,2;*. 
H,: x;, has density f(x) = fi(x) i = 1,2, . .* . 

(1) 
We are interested in tests of the form 

otherwise, 

where cp,( J/) denotes the probability of deciding HI, I/ is a 
function integrable with respect to fO(x) and fi(x), and y 
is a threshold. It is well known that when 

~IwG~ ’ Y > ~oww (3) 

the two error probabilities decrease exponentially to zero. 
Thus, it seems reasonable to use as a measure of perfor- 
mance the exponential rates of decrease. 

Let us define P:(q) = E,{ cp,($)} and P,‘(#) = E,{l - 
cp,( I/J)}; i.e., P,“(q) and P,‘(q) are the two error probabili- 
ties. Following a Neyman-Pearson type approach, let ‘k, 
denote the class of all nonlinearities #(x) that for some y 
satisfy 

In other words, we consider those tests of the form of (2) 
that can have an exponential rate of decrease for the 
false-alarm probability at least equal to (Y. We are now 
interested in finding a #o E ‘k, that has the maximum 
possible rate for the error Pi(#), i.e., 

- ,!irnm i logP,‘(+,) 2 - lim  1 logP!($) 
iI’M  n 

(5) 

within the constraint (4). 
The parameter (Y is known as the exponential level of the 

test, and the rate of decrease of the probability P,‘(q) as 
the exponential power. It is easy to see that the exponential 
power can play here the same role as the efficacy in the 
local case. Indeed, if n,, n2 are the number of observations 
required by two different tests to reach the same power p, 
then if we consider the ratio of n, and n 2 as p + 1 (which 
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results in n,, n2 + co), we have that III. ROBUST DETECTION 

- ;yl ; 1% p,‘,(lc,,> 
Let N,, N,, . . . be an i.i.d. noise sequence with common 

- ;Fl ; log P;2(+*) 
= l& 2. 

density f. We would like to decide between the two hy- 

p-‘1 n1 
(6) potheses 

Ho: X, = N, + so, so E(-cqo], i = 1,2, ... 

We now give a lemma that specifies the optimum nonlin- HI: Xi= N,+s,, s1 E [s,co), i = 1,2;.., (10) 
earity in the sense of (4) and (5). where { X, } is the observation sequence, so, si are un- 

Lemma I: Let fo(x) and fi(x) be two densities with known, and s > 0 is known. 
the same support; then the optimum nonlinearity #o E ‘I”, Let F be the class of all symmetric densities that satisfy 
in the sense of (4) and (5) is given by the log-likelihood the following e-contamination model: 
ratio 

fib4 
#o(x) = 1% fo(x) ’ (7) 

and y is defined in such a way that (4) is satisfied with 
equality. 

Proof: Actually, we can prove a much stronger result. 
In particular, we can prove that the test defined by Lemma 
1 has the largest exponential power among all tests of 
exponential level (Y and not only among those of the form 
of (2). The proof is an application of the Neyman-Pearson 
lemma. Log-likelihood ratios maximize the power sequence 
1 - Pi(#) for any sequence of levels P,“(4) 5 (Y,,. Thus 
they also maximize monotone transformations of the power 
like - l/n log P,‘( +). 

We now present a lemma that defines more explicitly the 
two rates for a test of the form of (2) in terms of the two 
densities and the nonlinearity 4. . 

Lemma 2: Let f. and fi be two densities with the same 
support, and let # be a nonlinearity that is integrable with 
respect to f. and fi. Also let y be a real number that 
satisfies 

qJ/(xI)) ’ Y ’ ~O{vGl)). (8) 

f(x) = (1 - M4 + 4X), (11) 
where 0 s E < 1 is known, g(x) is a known symmetric 
nowhere-vanishing density, such that - log g(x) is strictly 
convex. The density h(x) is assumed to be symmetric but 
unknown. Let ‘k, denote the class of all nonlinearities lr/ 
for which there exist a test of the form of (2) satisfying the 
following for every f E F: 

AONJ>f) 2 a. (14 
We would like to find a density f, E F and a 4, E ‘E, such 
that 

AoNr, f) 2 4bL f,> = a!. (14) 
The right side inequality of (13) and the right side equality 
of (14) using Lemma 1, suggest that #, is the log-likeli- 
hood ratio 

for some si and so. We now define the density f, by 

(15) 

Then we have that ((1 - M-4, for 0 5 x S x0 

A,($,f,) k - lim llogp,P($) rl’M n 
= % [ ry - log E,{ e’+(xl)}] - I 

(1 - 4 
f,(x) = ,-s(x - ns>, for x0 + (H - 1)s 

2 x 5 x0 + ns, 
n = 1,2;.., 

A,(#, f,) 4 - lim llogP,i(#) 06) 
n--too n where k = g(x, - s)/g(x,) and x0 > s/2 is selected in 

=min[- ry + logE,{e -G(%)}]. (9) order to have 
r 

Proof: This lemma is known as Cramer’s theorem. 
(For a proof see [8].) 

imf,b) dx = (1 - d &““sb, dx 
I 

The threshold y must satisfy (8) in order to have ex- 
ponential decrease for the two error probabilities and the + “i;” g(xo> ~-dx) dx] = 0.5. 

dxo - 
(17) 

validity of (9). This requirement bounds the possible values 
of the exponential level. We can see from (9) that the A typical form of f!(x) is given in Fig. 1. In the Appendix 
exponential level is increasing with y and thus the maxi- it is shown that an x0 always exists and that it is unique 
mum value it can take is when y = E,{ #(x)}. For this and also that fr E F. From the definition in (16) notice 
value the error probability under HI has rate equal to zero, that E/~,(X) = f/(x) - (1 - e)g(x) puts all its mass out- 
i.e., we do not have exponential decrease. We now apply side the interval (-x0, x0). Let us now see that the form of 
these results to the robust-detection theory. \c/,, defined by (15) when fr is defined by (16) and so = 0, 
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-z,-2s --Ic-s -20 %I 10+5 to+25 

Fig. 1. Typical form of least favorable density. 

Sl = s is 
/ 

1% dxo - 4 
d%> ’ 

for x 2 x0 

G4 = ( 
log dx - 4 

g(x) ’ 
forx, 2 x 2 -x0 + s. 

- log dxo - 4 for -x,+s~x 
\ dxo) ’ 

(18) 
The following theorem proves that f, and #, is the pair 
that satisfies (13) and (14). 

Theorem I: When fi and #, are defined by (16) and 
(18), they satisfy (13) and (14). 

The proof is given in the Appendix. 
As we can see in Fig. 1, the least favorable density fr 

repeats a piece of length s of the density g after dividing it 
every time with the constant k. By taking s -+ 0, (17) 
reduces to 

i”f,(x) dx = (1 - c) 
dxd2 ixog(x) dx - g’o 1 = 0.5, 

(19) 
which is the equation for determining the point x0 for the 
local case [l], [7]. Since multiplying #, by a positive 
constant does not change the performance of the test, if we 
also multiply the threshold by the same constant, we have 
that l/~/~,(x) is also optimum in our sense. If we now take 
s --* 0, we can see that we recover the locally robust 
nonlinearity defined in [l] and [7]. 

IV. EXAMPLES 

As an example, we present the Gaussian nominal case. 
Clearly the robust nonlinearity #, will be linear inside the 
interval [-x0 + s, x0]. In Table I values of x0 are given 

TABLE I 
VALUESOFX~ FORDIFFERENTVALUESOFC AND s 

0.1 2.682 1.994 1.190 0.486 
0.5 2.856 .2.175 1.378 0.682 
1.0 3.032 2.369 1.595 0.919 
2.0 3.297 2.684 1.980 1.374 
5.0 3.973 3.536 3.080 2.717 

10.0 5.760 5.529 5.294 5.110 

TABLE II 
VALUESOFTHETWORATESFORS = ~ANDDIFFERENT 

VALUESOFC AND y 

0.0 0.000 0.000 0.000 0.000 
0.492 0.459 0.318 0.078 

0.1 0.005 0.005 0.003 0.001 
0.391 0.372 0.258 0.063 

0.2 0.020 0.019 0.013 0.003 
0.315 0.295 0.204 0.050 

0.3 0.045 0.042 0.030 0.007 
0.241 0.226 0.157 0.038 

0.4 0.079 0.075 0.052 0.013 
0.178 0.167 0.116 0.028 

0.5 0.124 0.116 0.081 0.020 
0.124 0.116 0.08 0.020 

for different values of the contamination E and the signal s. 
Table II contains the exponential level and the worse-case 
exponential power for the case s = 1 and for different 
values of y and 6. It is assumed that the mean of #,.(X1) 
has been normalized to zero under HO and to unity under 
H,, and that y takes values in the interval [0,0.5]. For 
values of y in the interval [0.5,1], the table is symmetric in 
that the exponential level at y > 0.5 is equal to the worst 
exponential power at 1 - y, and the worst exponential 
power is equal to the exponential level. 

V. CONCLUSION 

We have presented a detection structure that is robust to 
partial knowledge of the signal magnitude and of the noise 
distribution function. The result is asymptotic but nonlo- 
cal. The advantage of this approach is that the robust 
detector is a likelihood ratio for a specific density and is 
always nontrivial, something which is not true for all 
existing approaches. It will be interesting to see if this 
approach also applies to the case where the densities are 
symmetric only inside an interval around the origin, thus 
generalizing the result in [3]. 

APPENDIX 

Proof thut f, E F 

We first prove existence of an x0 > s/2 that satisfies (17). 
Define as B(x,) the function 

B(x,) = &/o”hW dx 

s 1 x0 = b;‘g( x) dx + J I(x,) - 1 x0-s 
g(x) dx> (20) 
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where I(x) = g(x - s)/g(x). Because the function -log g(x) is 
convex, the function 1 is strictly increasing and thus I(x) > 1 for 
x > s/2. Notice that 

*o$$2)+ B(xo) = cc ’ & 
1 

lim B(x,) = 1 5 ___ 
2 2(1-c)’ (21) Q-00 

Using continuity arguments there exists an x0 that satisfies 
B(x,) = l/2(1 - E). The uniqueness can be easily deduced by 
taking the derivative of B( x,); this derivative is always negative 
for x0 > s/2. 

To prove now that f, belongs to the class F, it is enough to 
show that 

f,(x) 2 (1 - E)dX). (22) 
This inequality is trivial for the case 0 I x I x0. For the case 
x0 + (n - 1)s I x I x0 + ns it is equivalent, using (16), to 

-logg(xo - $1 + logg(xo) 2 -logg(x - ns> + logg(x) 
s ns 

(23; 

and since -log g(x) is convex and x - ns 2 x,, - s, the in- 
equality in (23) is true. 

Proof of Theorem 1 

Before proving that f, and Ji, satisfy (13) and (14), we first 
prove a lemma. 

Lemma 3: Let w be a nondecreasing function such that w(x) 
+ o ( - x) is also nondecreasing for x 2 0. If f E F, so I 0, and 
st >_ s, then 

jm w(+,.(x>)f,(x> dx kjm ~(k-(x>)f(x - 4 dx (244 

i- w(&.(x))f,(x -s> d:: jm c+,(x))f(x - sl) dx. 
-cc -02 

(24b) 

Proof We only prove the first inequality since in a similar 
way we can prove the second. Notice first some important 
properties of the function I/,. defined in (18). It is nondecreasing 
with x, the function \c/,(x + s/2) is odd symmetric nondecreas- 
ing and, for x 2 0, it is nonnegative. Notice also that the density 
h,(x) puts all its mass on points where #,(x) is maximum. Since 
4, and w are nondecreasing their composition is also nondecreas- 
ing. Thus 

jm dk(x))f(x - SO) dx = jm d&(x + so))f(x) dx -co 

5 j’m4+r(x))f(x) dx. (25) -m 

Using (25) in order to prove (24a) it is enough to prove that 

j” dk(x))f,(x) dx 2 jm dJ/,(x))f(x) dx, (26) 
-02 -00 

or, by eliminating common terms, 

jm dk(x))h,(x) dx 2 jm dkW)h(x) dx. (27) 
-m -cc 

Since h,(x) puts its mass on points where l#r(x)j is maximum, 
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we can see that (27) is equivalent to 

cd(M) + w(-M) 

2 2 jm 4~Axww dx, (28) 
-cc 

where M is the maximum value of J/,(x). Notice now that 

jm +J+))h(x) dx --a, 

W(M) +a(-M) 
5 

2 . (29) 

The last equality comes from the fact that #l(x + s/2) is odd 
symmetric. The last inequality is true because w(x) + w( -x) is 
by assumption nondecreasing for x 2 0 and +?(x + s/2) is 
nonnegative for x 2 0. Thus (28) is true. 

To prove the theorem we apply Lemma 3. Selecting w(x) = x 
we have from (24a) and (24b) that #?( Xi) has the maximum 
mean for f, under H, and the minimum under HI. This is 
important because if we take the threshold y between these two 
means, then we are assured that we will have exponential de- 
crease for both errors for any density f E F. To show now the 
inequalities in (13) and (14), we first show that they are equiv- 
alent. Notice that to show any of the two, using (9), it is enough 
to show that for any r 2 0 we have 

J 

m 

-cc 
e-+‘“‘f( x - sJ dx _< jmmme-‘“r”:‘f,( x - s) dx 

/ 

M 

er-f( x - so) dx I jp;er+rcX$( x) dx. (30) --m 

By change of variables and using the symmetries of 4, and f, we 
can see that 

1 
cc 

-cc 
e-r*r(x)f(x - sl) dx =jm er$rcr)f(x - sh) dx, (31) 

-cc 
where s& = s - st < 0. Thus the first inequality is equivalent to 
the second. The second inequality is true by a simple application 
of Lemma 3 with w(x) = P. This concludes the proof. 
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