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Minimax Equalization for Random Signals 

Abstract-The design of a fixed filter is considered for equalization of 
an imprecisely known  channel.  The channel frequency response is 
assumed to have amplitude and phase Characteristics lying within 
specified  bounds at each frequency, and a minimax filter optimizing 
.worst  case mean-squared error (MSE) performance is derived. The 
general result is illustrated by considering a two-path channel model with 
an uncertain secondary path delay Characteristic. 

C 
I. INTRODUCTION 

HANNEL equalization is necessary in many communica- 
tion  systems where the channel  characteristics cannot  be 

assumed to be ideal so that linear amplitude  and phase  distor- 
tion occurs. In most cases, the channel  characteristic is not 
simply nonideal,  but  it is also not precisely known  and may be 
time varying. One approach  for equalization under such  condi- 
ions, which  has been widely applied, is to use an adaptive 
scheme. There  do arise situations, however, in  which  adaptive 
equalization may not  be practical because of cost and  com- 
plexity  and  the  requirement  to  adapt rapidly to changing con- 
ditions. It may be desirable for  such  situations  to use a  fixed 
equalizer, if one can be designed which gives acceptable per- 
formance over the whole  range of anticipated  channel condi- 
tions  that may be  encountered. 

In this paper, we apply  the minimax formulation  to  the 
problem of fixed  equalizer design for  uncertain channel  char- 
acteristics. For  this, we define a class of possible channel  char- 
acteristics, and we seek the equalizer which optimizes worst 
case system  performance. We will assume that  the signal in- 
put to the  channel is a stationary  random signal with  a known 
power spectral density (PSD), and that  the channel output is 
observed in additive stationary noise with a known PSD. The 
performance measure will be  the mean-squared error (MSE) 
between  the desired signal at the channel input  and  the  output 
of the equalizer. 

We will consider  a  specific structure  for  the class of possi- 
ble  channel characteristics,  which is quite reasonable  and use- 
ful  in  applications.  The channel will be modeled as being time 
invariant so that  it can be characterized  by  a frequency re- 
sponse characteristic H(w). The class of allowable  characteris- 
tics will be defined to  contain all H(o) with  amplitude charac- 
teristics I H(w) I bounded by known  upper  and lower bounding 
functions, and with phase  characteristics arg (H(w)} whose 
values are  constrained to be,  for each frequency w, in known 
subsets @(a) of  (--IT, n] .  We will obtain explicitly the mini- 
max equalizer for  such classes and  show that it has an  interest- 
ing interpretation. At frequencies where the signal-to-noise 
ratio (SNR) is high relative to a  measure of channel  certainty, 
the minimax  equalizer  essentially  inverts the  “nominal”  chan- 
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nel. At lower SNR frequencies, the minimax  equalizer acts as 
a Wiener filter. We also present a  numerical  example to illustrate 
the results. 

It is interesting to  note  that  the  problem of fixed  equalizer 
design was considered  in [ 1 I using a statistical  approach  for 
an ensemble of random channels. A more general cost function 
was used in [ 1 1 ,  allowing optimum  amplitude scaling in the 
MSE expression. In  addition,  the  optimum fixed  equalizer was 
sought subject to an  output power constraint. In contrast, we 
use here the minimax approach and a simpler performance 
index (MSE) without  an  output power constraint. We are able 
to find explicit solutions which in  ‘their general  behavior are 
related to some of the  solutions described in [ 11. While it is 
possible to  define  performance criteria other  than  the MSE 
which may be more  appropriate in  specific  applications, the 
MSE criterion  has  the  strong  appeal of leading to mathemat- 
ically tractable analysis. It has been widely used to  obtain de- 
signs for. equalizers for  data  communications [ 2 ]  , and is a 
resonable criterion to use for analog signals as in  the present 
case. 

The minimax approach  that  we follow  in this paper was 
motivated  by recent work on minimax robust signal process- 
ing (see, for  example, [3] and  references therein). Most of 
this recent  work  has been. concerned with  robustness against 
uncertainties  in signal and noise characteristics,  whereas  here 
we assume known signal and noise PSD’s, but  an imprecisely 
known channel  characteristic. We should  also note  that while 
our primary motivation  in  this  development is the equaliza- 
tion of imprecisely known  communication channels, the 
results we develop are applicable to  the  broader class of prob- 
lems of deconvolution of noisy observations  produced  by im- 
precisely known frequency  response  characteristics. For 
example,  one  apnlication is in the  restoration of noisy,  blurred 
images. By including signal and noise PSD uncertainties in this 
problem  formation, a more general set of results  could be  ob- 
tained  which would be more closely related to  the minimax 
robust signal processing results of the  type discussed above. 

11. PROBLEM FORMULATION 
Fig. 1 shows the system under  consideration.  The  input  to 

the equalizer is a  linearly distorted version of an original finite- 
power signal s ( t ) ;  together  with  random noise n(t). The signal 
s ( t )  a?d the noise n ( t )  are uncorrelated, zero-mean, stationary 
random processes with known respective PSD’s S(w) and N(w). 
Suppose an equalizer with  frequency response G ( o )  is used 
when the time-invariant  channel has frequency response H(w). 
Then  the MSE e (H,  C) between  the system output s’(t) and  the 
original signal s ( t )  can easily be shown  to be 

-m 

e(H,  C )  =’ 1 {I 1 - H(w)G(u)  I2S(w) 
27T --m 

+ I C ( 0 )  I2N(0)} dw. (1) 

Notice that  at w values where both S(w) and N(w) are  zero, 
there is no  contribution  to  the MSE.  We will assume that S(O) 
and N ( o )  are not  both zero  at  any O. 

We assume that  the channel amplitude characteristic is a 
measurable function  and is bounded by two  known measur- 
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Noise d f ) .  PSD N(o) 

Fig. 1.  Equalization of noisy  linear channel. 

able  functions A L  (a) and A u(w), so that 

AL(O)  Q IH(0)I QAu(w). (2) 

The lower bounding  function is nonnegative, and  the  upper 
bounding  function A ~ ( w )  will be taken  to be  positive without 
loss of generality, and to have a  finite  upper  bound A u(o) < 
C < 00. This is clearly reasonable;  in fact, we  have C Q 1  for 
passive channels. Let the phase characteristic arg {H(w)} of 
the channel  be a measurable function  denoted by @(a). We 
also assume that  for each a, there is a  known closed subset 
@(w) of (-77, T I  which contains  the value of $(a). Later we 
will make explicit one  more  condition  on  the allowable @(a) 
to ensure that  the  mathematical derivations  in the  next  section 
are valid. Thus, AL(o),  Au(w) ,  and @(a) together  define  a 
class /-/ of allowable  channel  characteristics. 

Let G denote the-class of all possible equalizer  frequency re- 
sponses. Then  our objective is to find the minimax  filter fre- 
quency response GM(o) which satisfies 

min max e(H,  G )  = max e(H, GM). (3) 
GEG HE/-/  H E  ff 

Thus, C M ( O )  will be the frequency  response of a minimax 
equalization  filter which optimizes worst-case estimation per- 
formance  for  the class /-/ of allowable channel  characteristics. 

Our  approach will be  to consider the integrand on  the right- 
hand  side of (I) ,  and to obtain  a minimax solution  by con- 
sidering this integrand pointwise for each a. We will find that 
the minimax  filter frequency response obtained  by  this  point- 
wise optimization and the corresponding worst case channel 
frequency response are well-behaved functions of o (e.g.,  con- 
tinuous) as long  as s ( ~ ) ,  N(o), AL(o) ,  Au(w) ,  and  the func- 
tions characterizing the subsets @(w) are well-behaved func- 
tions (e.g., piecewise continuous,  bounded).  In  addition,  the 
MSE of (1) will always  be well defined  and bounded  for all 
channel  characteristics in f/ for  the minimax equalizer fre- 
quency response we  will derive by our  approach. It is true, of 
course,  that because of the pointwise constraints  on members 
of ff, no  smoothness  restrictions are imposed on  them. This 
means that  the class of allowable channel  characteristics treated 
in this  approach is generally much larger than would be ob- 
tained under, say, a  continuity  requirement. Such a restriction 
would make  the pointwise  considerations  invalid, and  make  it 
very difficult to  obtain  an explicit solution. We will see, how- 
ever, as noted above, that  the minimax  equalizer derived by 
our approach will, in  situations of practical interest, be quite 
well behaved. This will be seen, in  particular, for  the example 
in Section IV. Thus, in practical situations, it will generally be 
possible to obtain good approximations  to  the  characteristics, 
of the ideal  minimax  equalizer we will derive. In  addition,  the 
fact that in  such situations  the minimax  equalizer frequency 
response generally turns  out  to  be well behaved means that it 
is optimum for  some quite reasonable and  nonpathological 
member of the class of allowable channel frequency ,responses, 
so that  the pathological  members of /-/ do  not influence the 
solution  for  the ideal minimax  equalizer. 

111. EXPLICIT SOLUTION FOR MINIMAX FILTER 
We first obtain  the  channel characteristic HG(w) which 

maximizes the MSE e(H, C) for  a given equalizer  character- 
istic G(w). To do  this, we maximize pointwise the  term I 1 - 
H(w)G(w) l 2  in the integrand in (1). Now this  can  be  written 
as 

I 1 - H(w)G(w) I 2  = 1 - 2 I H(w) I I  G ( 0 )  I 
- cos [ ~ ( w )  + ~ ( U ) I +  I H(O) 12 IG(O) 12 

MP (4) 

where B ( a )  is the phase characteristic arg (G(o)} of the 
equalizer. For given I G ( o )  I and e(o ) ,  we see from (4) that 
I 1 - H ( w ) G ( o )  12 is maximized  with @(w) chosen as 

$ G ( ~ )  = arg min I [@(a) + O(o)] mod (277) - 77 I .  
b ( w ) E Q ( w )  

(5) 
This function is always well defined because the  function 
I x mod (277) - 77 I is lower semicontinuous  and @(a) is com- 
pact. This means that  the characteristic HG(w) maximizing 
the integrand of e(H, G )  for  a given C(w) = I G(w) 1 exp 
[ie(w)l has a phase function @(a) = @c(w) which minimizes 
I [@(a) + e ( o ) ]  mod (277) - 7 7 1  for each w over the set @(a) 
of allowable  phase values. With this choice for  the phase func- 
tion of the channel, further maximization of the right-hand 
side of (4) with respect to  the channel amplitude characteristic 
for fixed 1 C(O) I yields the result 

1 A L ( U ) ,  cos [ 6 G ( W  + Ww)l 
I HG(W)  I = 2 I G(w) I [ A d o )  + A u(w)l/2 

A ~ ( w ) ,  otherwise. (6) 

This follows from  the fact that  the right-hand  side of (4) is a 
quadratic expression  in 1 H(w) 1 and  has  a minimum at I C(o) 1 

We now have the phase and amplitude characteristics 
@G(o) and 1 HG(w) I of a  function HG(w) which maximizes 
the integrand of e(H, C) pointwise for given equalizer  charac- 
teristic C(o). The resulting  integrand is a  function of the 
equalizer amplitude characteristic 1 G(w) 1 and the equalizer 
phase  characteristic e(w) and is  given by 

.IHW I = cos [G(o) + e(w)l. 

I = c 1 - 2 I H ~ ( w )  I I  C(O) I COS [ @ G ( ~ )  + e(0)l 
+ I Hc(o) l 2  I G ( o )  l2)S(O) + I C(0) I 2N(W). (7) 

To minimize I over the class G of equalizer frequency re- 
sponses,  let us consider the phase characteristic O ( o )  first. 
Note  .that in the integrand I ,  the phase @ ~ ( w )  minimizes 
cos [@(w) -I- O(o)l for given &a) over the set @(o). There- 
fore,  to minimize I with respect to  the phase  characteristic 
6(0), we need to choose B ( o )  to maximize the minimum 
value cos [&(a) + O(o)l.  Let us interpret @(a) as some  set 
of  points  on  the  unit circle in the complex plane, with 2 a ( w )  
the angle subtended  at  the origin by  the largest arc(s) on  the 
unit circle outside @(a). Let P(w) be the angular location of 
the middle of such  an  arc (see Fig. 2). We will assume that 
a(w) and P(w) are measurable functions.' Then it follows that 
an equalizer  phase eM(w) minimizing I for given I G(w) I is 

e,(o) = 77 - P ( ~ ) .  (8 1 

' This can be obtained, for example, when +(w) is a finite  union of closed 
intervals whose  endpoints are measurable functions of o. 
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The minimum value of IL [I C(w) I ]  occurs  at the argument 
value 

provided AL(w)S(W)  and N(w)  are not  both zero.’  When 
AL(w)S(w)  andN(w) are both  zero, we note  that IL [ I  C ( o )  I ] = 
S(w) for  any value of I C(W) 1. 

From  the above  considerations, we find that I [ [  C(w) I] of 
(9) is described by  either Fig. 3(a) or  (b)  sinceit is  given by 

I [ I  G(w) I1 

The angle p(&) may not  be  unique.  The phase O,(o) can be 
interpreted as that phase  which,  when  added to fl(w), trans- 
forms it into  the  point 71 on  the  unit circle. With this phase 
angle,  the.  integrand I of (7) becomes 

1 = { 1 + 2 I H G ( U )  1 1  G(w) I cos [&(a)] 

+ I HG(W)  l 2  I G(w) 12)S(w) + I G ( o )  1 2 N O )  

= S ( 0 )  + {2S(w) I H G ( W )  I cos [.(a)] 1 I G ( o )  I 
+ { IHc(w) I2S(w)+~(~) } lG(w) l2 .  (9) 

We finally  consider  minimization of the integrand I given 
by (9) over the  amplitude characteristic I G(w)  I of the equali- 
zer. Note first that @(a) must be between 0 and 71 rad, and 
that if cos [ a ( o ) ]  is nonnegative (i.e., 0 < &(a) < n/2),  then 
I G(w) l  = 0 minimizes I .  Consider, therefore,  the case 

Now in the integrand I ,  the  quantity 1 HG(w) I is given by 
( 6 )  so that it is either A L ( w )  or A u(y>. When I G(w) I = 0, 
the integrand Z is always S(w) ,  and when 1 G ( o )  I = -2 cos 
[ a ( o ) l / [ A L ( w )  + A U ( a ) l ,  we have its  common value I ,  
given by 

cos [.(w)l < 0. 

4 cos* [ a ( o ) ] A L ( o ) A  u(0)  

[ A  L (0) + ’4 u(w>l 

(10) 

which is nonnegative. Let us denote by Iu[l  C(w) I ]  the 
function of I G(w)  1 we get for I with Au(w)  in place of 
I H G ( w )  I in (9), and  let I ,  [ I  C ( o )  11 be the  function  obtained 
with A L ( o )  replacing 1 HG(o)  I in (9). Both I u  and IL are 
quadratic expressions  in I C(w) 1, with Iu  having a minimum 
at a value of  its  argument I C(w) I which is less than  or  equal 
to -2 cos  [a(w)]/[AL(w) + A u ( w ) ] .  This  follows from  the 

. fact  that  the value of 1 G ( o )  I minimizing Iu[ l  C(w)  I ]  is 

-S(w)Au(w) cos [.(a)] -cos [.(w)] 

A u2(w)S(w) + N(w) A u(w> 
- - < 

Thus, we are finally led to thk amplitude characteristic 1 G,(o) 1 
of the minimax  equalizer GM(w) by choosing the  amplitude 
minimizing I[ 1 C(w) I J ; it is  given by 

I - S ( o ) A L ( o )  cos [@O)l 
A L 2 ( O ) S ( O )  +Nu) 

, otherwise. (14) 

This  expression is valid when A L  (w)S(w) and N(w)  are not 
both zero. (When they are both  zero, any I Gw(w)) < -2 - cos [a(w)l / A  ~ ( w )  gives a minimax solution.)  Further,  we 
have assumed A u(o) > 0; otherwise, we have I C,(w) I = 0.- 
The angle a(w) is always  uniquely  defined  in terms of the set 
@(a) from Fig. 2. The angle P(w) which gives the phase 
O,(w) of the minimax filter  from (8) may not be unique. We 
can show the validity of our results for  the minimax  equalizer 
by reversing the  order in which the minimization of the 
integrand of e(HG,  G) was performed,  that is, by considering 
I C ( o )  I first and  then O(w), which gives the same minimax 
equalizer.  It is easy to show that  under  the  assumptions we 
have made in deriving the above results, the MSE e(H, C,) of 
(1) is always well defined  and, bounded  for all H E H; the 
upper  bound is, of course, obtained  with H ( o )  defined  by (6) 
and ( 5 )  for G ( o )  = G,(w). 

The  amplitude characteristic I G,(w) I of the minimax 
equalizer is zero when’the phase uncertainty is large. Note 
that [2n - 2a(o)1/2n  or  1 - a(o ) /n  is a measure of this un- 
certainty, and 1 - a(w)/n > 1/2 leads to  the use of a minimax 
equalizer  with  zero output,  the  mean value of the signal. For 
smaller  phase uncertainty,  the equalizer acts essentially as 
either  the inverse of a “nominal” channel with amplitude 
characteristic [ A L ( o )  f A ~ ( w ) ] / 2  or as a Wiener filter.  Note 
that we may define  a measure of the uncertainty 6(w) about 

* This  condition  is  satisfied  if an  arbitrarily  small  white  noise  component is 
present. 
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(b) 
Fig. 3. Minimization of I(lG(w)l) for solution of minimax filter amplitude 

[see (13)l. 

the channel amplitude characteristic at  frequency w by 

With this definition, we find that 

where the  quantity  on  the right-hand side of (16) above ap- 
pears in  the expression (14)  for  the  amplitude characteristic 
of the minimax  equalizer. We may thus  interpret it as a degree 
of certainty one has about  the channel amplitude character- 
istic  (measured on  a scale from zero to infinity). 

Thus, the minimax  equalizer acts as the inverse of a 
“nominal” channel,  with another  attenuation  factor -cos 
[a(w)]  due to phase uncertainty when the minimum SNR 
AL2(w)S(o)/N(w) at the equalizer input is larger than or 
equal to ,a measure of the degree of certainty  about  the chan- 
nel amplitude characteristic.  Otherwise,  when the  contamina- 
tion of the signal due  to additive noise is the  dominant degra- 
dation relative to  uncertainty  about  the channel amplitude 
characteristic, the equalizer acts as a Wiener filter for  the 
lowest gain channel.  Once again, an additional  attenuation 
-cos [ a ( o ) ]  arises because of the phase uncertainty. In both 
cases, the phase of the minimax  equalizer is the conjugate 
phase of a  “nominal”  channel, as seen from Fig. 2  and  the 
result (8). 

If there is no channel uncertainty, so that A L  (a) = A u(w) = 
/H(w) I and the set @(w) is composed of a single point @(a) 
for each a, (8) and (14) yield for  the  optimum equalizer 
G o ,  t(a) the classical Wiener filter  characteristic 

IV. MULTIPATH CHANNEL EXAMPLE 
To illustrate the use of our  result, let us consider  equaliza- 

tion of a  two-path channel. We will let the primary communi- 
cation channel have an ideal (unity)  frequency  response, and 
assume that  the secondary channel  has  an imprecisely known 
delay characteristic. The two-path channel will be  modeled 
as having a  frequency response 

&(a) = 1 + aoe-iw7(W) (18) 

where a. and 7(a)  are the secondary channel  constant gain 
and  frequency-dependent delay characteristic, respectively. 
We assume that  the gain a. is known  and satisfies 0 < a. < 
1: The delay characteristic will, however, be assumed to 
satisfy the constraint 

0 < 7 ( 0 )  < 70 (1 9 )  

for all values of w where ro is a  known  finite  upper  bound 
on ~ ( 0 ) .  It is possible to consider a  more general situation 
where the gain of the secondary  channel is constrained only 
to have known  ,lower and upper  bounds, and to make the 
lower bound iq (19)  more generally some value other  than 
zero. The simple case we consider  here  allows us to illustrate 
more clearly the application  and usefulness of the general 
result. 

We will assume that  the signal has an ideal low-pass PSD, 

and that  the noise is white  with PSD No. For convenience, 
we define the noise-to-signal ratio K No/So.  

Now from  our channel model, we can conclude  that 
IH(w) 1 < 1 f ao, so that we have Au(w) = 1 f a. here. 
From Fig. 4,  it also follows quite easily that  the lower bound 
AL(w)  for 1 H(o) I is 

where x k w70. Without using these  amplitude  constraints, 
that is, by  considering  only extreme values for  the channel 
phase separately, we find that  the  sets’@(o) of allowable 
phase angles are intervals [ @ ~ ( w ) ,  @u(w)l with  boundaries 

@L (W> 

= I  
I -sin- (ao), - + sin-’ (ao) < x n 

2 
and 

I sin-1 (ao), 
3n 

2 
- - sin-’ (ao )  < x. 
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Amplitude  Charactcriatics 

I .s 

Fig. 4. Geometry for computing amplitbde.and phase bounds  for multipath 
channel  example. 

We have, of  course, @ ~ ( - w )  = -@[,(a). The phase characteristic 
OM(w) of the minimax  equalizer is the odd-symmetric func- 
tion O,(w) = -4 [GL(w) + @u(w)l.  

The  condition which has to  be checked in order  to  obtain 
I GM(w) I explicitly from  (14) is 

This  becomes, for  our  particular  example, 

A L ’ ( U )  - (1 + QO)AL(O)  2 K  < 0. . (25) 

Let A ,  = ((1 + a o )  [ ( l  f a ) 2  - 8 K I 1 / * } / 2  and A 2  = 
((1 + a o )  - [( 1 + a o ) 2  - 8 K ]   1 p 2 } / 2  be  the  two’roots of the 
quadratic  equation  obtained with the  equality in (25 ) .  Then 
( 2 5 )  is equivalent to 

A2 < A L ( O ) < A l .  ( 2 6 )  

If we have K > (1 + ~ ~ ) ~ / 8 ,  then 1 GM(w) I is always de- 
fined by  the  third line of (14) because  in this case, ( 2 5 )  can 
never be satisfied.  Since K is the noise-to-signal ratio,  this is 
in  agreement with  our  interpretation  that  for relatively low 
SNR, the minimax  equalizer acts essentially as a Wiener filter. 
With K < (1 i- a o ) * / 8 ,  real roots A l  < A 2  exist. Noting that 
A L ( w )  of (21) is a  monotone nonincreasing function of w for 
w 2 0 with value (1 + a o )  at w = 0 and value (1 - a o )  at 
w~~ = r ,  for K < (1 i- / 8  we have the following. 

1 ) I f A 2   < ( l  - a o ) < A l , w h i c h i s t r u e i f K < a o ( l - a o ) ,  
then I Gw(o) I is initially  defined by the second line of (14) 
and then,  beyond  a  certain value of w, is defined  by the  third 
line of (1 4). 

2 ) I f  A l  < (1 - ao) ,  which is true if a. < 1/3  and K > 
ao( 1 - ao) ,  then I GM(w) I is always defined  by  the  third line 
of  (14). 

3) If (1 - a o )  < A 2 ,  which is true if a. > 1/3  and K > 
ao( 1 - ao), then I GM(o)  I is initially  defined  by the  third line 
in  (14),  then  for  intermediate values of w by the second line 
of (14),  and finally beyond,  a  certain value of w again by  the 
third line of (1 4). 

If  we use our information  on  the  channel characteristics to 
define  an “average” or “nominal”  channel 

I x I>xo  

where Xo w070; This  would  be the naive solution  to  the 
fixed  equalizer deslgn problem. 

I .o- 

0.5- 
I 

I 

j 
! I.UJTg f 1 I I 

0 I .o 2 .O 3.0 4.0 5.0 

(a) 
Phase, Degrees 

a = wro 

(b) 
Fig. 5 .  (a) Amplitude  characteristics of nominal and minimax filters (ao = 

0.6, .xo = 0 0 7 0  = 5 ,  No/S0 = 0.1). (b) Phase  characteristics of nominal 
and minimax  filters (a0 = 0.6. x. = w o ~ o  = 5 ,  No/So = 0.1). 

Fig. 5(a)  and(b) shows the  amplitude  and phase  character- 
istics of the minimax  and “nominal”  filters  obtained  for  the 
parameter values a. = 0.6, K = 0.1,  and x. e W ~ T ~  = 5.0. For 
these parameter values, the minimax  filter  has an amplitude 
characteristic of the  form described by case 1) above. 

Table I shows the MSE performance of the minimax and 
nominal  filters computed  for  three  different values of the  up- 
per bound ro on  the  secondary channel delay  characteristic 
~ ( 0 ) .  For each of these  three cases, three  different values of 
the secondary channel gain a. were used. The noise-to-signal 
ratio K was taken  to be 0.1 or - 10 dB. For each combination 
of the  parameters a. and T~ the MSE’s were obtained  for  three 
different  actual secondary  channel delay characteristics of 
~ ( q )  = 0, T(O) = ~ ~ / 2 ,  and ?(a) = T O .  The normalized MSE’s 
shown in the  table  are’the MSE’s relative to  the signal vari- 
ance. 

Note  that  the minimax filter design is based on  the knowl- 
edge of a. and  the  upper  bound r0, while the  “nominal”  filter 
is a Wiener filter for  the secondary  channel gain a. and “nomi- 
nal”  delay  characteristic r(w) = ~ ~ / 2 .  

Some  interesting characteristics are evident from Table I. 
We find that  the  “nominal”  filter  performance can degrade 
considerably for variations in  the  actual delay  characteristic 
from  its assumed value of ‘r0/2.  This is particularly  evident 
for  the largest value 6 of w o ~ o  (more  uncertainty)  and  for  the 
largest value 0.8 of a. (more  contribution  from  the uncer- 
tain secondary  channel). We also see, and  more so for  such 
situations,  that  the minimax  filter  normalized MSE perfoF- 
mance is relatively quite acceptable under  “nominal” condi- 
tions  (for which the  “nominal” filter is optimum),  and is sig- 
nificantly better,  for  the  nonnominal  situations ~ ( w )  = 0 and 
7(w) = 70.  The minimax  filter  has a normalized MSE which 
does  not  fluctuate  much  under  different delay conditions, so 
that  its  performance is more predictable under  channel uncer- 
tainty. 



MOUSTAKIDES AND  KASSAM:  MINIMAX EQUALIZATION FOR RANDOM SIGNALS 825 

TABLE I 
NORMALIZED  MSE’s OF NOMINAL AND MINIMAX  FILTERS FOR VARIOUS 

SECONDARY CHANNEL CONDITIONS; NOISE-TO-SIGNAL RATIO = 0.1 

Secondary Secondary. 
T o  = 4.0/W0 T~ = 6.0/w0 T o  = 5 .0 /00  

Channel 
Gain 

Channel 
Delay 

Filter Filter Filter  Filter  Filter  Filter T ( O )  

MSE of MSE of MSE of MSE of MSE of MSE of 

aO Characteristic Nominal Minimax Nomina’l Minimax Nominal Minimax 

0 

0.42  0.18 0 . 3 3  0.18 0.23 0.17 

0.10 0.16 0.08 0.13  0.07 0.10 T0/2 0.4 

0.35 0.16 0.26  0.16 0.17 0.15 

0 

0.94  0.27 0.62  0.28  0.35  0.26 

0.11 0.24 0.07  0.19 0.05 0.12 r0/2 0.6 

0.81  0.18 0.52 0.19 0.29  0.20 

TO 

0 1.51  0.17 0.85 0.19 0.42 0.23 

0.8 0.12 0 . 3 3  0.06  0.24 0.05  0.14 T 0 / 2  

T O  0.48 0.36 1.71  0.35  0.97 0.39 

One more observation  should  be made  about  the  example 
in this section. We started off with bounds given for  the phase 
characteristic of the secondary path,  and used these to derive 
bounds  for  the  amplitude and phase characteristics of the two- 
path channel. These amplitude and phase bounds were ob- 
tained  independently, so that  the result gives a class of chan- 
nel  characteristics  which is larger than  that specified by the 
original constraints. Thus, the minimax  filter  optimizes worst 
case performance over a class larger than  that  containing  the 
channel characteristics  used in generating the results in Table I. 
In spite of our enlargement of the original class of channel 
characteristics to fit the channel uncertainty  model  for which 
we obtained  the general result in Section 111, we find that  the 
minimax  filter design is quite useful in.maintaining  an accept- 
able level of performance. It  should be  noted  that  the  “nomi- 
nal” channel  for  this  example was defined from  the original 
uncertainty class (specified by  bounds  for  the  secondaiy  path 
parameters)  and  not  from  the derived uncertainty class for 
the overall channel. 

V. CONCLUSION 
In  this  paper, we applied the minimax criterion  to  obtain 

an explicit design for  a fixed  filter for  equalization of a chan- 
nel whose frequency  response  characteristics are  not precisely 
known. We used a very  reasonable model  for  the class of al- 
lowable  channel  characteristics, and  obtained  a result which 
has an  intuitive and  interesting interpretation.  The minimax 
equalizer suppressed its  input at  frequencies for which chan- 
nel  phase uncertainty, as measured by  a well-defined quantity, 
exceeded some  threshold. At other frequencies, the minimax 
filter essentially acted as either: 1) the inverse of a  nominal 
channel for minimum SNR larger than  a well-defined measure 
of certainty about  the channel or 2) a Wiener filter at fre- 
quencies of lower SNR. 

The numerical  results given in  Section IV suggest that  the 
minimax  filter is able to  maintain a  steady  performance over 
entire classes of channel characteristics, whereas the filter op- 
timum  for a “nominal” channel  only can  undergo a large varia- 
tion in its  performance over the same classes. In any given ap- 
pljcation, the usefulness of the minimax  filter will depend on 
the  acceptibility of the  performance degradation arising from 
use of the minimax  filter when the “nominal” conditions hold 
and  the seriousness of the  performance degradation of the 
“nominal” filter under mismatch. 

A  potential exists for  extension of these  results to  the  situ- 
ation where the signal or noise PSD’s are not precisely known. 

Another  interesting extension  could  consider a  performance 
measure  which  allows optimum  amplitude scaling in the MSE 
expression, as used in [ 1 ] . 
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