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Optimum Detection o f a  Weak  Signal with  
M inimal Knowledge o f Dependency 

GEORGE V. MOUSTAKIDES AND JOHN B. THOMAS, FELLOW, IEEE 

Absfracr-The opt imum nonlinearity is defined for detection of a weak 
signal when minimal knowledge of the dependency structure of the observa- 
tions is available. Specifically, it is assumed that the observations form a 
one-dependent strictly stationary sequence of random variables and that 
only a finite number of moments of the marginal density and the correla- 
tion coefficient between consecutive observations are known. It is assumed 
that the bivariate densities involved can be represented as diagonal series, 
using orthonormal polynomials. Using efficacy as a performance measure, 
the opt imum nonlinearity is required to satisfy a saddle-point condition 
over this class of bivariate densities. 

I. INTRODUCTION 

A COMMONLY used scheme for the detection of con- 
stant signals in additive noise is to compare the sum 

of memoryless transformations of the observations to a  
fixed threshold. Optimality of this scheme can be  defined 
in different ways. One  way, for example, is in the 
Neyman-Pearson sense, where we try to maximize the 
probability of detection while keeping the false alarm 
probability less than a  certain level. This criterion turns out 
to be  difficult to use in cases of dependent  observations, 
since it requires a  knowledge of mu ltiorder statistics. An 
alternative criterion is the maximization of the efficacy. 
The  efficacy is an  asymptotic measure of performance, and  
it can be  used in weak signal situations. Also, this criterion 
is tractable when dependency is present. For the detection 
scheme in which we are interested, we need  only second- 
order statistics to calculate the efficacy. 

The  problem of finding the memoryless transformation 
that maximizes the efficacy was solved in [l] for the 
m-dependent  case and  in [2] for the +-mixing case. The  
solution requires knowledge of all bivariate densities in- 
volved. In [3], and  [4] a  m in-max approach was used and  
the bivariate densities were assumed to belong to some 
known class of densities. In this paper  we consider strictly 
stationary one-dependent  sequences. We  assume that the 
correlation coefficient between consecutive points is known 
and  also that the marginal moments up  to order 4m - 2 
are known, where m is a  positive integer. In most practical 
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situations the dependence between consecutive points is 
much stronger than the dependence between points that 
are further apart in time. The  one-dependence assumption 
can thus be  regarded as a  mode l of these cases and  as one  
step away from the independent and  identically distributed 
(i.i.d.) assumption. The  assumption about the knowledge of 
the marginal moments is also reasonable, since there are 
methods for estimating them. F inally, knowledge of the 
correlation coefficient m ight be  considered as the m inimal 
knowledge we can require about dependence.  It is thus 
interesting to see how this knowledge will change the 
existing results for the i.i.d. case. To  derive a  result we 
must make some assumptions about the class of bivariate 
densities we consider. A very common mode l in the litera- 
ture is the expansion of the bivariate density in a  diagonal 
series, using the set of orthonormal polynomials defined by 
the marginal density. This is the mode l we use here. What  
we will need  is only certain properties of this expansion; 
further details of which can be  found in [5]-[lo]. In the 
examples we present in Section IV, the method introduced 
is also applied to a  case where the bivariate density does 
not satisfy our assumptions. The  resulting detection struc- 
ture turns out to have performance that is always better 
than the linear detector, which is optimal for the i.i.d. 
Gaussian assumption. 

II. PRELIMINARIES 

Let f(x) be  a  symmetric density with unbounded sup- 
port, such that all the moments exist and  F isher’s informa- 
tion is finite. Assume that the orthonormal polynomials 
r+,,,(x) defined by f(x) form a  complete orthonormal sys- 
tem in the L2( f) Hilbert space. To  calculate the polynomi- 
als I&,(X) it is enough  to know the marginal moments 
y,, = E{x”} a  n  d  apply an  orthonormalization procedure to 
the sequence (1, X, x2, . . . }. We  are interested in bivariate 
densities that can be  represented as 

\ n=O 

The  equality in (1) is in the sense that 

fb)f(Y) dXdY = 0. (2) 
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A necessary condition for the expansion in (1) to be a valid 
density is that {a,};==, has the representation 

a, = p~h(z) dz, n = 0,1,2,. . . (3) 

where h(z) is a univariate density supported in (- 1,l). 
For some marginals, (3) is sufficient to make the expansion 
in (1) a valid density, that is, nonnegative, but this is not 
true for every marginal [5]-[lo]. Since f(x) is by assump- 
tion symmetric and thus has zero mean, it is easy to see 
that +,(x) = x/ fi. This result, using (l), yields 

E{XY > = Y2EMxMY)) = Y2”l. (4) 

From (4) it is clear that c~i is equal to the correlation 
coefficient p of x and y. For one-dependent, strictly 
stationary sequences, we know that the correlation coeffi- 
cient is no greater than one-half in absolute value. We now 
define a class fp of functions f(x, y). A function f(x, Y) 
belongs to F, if it satisfies (1) and (3) for some density 
h(z) supported on [ - 1, l] and if 

E{x”} = Y,, n = 1,2;**,4m - 2 

a1 = Jf;h(z) dz = p (5) 

where p is the known correlation coefficient and y,, the 
known marginal moments. Notice that neither the bivariate 
density nor the marginal density are assumed known. If we 
use the moments y,, which are known up to order 4m - 2, 
we can only compute the orthonormal polynomials &(x) 
up to order 2m - 1. By allowing h(z) to be supported on 
[ - l,l], we allow degenerate functions in the class F,. 
Clearly, F, contains the bivariate densities of all one- 
dependent sequences that can be represented by (1). 

The detection problem we would like to solve is the 
following. Let { N,, }p=r be a strictly stationary one-depen- 
dent noise sequence. Let { X, },“=, be the observation 
sequence. We wish to decide between the two hypotheses 

Ho: X, = N, 

HI : X,, = N,, + sM n = 1,2;.-, M (6) 
where sM is a known scalar that tends to zero as M + co. 
The detection scheme is the following: 

i 

1, for T,,,, > y 

u(T,) = P, for T, = y (7) 
0, for T,,,, c y 

where 
M 

TM=~n~l+(x) 

and where u(T,) is the probability of deciding HI. The 
constants p and y are chosen to achieve the required false 
alarm probability. The efficacy then [l] takes the form 

1 

We assume that the nonlinearity Jl(x) belongs to the 
class qn, of all odd symmetric polynomials that have order 
up to 2m - 1. Since by assumption the polynomials are 
dense in L2(f), by letting m -+ cc, we have that ‘k, is the 
class of all second-order odd symmetric nonlinearities. The 
restriction to odd symmetric polyn,omials is reasonable 
because we can prove that for every function in the class FP 
the optimum nonlinearity that maximizes (8) is odd sym- 
metric. 

III. OPTIMUM NONLINEARITY 

The nonlinearity that maximizes (8) is related to the 
actual bivariate density f(x, Y). Since we do not assume 
knowledge of this density, we define the optimum nonlin- 
earity in a min-max way. In other words, we would like to 
find a pair $.J~(x) E ‘k, and f,(x, y) E FP such that the 
following saddle-point relation is satisfied: 

for every #(x) E *m and every f(x, y) E F,. 
First we will find the function from F, that minimizes 

(7) for a given Jl(x). This is equivalent to the following 
maximization: 

sup Jrn drn #(xMY)f(x> Y> dXdY* (10) 
f(X..V)EFp --oo --M 

Since q(x) is odd symmetric, it can be expanded using 
only the odd symmetric orthonormal polynomials. Thus let 

J/(x) = 5 k+2,-lb). (11) 
n=l 

Using (ll), we can write 

lrn lrn +w~(Y)f(X~ Y> dXdY -00 -co 

= 2 +;a,,-, = f I);/’ z2”-‘h(z) dz 
I, = 1 n=l -1 = J[ l 2 ,;,2n-1 

-1 n-1 1 h(z) dz = /;lA(z)h(z) dz 

02) 
where we define A(z) as 

A(z) = 2 ,;z”-~. 
n=l 

(13) 

These expressions hold for the case m = cc because the 
series is absolutely convergent for ]z] I 1. We can also 
interchange summation and integration in (12) using 
bounded convergence. The maximization problem now re- 

4~b)~ fk 14 = jm J/2(+(x) dx .“,/- Jrn dh+b(~)fb~ Y> dxdy ' 
(8) 

-co -co --oo 

where f(x, y) is the bivariate density of Ni and N2. 
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duces to the following: 

sup 1’ A(z)h(z) dz 
h(r) -1 

given that 

/_ll (1 zh z dz=p. 05) 

Notice the following properties of A(z): it is increasing 
and  bounded in [ - 1, 11, it is analytic in (- 1, l), it is odd  
symmetric, and, for z > 0, it is convex. A typical form of 
A(z) is given in F ig. 1. Now let B(z) = Xz + p  be  the line 
that passes through the point (1, A(1)) and  is tangent to 

Fig. 1. Typical form of A(z) and of tangent lines B(z) and C(z). 

A(z) at - za (see F ig. 1). Then  for every z, we have that 
B(z) 2  A(z). (16) 

Notice that the point -zO can be  found by solving the 
equation 

41) - 4-z,) 
1 + z. 

= A’( -zo). 

Proposition: The  density h(z) that solves the maximiza- 
tion problem defined by (14) and  (15) is given by one  of 
the following two cases. 

Case 1: If z0 2  -p, the maximum is achieved by 

h,,,,(z) = =6(z - 1) + sS(z + z,,). (18) 
0 0 

Case 2: If z. < -p, the maximum is achieved by 
h,(z) = S(z - p). (19) 

Proof: We can see that in both cases, h ,,,Jz) is a  valid 
)r Case 1  maximizing (14) is density satisfying (15). Fc 

equivalent to the following: 

sup i/ 
’ A(z)h 

h(r) -1 

but using (16) we have 

l_'/(z)+)dz -AP-P 

(z) dz  - AP - P}; 

= /’ (A(z) - AZ - p)h(z) dz I 0. (21) 
-1 

Equality to zero is achieved when h(z) is supported only 
on  points where A(z) = Xz + p. For Case 2  the proof goes 
in a  similar way. Instead of the line B(z) that is tangent at 
- zo, we use the line C(z) that is tangent at p. The  same 
arguments are valid because this line, as a  result of the 
convexity, is always above A(z) (see F ig. 1). 

The  function f(x, y) E Fp that corresponds to (18) is 
given by 

f/&3 Y> = (1 - P)fW(X -Y) 

+Pf(x)f(Y) 
i 

f (-zo)“4%(++,(Y) (22) 
n=O 1 

where 
1-P 

p = 1+ zo’ (23) 

Let us now find the opt imum nonlinearity #(x) E \k,, 
when the function f(x, y) has a  form similar to the one  
given by (22). Since f(x) has finite F isher’s information 
and  is symmetric, we can write 

Notice now the following: 

p, = / - $+#&x)/(-1 dx 

= / &-lb)f(x) dx. (25) 
From (25) since &(x) is a  polynomial, we can compute p, 
using the moments y,. Since the polynomials (p,(x) can be  
computed up  to order 2m - 1, we can compute /3, for 
n = 1,2; . ., m. As it will turn out, this is all we need. The  
efficacy for a  q(x) E qm takes the form 

eff(J,(x>, .fdx, Y>) 

1 1  5  4&z = 
n=l 

= m  

c +t + 2 i!t +t[o -P) - Pzcw 
n=l n=l 

[ 1  E GA 2 
n=l 

= m  

jy[3 - 2PQ + 4”-‘)1. 
(26) 

Equation (26) is maximized when $, = +z, where 

+:: = 
% I 

\/3 - 2p (1 + z;“-‘) ’ 
n = 1,2;.., m (27) 

where k is an  arbitrary constant. We  assume for simplicity 
that k = 1. Thus, for a  given q(x), the function f(x, y) 
that m inimizes the efficacy is given by (22). On  the other 
hand, if f(x, y) has the form of (22), then the opt imum 
$(x) satisfies (27). 

To  find the pair we are looking for, we have to satisfy 
(22) and  (27) simultaneously. We  will assume that Case 1  
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of the Proposition will occur and that our ql(x) satisfies 
(27) for some z. = z,. Thus for Jl,(x) we only have to 
specify z, in some way. For every z, we define a function 
A,.(z) that is similar to A(z) defined in (13) as follows: 

A,(z) = f RI 

2z2n-1 

3 - 2p(l + zy) (28) 
n=l 

where p is given by 
1-P 

p = 1 + z; 

Since, from (9) we would like f,(x, y) to minimize the 
eff( J/,.(x), f(x, y)), the function f,(x, y) must have a form 
similar to (22) with z. = z,.. For this form to minimize the 
efficacy, z, must be a solution of an equation similar to 
(17). In other words, 

A,(l) - 4bJ 
1 + z, 

= A;( -zJ. 

When we substitute (28) into (30) and multiply by (1 + z,), 
after canceling common terms, (30) reduces to 

Ilk2 3 - 2(1 - p) 
1 + z2n-1 

1 +lz 
r 

= (1 + ZJ f 
(2n - l)#zf(“-l) 

1 + z,2npl . (31) 

“=23-2(1-p) l+z 
r 

Equation (31) has z, as its only unknown. In the Appendix 
we show that a positive solution always exists and that it is 
no less than one-half. This means that we always have 
z, 2 p and that we do not contradict our assumption that 
Case 1 will occur. We will get a contradiction, though, if 
we assume that Case 2 will occur. 

Theorem: Let z, be a solution to (31). Define 

(32) 

Then I/J,(X) and f,(x, y) satisfy (9). 

Proof The proof is an immediate consequence of the 
way that z, is defined. The left inequality of (9) is satisfied, 
because J/,(x) satisfies (27). The right inequality is satis- 
fied, because f,(x, y) minimizes the eff($,(x), f(x, y)). 

A few things are noteworthy. When either m = 2 or 
p,, = 0 for n = 3; . . , m, the only nonnegative solution to 
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(31) is z, = l/2, regardless of p2, as long as p2 # 0. Also, 
for any m < co, when p -+ - l/2 we have that rc/,(x) + x 
(after it is properly normalized), so long as pi f 0. Notice 
that z, # 0 even when p = 0, which means that the inde- 
pendence assumption is not necessarily the best candidate, 
when the correlation coefficient is zero. 

IV. EXAMPLES 

As a first example we consider the case where f(x) is the 
standard N(0, 1) Gaussian density. The orthonormal poly- 
nomials are the Hermite polynomials. Also, (3) is sufficient 
for (1) to be a valid density [7]. Since the locally optimum 
nonlinearity is linear, in other words equal to G,(X), we 
have that j$ = 0 for n 2 2. From (32) we conclude that 
q,(x) will be linear also. Using the formula for the expan- 
sion of the bivariate Gaussian density in a diagonal series 
and noting that z, = l/2, we have 

f,(x, y) = T & exp 
i i 

-g 6(x-y) 

2-2p 2 
+ ~- exp - - 

3 3T i 3 
x2 + y2 + xy] . (33) 

i 
As a second example, let us consider the case m = 2. By 

applying an orthonormalization procedure to (1, x, x2, 
x3}, we have 

G4 = -? h 
413(x) = k{Y,, - Y2X31 

where y = yzy6 - y2yi. Using the Schwarz inequality, we 
can see that y 2 0. We can have y = 0 only when Ix] is 
concentrated on a single point. From (25) we compute & 
and p2. We have 

&=k, p2=+{Y4-3u:)- 
(35) 

Since we are in the case m = 2, we have z, = 0.5, and the 
nonlinearity #,(x) becomes after normalization 

(36) 

Notice that when f(x) is heavy-tailed we usually have 
y4 > 3~:. This will yield a nonlinearity of the form given in 
Fig. 2. This nonlinearity is of a similar form to the nonlin- 
earity-defined in [3]. If we now calculate the efficacy using 
the least-favorable function defined in (32), we have 

P: 2P,2 
eff, = ~ 

1 + 2p + 3(1 + p) 

where pi and p2 were defined in (35). Notice that this 
value is, in general, pessimistic, since the function defined 
in (32) is not always a density. Let us now see what is the 
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Fig. 2. Typical form of nonlinearity #r( x) for case m  = 2. 

opt imum linear detection scheme. Let p  be  the unique 
solution of the equation p2  - p/p + 1  = 0  that satisfies 
1~1 < 1. This equation always has real roots because IpI 5  
0.5 for one-dependent  sequences. Let the sequence Z,, be  
defined as follows: 

z, = -pz,-1 + x,, n = 1,2;*+, (38) 
where X,, is the observation sequence defined by (6). 
Under Ho, the Z, is zero mean  and  under  Hi it has a  mean  
equal  to s/(1 + p). The  Z, variables are uncorrelated. The  
opt imum linear detector would be  to compare the sum of 
the Z,, to a  threshold, and  the efficacy of this detector is 

1  

eff, = (1 + p)“E{ zl’} . (39) 

Calculating E{ Z: } in terms of the moments of the se- 
quence X, and  the correlation coefficient p gives 

1  
eff, = 

Y20 + 2P) . 
(40) 

Comparing (40) with (37) and  recalling that /?i = l/ fi, 
we can see that eff, 2  eff,. 

To  see how this method behaves in a  case that does not 
satisfy our assumptions, consider the following noise se- 
quence: 

N; = r, + p.yIpl, i = 1,2;*., (41) 
where the Y are i.i.d. and  1~1 < 1. If we apply the linear 
detector defined earlier, the random variables Z, under  Ho 
are equal  to Y, (for Z, = Y,). If h(y) now is the common.  
density of the variables Y,, then the locally opt imum 
detector would be  to compare the sum of 1(Z,) to a  
threshold, where I(y) = - h’(y)/h(y). This gives an  ef- 
ficacy equal  to 

eff, = (42) 

Obviously, the use of this detector presupposes the knowl- 
edge  of (41) and  of the density h(y). To  be  fair in our 

comparisons, we will assume that we know (41) but not 
h(y). Using (41) and  the moments y,, we can calculate the 
moments of Y,,; thus we can approximate l(y) with the 
first terms of its expansion using the orthonormal poly- 
nomials. If S,, are the coefficients of this expansion, the 
efficacy of the detection scheme that uses the approxima- 
tion instead of I(y) is 

eff,, = 
(1:1”)2 g  a??  nl 

(43) 

Consider m = 2; then Table I gives the asymptotic relative 
efficiency (ARE) of the G ,(x) detector with respect to the 
linear detector, the approximate locally opt imum detector, 
and  the locally opt imum detector. The  density h(y) was 
assumed to be  N(0, 1) with probability 0.95 and  N(0, a) 
with probability 0.05. Also, p  was taken equal  to 0.268, 
thus yielding p = 0.25. We  can see that 4,(x) is always 
better than the linear detector and  that for u  2  5  it is 
significantly better. Compared with the scheme that uses 
the approximation of f(y), it is very slightly inferior. 
Compared with the locally opt imum detector it behaves 
very badly, but. as we have mentioned, the opt imum scheme 
requires knowledge of the dependence defined by (41) and  
the density h(y). 

TABLE I 
ASYMPTOTIC RELATIVEEFFICIENCYOF $,(X)WITH RESPECT 

TODIFFERENTDETECTORS 

0 Linear Approximate Locally Opt imum 

2 1.03 0.99 0.99 
3 1.13 0.99 0.92 
4 1.25 0.98 0.81 
5 1.36 0.91 0.70 
6 1.41 0.96 0.60 
I 1.57 0.96 0.52 
8 1.65 0.95 0.44 
9 1.73 0.95 0.38 

10 1.77 0.94 0.33 

Comments: We have presented a  method for finding an  
opt imum nonlinearity for signal detection when depen-  
dence is present in the additive noise. For the dependence 
structure, we have assumed knowledge only of the corre- 
lation coefficient between consecutive observations. Even 
though this method is tractable from an  analytical point of 
view, it produces some practical problems. The  generat ion 
of the orthonormal polynomials is difficult for high orders. 
If we consider the polynomials as an  approximation to the 
opt imum nonlinearity for the ‘k, case, their convergence is 
slow in cases where this opt imum nonlinearity is bounded.  
That is because we approximate a  bounded function using 
unbounded polynomials. Also, from (32) we can see that 
the density f,(x, y) contains a  delta-function component.  
This function is not a  good  candidate for a  bivariate 
density of a  one-dependent  sequence. The  reason we get 
this form of worst-case density is that we optimize using 
only necessary and  not sufficient conditions. By requiring 
the functions f(x, y) to satisfy more necessary conditions, 



102 IEEE IXANSACTIONS ON INFORMATIONTHEORY,VOL. IT-32,NO. l,JANUARYl986 

we could probably get better results. For example, if we 
usethepropertyE{[c,&,(x,) + *a* +ck+,(xk)]*} 2 0, this 
yields, for one-dependent sequences satisfying (l), c: 
+ . . . +c,2 2 -2a,{c1c2 + *** +ckP1ck}. Defining first 
c, = 1 and letting k -+ cc yields (Y, 2 -0.5. Defining then 
c, = (-1)’ and letting k -P cc yields 0.5 2 (Y,. we thus 
have that all the coefficients (Y, in (1) are not greater than 
0.5 in absolute value. Using this necessary condition, we 
can restrict further the class FP of allowable functions 
f(x, y), but a much more comphcated analysis results. 

APPENDIX 
EXISTENCEOFA SOLUTIONZ, 

First notice that if we use (23) then 

3 - 2p(l + z02n-l ) 2 3 - 2(1 - p) 2 0. (44) 

This is important because in (27) we take the square root of this 
expression. Let us now define as D(z,) and G(z,) the left and 
right side of (31), respectively. Notice that each term in these two 
expressions is a continuous function of z,. For p > - l/2 we cm 
show that the two sums that define D( zr) and G(z,) are ab- 
solutely summable on [0, l] and [0, l), respectively. Using bounded 
convergence, we can also show that these functions are continu- 
ous. By direct calculation we have 

D(0) 2 G(0). (45) 
We also have that 

G(z,.) 2 (1 + zI) i 
p,2z;(“- 1) 

1 + z2n-1 (46) 
n=2 3 - 2(1 - p) 1 +rz 

r 

The right side of (46) is continuous and absolutely summable on 
[0, 11, and thus in the limit as z, --f 1 we get 

2 
limrf G( zr) 2 5 p,” = D(1). 

3 - 2(1 - P> n=2 
(47) 

Continuity of the two expressions, combined with (45) and (47) 
proves existence of a solution in the interval [0, 1). To show now 

that this solution cannot be less than l/2, it is enough to show 
that every term in the difference D(z,) - G(z,) is nonnegative 
for z,. 2 l/2. In other words, it is enough to show that for 
0 I z,. I l/2 

( 1 + z,2~~~1) - (2n - l)(l + z,)z,2(n-i) 2 0. (48) 

The left side of (48) is decreasing with z, E [O,l]; thus it is 
enough to show (48) for z, = l/2 or, after some manipulation, to 
show 

3n - 2 
12- 4n-1 . (49) 

This is true for every n 2 1. Thus the solution to (31) is no less 
than one-half. This concludes the proof. 
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