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Robust Detection of Signals 
in Dependent Noise 

GEORGE V. MOUSTAKIDES AND JOHN B. THOMAS, FELLOW, IEEE 

Abstract-The robust detection of signals in additive dependent noise is 
considered. The solution to the finite-sample problem is obtained when the 
Bayes risk is used as the performance measure. For the multivariate 
densities involved we assume that they belong to an c-contamination 
model. The robust detection structure is shown to be optimum for the 
least-favorable density and is a censored version of the nominal likelihood 
ratio. 

I. INTRODUCTION 

R OBUST DETECTION of signals in additive noise is 
considered in [l]. Under independent identically dis- 

tributed (i.i.d.) noise, the min-max detector for the finite- 
sample strong signal case is found. Optimality is defined in 
a Neyman-Pearson sense. Specifically, it is required that 
the detector have a false alarm probability smaller than a 
certain level for every density inside an c-contamination 
class, while the probability of detection satisfies a saddle- 
point condition. The solution is obtained using the results 
in [2]. This approach leads to a detector structure that is 
not optimum for an additive model for any noise density 
from the allowable class. In addition, even for reasonable 
values of the signals it can lead to a trivial detector 
structure. Other approaches consider asymptotically robust 
detection of weak signals in i.i.d. noise [l], [3], [4] or 
dependent noise [5]-[7]. Finally in [8], using the large 
deviations theory, the asymptotically robust detection of 
strong signals in i.i.d. noise is considered. 

In this paper we find the robust detector for the finite- 
sample dependent observations case. We require that the 
multivariate densities involved satisfy an c-contamination 
model. As a performance measure we use the Bayes risk. 
The detector structure is required to satisfy a saddle-point 
condition over the allowable class. Under our assumptions 
the optimum detector is always nontrivial and is optimum 
for a least-favorable density. 

II. PRELIMINARIES 

We are given an observation vector { Xi}yal, and we 
would like to decide between the following two hypothe- 
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ses: 
Ho: Xi=Nt 
HI: X, = N, + s,, i = 1,2;..,n (1) 

where { Ni }yZ1 is a noise vector and { si}y= 1 is a known 
nonzero signal vector. As our performance measure we will 
use the Bayes risk. It is easy to see that for any reasonable 
cost assignment, the Bayes risk is equivalent to 

R = P(Do/Hd + ~P(WHo) (2) 
where P(DJH,) denotes the probability of deciding in 
favor of Hi given that l5,.is true. The quantity t depends 
only on the prior probablhties and the decision costs; thus 
we will consider it to be a known constant. If we make the 
assumption that the risk of an erroneous decision is larger 
than the risk of a correct decision, then minimizing the 
total risk is equivalent to minimizing the expression in (2). 

For simplicity let us denote random variables with up- 
per case letters, vectors of random variables with upper 
case boldface letters, real variables with lower case letters, 
and vectors of real variables with lower case boldface 
letters. If V denotes the subset of R” in which we decide in 
favor of HI and if we assume that the vector N = { N, }rcl 
has a multivariate density f(x), then the performance 
measure defined in (2) can be written as 

where V’ denotes the complement set of V’. For a given 
density f(x) the optimum set V that minimizes (3) is given 
by 

pr = 
0 

i 
x. fb - 4 > l 

1 * f(x) - . 
(4) 

The optimum set in (4) can be defined if we know the 
noise density f(x). In the next section we will define an 
optimum set for the case where the density f(x) is not 
exactly known, but it belongs to an +contamination class. 

III. ROBUST DETECTION 

As we can see from (4) the optimum detector structure 
that minimizes R(V, f) can be easily defined if we know 
exactly the noise density f(x). We now assume that this 
density is not known exactly and that it satisfies the 
following c-contamination model: 

f(x) = (1 - c)g(x) + d(x). (5) 
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The parameter E is assumed to be a known constant in the 
interval [0, 1). The functions g(x) and h(x) are multi- 
variate densities. The density g(x) is assumed to be known 
and h(x) to be unknown. Following a saddle-point ap- 
proach for our performance measure in (3), we would like 
to find a pair V,, f,(x) that satisfies the following double 
inequality: 

R(v’, h> 2 R(V,, f,) 2 R(I/,, f) (6) 
for any f(x) satisfying (5) and any set V. Notice that with 
the approach followed here the two error probabilities 
P(Do/Hl) and P(4/Ho) cannot be considered indepen- 
dently as in the approach in [l] because the densities are 
not allowed to vary independently under the two hypothe- 
ses here, i.e., the additive-channel constraint is imposed. 
Thus the result of Huber [2, problem (iii)] cannot be 
applied here. With (6) we will necessarily have a single 
least-favorable density. 

Before going to the solution let us first present our 
assumptions for the density g(x). We assume that it is a 
well-defined nowhere-vanishing density, strongly unimodal 
in the direction of the signal vector s = { si};=i. Specifi- 
cally, we assume that the function -In (g(x + 4s)) is 
strictly convex with respect to the real q for every vector x. 
Thus if L,(x) denotes the nominal likelihood ratio, the 
function L,(x + qs) is continuous and strictly increasing 
in q for every fixed x. For L,(x) we also assume that 
constants (Ye, a)L E [0, cc] exist such that for every fixed 
vector x we have 

lim L,(x + qs) = ay 
q++m 

lim L,(x + qs) = aL. 
q--m 

If (Y E ((YL, aV), we define as C, the set 

c, = {x: L,(x) = a}. (8) 

It is easy to see that the set C, is nonempty because, from 
(7) and using the continuity of L,(x + qs) with respect to 
q, for any fixed x we can find a q to have L,(x + qs) = (Y. 
In general, the sets C, will be (n - 1)-dimensional surfaces. 
Notice now that, since L,(x + qs) is strictly increasing in 
4, we have that (Y,, > L,(x) > aL for every x. Because 
Ls( x) is a likelihood ratio vectors z and w exist that satisfy 
L,(z) 2 1 2 Lg( w); thus we conclude 

oL1/ > 1 > (YL. (9 

Finally, for k = 0, -t 1, rt 2, . . . let us define the following 
sets: 

D,“= {x: x=xc+qs}, x, E C,, [q] = k - 1 (10) 

where with [ ] we denote the integer part. 
As noted earlier, the set C, is generally an (n - l)- 

dimensional surface. The set 0,” is the collection of points 
between two surfaces that are images of C, after transla- 
tion by the vectors (k - 1)s and ks. Since, because of (7) 
and the continuity of L,(x) along the direction of the 
vector s, we can always write x = x, + qs with x, E C,, 
we see that every x belongs to some set 0,“. Thus using 

also the monotonicity of L,(x) along the direction of s, we 
have 

A, = {x: L,(x) 2 a} = fi 0,” 
k=l 

B, = {x: L,(x) < a} = c Dik. 
k=O 

(10 

We are now ready to define the optimum detector 
structure. The left inequality in (6) suggests that V, must 
be the set 

v = 
r 

i 

x’ f/b-s) 

. f/(X) 2 t . I 
(14 

Thus we need to specify only the least favorable density 
f/(x). It turns out that this density is not the same for 
every t. We must distinguish the cases 0 I t < 1 and 
t > 1. With the following theorem we define the least- 
favorable density. 

Theorem: A density f,(x) that satisfies the saddle-point 
condition defined in (6) is given by the following. 

Case 1: For 0 I t I 1, 

fib) = 
(1 - r)g(x), x E A, 

(1 - E)g(x + ks)Ek, x E Dck, k = 0,1,2, ... 

(13) 

where < is a constant less than unity and selected to satisfy 
the total mass constraint. Notice that for x E Dg” we 
have x + ks E Dt; thus < satisfies 

I() 
1 

/ 0 
1 

gx dir+- 
1-E DE” 

gx dx=l_. (14) 
At f 

Case 2: For t > 1, 

fr(x) = i 
0 - +dx), x E B, 

(1 - c)g(x - ks)<-k, xED;,k=1,2;.. 

(15) 
where 5 is a constant greater than unity. To satisfy the 
mass constraint, we have 

J 0 
1 

I() 
1 

g x dx + s _ 1 Dfg x dx = - (16) 
4 1 -c’ 

Proof: The proof of this theorem with proofs of ex- 
istence and uniqueness of solutions to (14) and (16) is 
given in the Appendix. 

Let us consider the form of the likelihood ratio for the 
density fr(x) since, because of (12), this defines the opti- 
mum set V,. Denoting the likelihood ratio of the least 
favorable density by L,(x), its form is given by the follow- 
ing lemma. 

Lemma: The likelihood ratio of f,(x) defined in (13) 
and (15) is given by the following. 
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Case I: For 0 I t 5 1, 

I 

L,(x), x E A, (or when L,(x) 2 &) 
L,(x) = 

E, x E 6 Dtpk (or when L,(x) < [). 
k=O 

(17) 

Case 2: For t > 1, 

L(x) = l, x E fi D/ (or when Lg( x) 2 a) 
k=l 

[L,(x), x E B, (or when L,(x) < S). 

(18) 
Proof: We will only show (17), since (18) follows 

similarly. From (10) and (11) we see that for x E A, we 
have x - s E A, U Di. Thus from (13) for x E A, we have 
that f/(x) = (1 - E)g(x) and f/(x - s) = (1 - c)g 
(x - s); thus (17) is satisfied. When x E 0~” for some k 
from the set {O,l, 2, . . . }, we have that x - s E Dg(k+l), 
and using (13) yields 

L,(x) = 
(1 - +dx - s + (k + lb)tk+’ = 5 

(1 - E)g(x + ks)tk . 
(19) 

This concludes the proof. 

Notice that L,(x) defined in (17) and (18) can be 
written as L,(x) = bi( Lg( x)), where the univariate func- 
tions b,(z), i = 1, 2 are defined as follows: 

for the case 0 < t I 1 and 

for the case t > 1. It turns out that we can combine the 
two cases. Since the important thing is the set V,, we can 
see that this set does not change if instead of the two 
functions bj(z) we use the following function: 

I 
5, Z2S 

b(z)= z, $IZ<{. (22) 
E, Z<5 

The foregoing statement is true because from the theo- 
rem we have that [ < 1 < [. We see that the robust 
detector uses a censored version of the nominal likelihood 
ratio. Basically, what this result means is that if our prior 
knowledge (expressed by t) exceeds certain levels (5 or [), 
then because of the contamination in the nominal density 
the prior knowledge is more important than the posterior 
(expressed by L,(x)) and should be the only one to use for 
the decision. 

TABLE1 
VALUESOF{ FORDIFFERENTVALUESOFE AND SAMPLESIZE n 

c n=l n=s n = 10 n = 20 n = 50 Vl=crO 
0.001 10.40 99.92 304.27 704.32 991.58 1000.00 
0.005 6.49 38.56 89.33 161.05 199.11 200.00 
0.010 5.22 24.98 51.52 84.24 99.47 100.00 
0.050 3.04 8.61 13.64 18.25 19.97 20.00 
0.100 2.38 5.32 7.55 9.37 9.99 10.00 
0.500 1.30 1.66 1.85 1.96 2.00 2.00 

IV. EXAMPLE 

We now present the solution to the robust problem for 
the Gaussian nominal case. Let 

g(x) = [(2m)nJQl]-“‘exp { -$‘Q-‘x} (23) 
where Q is a nonsingular covariance matrix and IQ1 its 
determinant. The nominal likelihood ratio becomes 

L,(x) = exp { srQ-ix - $s’Q-is } . (24) 
It is easy to see that g(x) satisfies the unimodality as- 
sumptions and that Ls( x) satisfies (7) with (Ye = co and 
ff L = 0. The sets C, and 0,” take the form 

C, = {x: sTQ-‘x = :s’Q-‘s + lna} 

0,” = {x: (k - :)sTQ-‘s 

+Ina I sTQ-‘x < (k + +)sQ-‘s + Ina}. (25) 

The multiple integrals in (14) and (16) can be easily 
computed and take the form 

(26) 

and 

, (27) 
where a(x) is the normalized Gaussian cumulative distri- 
bution and u = srQ-ls. Comparing (26) and (27) we can 
see that < = l/c. Notice also that the solutions to (26) and 
(27) depend only on u. Letting u + cc the solution S 
satisfies 3 + l/c. Let us now consider the case where Q is 
the identity matrix and all signals are equal to unity. This 
corresponds to an i.i.d. Gaussian noise sequence under 
nominal conditions. For this case u = n. In Table I we 
give values of [ for several values of c and n. 

V. CONCLUSION 

We have presented the solution to the problem of detect- 
ing signals in addi.tive dependent noise for the finite-sam- 
ple case under the assumption that the noise density 
belongs to an E-contamination model. It was shown that 
the robust detection scheme uses a censored version of the 
nominal likelihood ratio to make a decision. Even though 
the censored version is not the likelihood ratio of the 
least-favorable density, it nevertheless satisfies the saddle- 
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point condition. This means that it achieves the same 
performance as the optimum detection structure for the 
least-favorable density. Obviously, this is not contradictory 
with the optimum Bayes theory because the censored 
version achieves the optimum performance only for a 
limited range of values of the threshold t (t < 1 or t 2 1). 
The assumption that the observations are dependent is 
crucial. As we can see from the example, the observations 
are dependent under the least-favorable density even if 
they are independent under nominal conditions. For the 
i.i.d. nominal case we see that the robust detector structure 
censors the total likelihood ratio rather than each observa- 
tion. This is basically a consequence of our contamination 
model in (5). What this model means is that either all 
observations are “good)’ (probability 1 - c) or all of them 
are “bad” (probability c). This approach treats the ob- 
servation vector as ‘one unity and not its components 
separately. Clearly, a more realistic situation exists if at 
every instant we can have good or bad observations inde- 
pendently of the kinds of observations we have at the other 
instances. The resulting contaminated density for such a 
case under dependency has a much more complicated form 
than the one in (5). 

APPENDIX 
PROOFOFTHETHEOREM 

We first show existence of a solution to (14); similarly, one can 
show the existence of a solution to (16). Let [ in (14) tend to (Ye; 
we then have that A, tends to the whole space &d Df becomes 
the empty set. Thus the left side of (14) tends to unity, a quantity 
which is less than the right side. Notice now that because of (9) 
the set C, is nonempty, and thus the set 0: has positive 
g-measure. Letting [ -+ 1, the left side of (14) tends to infinity. 
Using continuity, a 6 E [0, 1) exists that satisfies (14). 

To show uniqueness, call o(c) the left side of (14). We will 
show that its derivative with respect to 5 is positive for 0 I [ < 1. 
The derivative has the form 

+ &jDf(X) dx. 
If we call cp([) the probability under g(x) of the event {L,(x) 
2 [}, then the first term in (28) becomes q’(t). For the second 
term, using the monotonicity of L,(x) at the direction of s, we 
can write 

J Dpdx) dx 

= J g(x) dx JqX)<E 
Lg(x+s)>S 

= ix(l - T) cp’( r) dr. 

Using (29), the second term in (28) is equal to -q’(t), and thus 

the derivative of w(.$) is equal to the third term in (28) which is 
positive. 

Now we show that the density defined by (13) belongs to the 
r-contamination class; similarly, we can show this for the density 
in (15). It is enough to show that 

f/(x) 2 (1 - c)dx> (30) 
for every vector x. When x E AE U Df, we have equality in (30). 
For x E DC” using (13) and the definition of the set Dck, we 
must show that 

dxc - P)tk 2 g(x, - (k + q)s) (31) 
where 0 I q < 1, x, E C, and k 2 1. The inequality in (31) is a 
direct consequence of the convexity of -1n g(x) and the fact 
that 5 = Ax, - x)/g(x,). 

The last thing to be shown is that the density defined in (13) 
satisfies the saddle-point condition (6) and, more specifically, the 
right inequality. Remember that we are in the case 0 I t I 1. To 
show the right inequality in (6), it is enough to show that 

jvchcX -s) dz + tjvhW dx 
r r 

2 jv;f(x - s) dx + tjVf(4 dx (32) 
I 

where I$’ denotes the complement set of V,. Inequality (32) is 
equivalent to 

j [I-(x - ~1 -h(x - 41 dx 2 tj [f(x) -f,(x)] dx. (33) 
V, V, 

For t I 5, (33) is trivially satisfied because V, becomes the whole 
space. Now let 6 < t I 1. Notice that V, = {x: L,(x) 2 t} c 

{x: L,(x) 2 5) = A,. S ince for x E A[ we have x - s E A, u 
Di, from (13) we conclude that for x E V, we have f,(x) = 
(1 - c)g(x) and f,(x - S) = (1 - c)g(x - s). Thus (33) is 
equivalent to 

j&(X-+-JrL( )>;wd~. (34) 
* gx 

Changing variables in the first integral yields 

J h(x) dx 2 t/ h(x) dx. (35) Lg(x+s)2t L,(x)tt 

Inequality (35) is true because we are in the case t I 1 and 
because L,(x) is increasing in the direction of S; thus the first 
integral is taken over a larger set. This concludes the proof. 

Notice that the densities that achieve the lowest perfor- 
mance bound are those that satisfy (35) with equality. For 
the case where t < 1 we can have equality in (35) only 
when the two sides are equal to zero, in other words, if 
h(x) places no mass on the set {x: Lg( x + s) 2 t }. 
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