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New Efficient LS and SVD Based Techniques
for High-Resolution Frequency Estimation

George V. Moustakides, Member, IEEE, and Kostas Berberidis, Member, IEEE

Abstract—New least squares and singular value decomposition
based methods for the estimation of the frequencies of complex
sinusoids in white noise are presented. The methods are based
on a new symmetric prediction problem that has some very
useful properties leading to algorithms that have considerably
reduced complexity. The new symmetric predictor is superior in
performance as compared to the well known symmetric Smoother
and has a performance comparable to other well known meth-
ods. Finally a new LS based method, which combines the new
prediction technique with the FBLP method is proposed. This
method performs slightly better than the FBLP offering at the
same time a significant computational saving. As a by-product in
the derivation of the new methods is the establishment of some
useful properties concerning the eigenstructure of Hermitian and
Persymmetric matrices.

I. INTRODUCTION

HE problem of estimating the unknown parameters of

sinusoidal components embedded in white noise is en-
countered in many application areas as speech processing,
communications, transient analysis, etc. The most important
parameters are the frequencies of the sinusoidal components,
‘which once estimated can in turn be used for the computation
of the remaining unknown parameters (i.c., amplitudes and
phases). Traditional techniques namely the periodogram as
well as other Fourier transform based methods fail to resolve
closely spaced frequencies. This fact has led to the introduction
of a variety of more sophisticated methods which, by fitting
linear prediction models to processes consisting of complex
sinusoids in noise, result in high resolution spectral line
estimation beyond the limits of traditional techniques.

The associated linear predictor may be computed either
by using least squares (LS) spectral analysis techniques [1],
[3]; or by using singular value decomposition (SVD) based
techniques that reduce the effect of noise in the associated
autocorrelation matrix [3], [6], [7]. At medium to high SNR
both techniques have comparable performance but at medium
to low SNR the SVD based methods seem to outperform
significantly their LS counterparts. However, the eigenanalysis
based methods, due to the required SVD, have a considerably
increased computational complexity as compared with the LS
ones. This complexity may be prohibitive in some applications
especially when real time operation is required. Thus, at
medium to high SNR the LS methods are often preferable.
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Among the existing LS spectral analysis methods the forward
backward linear prediction (FBLP) method (see pp. 222-224
of [1] and pp. 391-394 of [2]) seems superior in the general
case.

It is well known that in the case of undamped exponentials
in noise the problem leads naturally to the use of conjugate
symmetric predictors. Until recently the only known symmet-
ric predictor applicable to this problem was the symmetric
Smoother (see pp. 327-331 of [1] and [4], [10]). In [5], a new
symmetric predictor, the so-called bidirectional, was shown
to be suitable for spectral line estimation. This predictor was
defined only for the real data case and there was no study of
its performance.

In this paper, first, the LS complex bidirectional predictor
is defined. The extension to the complex case is not straight-
forward and requires the solution of a double minimization
problem. Asymptotic results as well as extensive experiments
show the superiority of the bidirectional predictor with respect
to smoother. This performance is accompanied with a sig-
nificant computational saving. It is also shown that a proper
combination of the complex bidirectional predictor with the
FBLP exhibits a superior performance with respect to the
FBLP method offering at the same time a significant reduction
in computational complexity.

Second, an SVD-based technique for the symmetric pre-
diction problem is developed. Two methods—one for the
bidirectional and one for the Smoother are presented. Due to
the rich structure of the bidirectional prediction problem the
corresponding method performs almost identically as the Mini-
mum Norm method [7] but requiring much less computational
burden.

II. THE COMPLEX BIDIRECTIONAL PREDICTOR

Let us assume that we are given a complex data sequence
{z(n)},n =1,---, N consisting of p undamped exponentials
in complex white noise, i.e.,

P p
z(n) = ZAke](%f‘"M’k) +w(n) = thzf +w(n) 1)
k=1 k=1

where z;, = e/27f+ and hy = Apei?*. Let us call P,(z) the

polynomial of order p that has as roots the zx, k = 1,---,p,
that is
P P
Bp(z) = |1 =2"1a) ZZakz‘k. )
k=1 k=0
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Since all the roots of P,(z) lie on the unit circle the coefficients
of the polynomial have some very characteristic properties (see
pp. 312-315 of [1]). Notice that the coefficient a, has unit
modulus (being the product of all z;). Thus if a, = €2’
and we define G(z) = ¢~1% P,(z) then it can be shown that
the polynomial Gg(z) has conjugate symmetric coefficients,
namely, if yg +1 1s the vector of its coefficients then

901 = [ A0y - Ay dYr i)t 3)
where * denotes complex conjugate. If we apply the filter
Gg(z) to data generated as in (1) but without noise, then we
conclude that for n > p

e*j(’o:n(n) +d(n—1)+---
+ dPa(n—p+1)+ ejgu:ﬂ(n —p)=0. 4)

If we now apply the filter Gg(z) to the noisy data then an
erTor sequence is generated, i.e.,

e_jﬁuzn(n) +diz(n — 1)+ +d¥z(n—p+1)
+ e w(n - p) = e(n).(5)

Notice that (5) denotes some special form of prediction where,
using x(n — 1),---,2(n — p+ 1), we predict in the forward
and backward direction a combination of z(n) and z(n —
p). It is exactly this predictor we are going to call the
complex bidirectional predictor (CBP), which constitutes a
generalization of the bidirectional predictor introduced in [5]
for the real data case.

Our goal is, using the available data samples, to estimate a
CBP of order M + 1 and then by rooting the corresponding
polynomial to estimate the unknown frequencies fi, k =
1,---,p. We must select M > p in order to be able to identify
correctly all frequencies (actually we must select M > p to
have a good estimation). Let g,,,, be the estimated CBP,
which is of the form

Grie1 = [e_jy f,\,_l(f-je]t = [e_-jgdlflg .- d;di‘eje]t 6)

where g,/,;, dys_1are again conjugate symmetric vectors.
Thus, due to the conjugate symmetry property of the vector
gar41 a total of [ALEL] parameters must be estimated. Notice
that the parameter ¢ is of a special form and we need to
distinguish it from the other parameters in d;_;. If we now
use the LS criterion to estimate dj;_; and 6§ then we can easily
show that we must minimize the following cost function with
respect to das—; and 6.

E(dpr-1.9) :QAHI+1QM+1.‘IM+1 @)

where the matrix (574 is the associated data autocorrelation
matrix defined as

Qa1 = Rager + IRy T

N
Raryr = Z Thr41(n)Ty 141 (1) ®)
n=A+1

Zarr1(n) =[x(n)---xin— M)

and J is the so-called exchange matrix with unities along the
cross diagonal and zeros everywhere else. The matrix Q741
is positive definite, Hermitian and persymmetric, i.e.,

Qa1 =Qhy1 Qhyyr = JQrpJ. 9)

Let us now define a partition of ()54, that will be used next
q ‘LIfo‘l §

Quarer = |quyo1 Qu-1 Jay_, (10)

s* qh,_1J q
Notice that the central matrix Qp_; is again a positive
definite, Hermitian and persymmetric matrix. It can be easily
seen that it is just a delayed version of @;_1. To obtain the
optimum parameters we shall perform the minimization of (7)
in two consecutive steps. First, the cost function &(dps_1,6)
is minimized with respect to dp;_; assuming § given. This
results in the following optimum solution for da;_,
dr = JIpirie7® +py € (1
where
-1 *
Paro1 = —Qpr_1Jdh s (12)

The resulting value of the minimized cost function is given by

£(0) = min E(dar—1,0) = 2Re{arp416%)  (13)
dM—l
where
ange1 = ge 7 4 se?® + gt dy_y. (14)

In the second step £(6) is minimized with respect to 8. After
some algebra it can be shown that the optimum 6 is given by

1s)

Equations (11) and (15) constitute the complete solution to the
problem of LS estimating the CBP.

As it is already mentioned in the previous section, until
now the only well known symmetric predictor applicable to
the problem of spectral line estimation is the complex smoother
predictor (CSP) [1}, [4], [10], which estimates in the LS sense
the sample z(n) using m past and m future samples. The CSP
is a conjugate symmetric predictor of only odd length that has
the form

0= {).5(7r —arg{s + 115\11—11’1\4—1})-

Cm
8241 = 1 ( 1 6)

Jek

m

To obtain the optimum in the LS sense CSP, the following
cost function is minimized with respect t0 So.,41.

a7

It can be readily shown [1], that the optimum CSP is the
solution of the following linear system of equations

8(82m+1 ) = 35,,,+1Q2m+132m+1 .

Q?mx(?m-}-l)32m+1 = 02/ (18)

where C:)gmx(z,H 1y is the matrix Qy,,,4+1 without its central
row. Now, our final goal, which is the estimation of the un-
known frequencies, can be achieved by rooting the polynomial
formed by either of the above presented predictors (CBP or
CSP).
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Comment: It is interesting to notice that if we apply the
CBP method in real data then we do not always obtain the
real symmetric bidirectional predictor of [5]. Depending on the
case, the method can also yield the optimum antisymmetric
bidirectional predictor. In other words, the CBP cannot be
considered as the complex case counterpart of the predictor
of [5].

III. ASYMPTOTIC CHARACTERISTICS OF CBP AND CSP

It is very difficult in general to compute analytically a
performance measure for the two frequency estimators in the
finite data case. In order to be able to derive some semi-
analytic results we will consider the asymptotic (infinite data
number) case. Specifically we will try to obtain expressions
for the asymptotic bias.

A. Asymptotic Bias

Both predictors are biased even for the asymptotic case.
Actually this is a fact for all known linear LS predictors
applied to the same problem: Since the CSP can only be
defined for odd orders, we shall compute the bias for this
case only, that is, we will consider M + 1 = 2m + 1. As we
have seen in the previous section the two predictors are defined
through similar optimization problems. Let us see what is the
form of these problems in the asymptotic case. Notice that the
optimum estimated quantities remain the same if instead of
the matrix @ we use the normalized matrix Q/N, where N
is the number of available data samples. Letting N — oo the
autocorrelation matrix takes the form

2 H
Q2m+1 = 0ylomir + V(2m+1)><pV(2m+1)><p 19
where o2 is the noise variance and
Vizm+1)xp
e
e—j(m—l)27rf1

—ym2mfy e—im2nf2

e—i(m=1)2nfs

6~jm27rf,, B
6‘j(m—1)2ﬂfp

= 1 1 1

ej(m_1)2"fp
ejm?r,f,

i (m=1)27f>
eim2mf

ed(m—1)27 f1
eJm2nfi

(20)
We also have assumed that all complex exponentials that
constitute the signal z(n) have unit amplitude.

To find the optimum predictors for the asymptotic case we
follow exactly the same steps as in the finite data case, that
is (11) and (15) for the CBP and (18) for the CSP. For CBP,
(11) after some algebraic manipulations and using the matrix
inversion lemma yields the following asymptotic expression
for da,,—1 given 8

~1
dom_1= —2Viom_1)xp (olzulp + V(g{n‘l)xpvﬂm-l)xp)
Re{ei(2nfim=6)}
20
Re{e/ (27 frm=0)}

In the second step an asymptotic expression for the phase &
is derived. Starting from the definition of ¢ in (15) and using
the above results we obtain

T—¢
= .
7 2)
where ¢ is defined
¢ :arg{ [e_j27"f1m .. e—j?vrf,,m] )
e"j27rflm
(“?vf + V(gn—l)xpv(zm—z)xz) : 23)
e—j27rfpm

Thus, (21) and (22) give the asymptotic values of the bidirec-
tional predictor coefficients.

In a similar manner it can be shown that the corresponding
expression that yields the asymptotic values of the CSP is the
following

17
-1
C -
[ m ] = -Uzmxp(ofulp + ng,,ozmx,,) 24
m
1]
where
e—j7n27rf1 e—‘]’nlzﬂ‘fz €_jm2"f” E
e—j21rf1 e—j27rf2 e—j21rfp
Usmxp = j2m j2m j (25)
p ei2nf1 ei2mf2 ei27fp
ejm‘?rfl ejméwfz ejm‘21'cfp ]

The obtained predictors are functions of the frequencies fi,
k=1,---,p and the noise variance o2, Using these formulae
for the predictors we can form the corresponding polynomials
and thus by rooting them obtain estimates of the frequencies
for both predictors. Unfortunately it is not possible to derive
closed form solutions for the estimated frequencies except for
very small orders m. In any case this is not so important
since we can always find numerically, for an adequate num-
ber of frequency combinations and variances, the asymptotic
estimates and compare the two methods. For example in the
case of a process consisting of two exponentials in noise a
3-D plot is required to illustrate the performance of a method
(for given o2). However in the Appendix we show that
the asymptotic bias is the same (in absolute value) for both
estimated frequencies and that depends only on the difference
Af =|f1— f2|- This statement is true for both methods. Thus
we can use a 2-D plot in order to illustrate the performance of
both methods. Specifically we can plot the absolute bias with
respect to Af for the two predictors. Fig. 1 depicts such an
example. The solid line corresponds to the CBP and the dashed
to the CSP. We used m = 6 (predictor order equal to 13) for
both cases and o2 = 0.01. Clearly the CBP compared to the
CSP exhibits globally a much smaller bias. The results for
other orders and other values of the noise variance are similar.
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Fig. 1. Asymptotic bias for LS optimum CBP (solid) and CSP (dotted) for
predictor order equal to 13 and SNR = 20 dB.

B. Asymptotic Variance

A very important performance measure is the estimation
error variance. Analytic expressions for this case are very
difficult even for the asymptotic case. However since this
measure is very important we shall investigate this matter in
Section V through extensive simulations, as is usually the case
in the literature.

IV. GIVEN DATA CASE AND COMPUTATIONAL ISSUES

Frequency estimation using linear prediction techniques
involves usually three separate steps. The first step consists in
identifying, using the available data, a linear prediction model.
In the second step the roots of the polynomial formed by the
linear model parameters are computed. The desired frequency
estimates constitute a subset of the angles of the obtained roots.
In the final step the selection of the desired subset is performed.

In this paper, we are concerned only with the first two steps.
For the third step there exist several efficient methods in the
literature [6], [12], [13]. All these methods exploit properly
the special structure of the associated problem and exhibit a
computational complexity that is problem dependent and in
most cases, does not exceed O(M?).

Next, we examine computational issues concerning the first
two steps when the CBP predictor is adopted for the frequency
estimation problem.

A. Efficient LS Solutions

The computation of CBP (or CSP) via the conventional
solution of the respective linear systems of equations requires
O(M?®) operations. Taking into account the rich structure of
these systems and developing order recursive (Levinson-type)
algorithms the above computational burden can be reduced
to O(M?). In this paper however we will not derive these
algorithms. The reason is that, as we explain next, they
can be obtained by properly extending an existing algorithm
established for the FBLP problem.

In the case of CBP, it is evident from (11) and (15) that the
problem of computing g,,,, is reduced to the computation
of the auxiliary vector p,,_,. An interesting fact is that this
vector is a by-product of the fast covariance algorithm of
complexity O(M?) derived in pp. 251-257 of [1] and used for
the estimation of the FBLP. In this algorithm, the vector p,,_,
appears as an auxiliary predictor in the algorithmic process.
Thus, the efficient algorithm in [1] can be used as it is for
the computation of p,,_,. The inner product of (15) is also
computed in the same algorithm thus the only extra operations
are those required for (11).

Notice that an efficient order recursive algorithm for the
estimation of the CSP is also available in [1]. This algorithm
is again based on the algorithm used for the FBLP and by
embedding some additional recursive relations succeeds in
obtaining CSP. Thus, the CSP can also be derived as a by-
product of the same order recursive algorithm used for the
CBP, requiring some small extra computational cost.

Concluding, the model identification algorithm for FBLP,
CSP and CBP has a complexity that is O(M?2).

B. Location of the Roots

The second step in the process of estimating undamped
exponentials through the use of predictors is the determination
of the roots of the corresponding polynomials. As we will next
see, this is the most time consuming part for LS methods. It is
clear that any information facilitating the determination of the
roots can lead to an improvement of the overall complexity.

We will now show that the CBP predictor has all its roots
on the unit circle whenever the FBLP of the corresponding
problem is stable. Since the FBLP is asymptotically stable
we conclude that the CBP has all its roots on the unit circle
in the asymptotic case. Furthermore the FBLP preserves its
very good stability properties in the finite data case for well
conditioned matrices (Qps41. This means that the CBP will
have, in almost all cases, its roots on the unit circle. This fact
was also certified through extensive simulations as we will
see in the next section.

Let us now define the FBLP and show its connection to the
CBP. The FBLP is defined as the solution to the following

linear problem
L] _ joum

where aps is the prediction error power and thus is a real
number. If 3 is now any complex number, then we have that
Or—1

QMH{'B[“LJ A [J‘?M] } - B*an

Notice that the vector in the brackets is conjugate symmetric.
It can also be easily proved that it is always possible to select
3 so that its first element is equal to e~7¢, with @ defined in
(15). If B is selected this way then the vector

Ir41 = ﬁ[a}u] + 8 [inh]

(26)

Ban
(27)

(28)
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can be shown to be the CBP by verifying that (27) is the
augmented system of normal equations for the CBP, i.e., that
(11) and (15) are satisfied by g, of (28). Since our predictor
can be written under the form of (28), then extending the result
of [9] to the complex polynomial case, we conclude that the
CBP will have all its roots on the unit circle whenever the
FBLP is stable. As we said this is asymptotically true and it is
true most of the time for well conditioned matrices Qary1.
We must however stress at this point that requiring FBLP
to be stable is only a SUFFICIENT condition for CBP to
have its roots on the unit circle. In practice we have observed
that this property appears to hold for CBP more often than
the stability of the corresponding FBLP. Notice also that this
property for the location of the polynomial roots does not hold
even asymptotically for the CSP case as one can verify by a
counterexample (take for instance the case M = 2 that can
be solved analytically).

Since a general rooting procedure has complexity O(M?®)
[14] it is clear that the rooting part is the most computationally
heavy part in the whole frequency estimation problem (for LS
based techniques). Because of the characteristic root location
property of the CBP a significant computational saving can be
achieved in the rooting procedure. Two possible schemes are
presented next.

C. Rooting Scheme Based on Searching on the Unit Circle

Although in the finite data case the CBP does not always
has all its roots on the unit circle the percentage of the
non unit modulus roots is very small as was confirmed by
extensive simulations (thousands of independent experiments).
Specifically, when M + 1 < N/2 (N being the number of
samples) the percentage of the roots with non unit modulus
varies from 0% at SNR = 30 dB to 2% at SNR = 10 dB.
Additionally, the modulus of these roots is always very close
to unity. The same experiments for CSP yield quite different
results. Roots of non unit modulus occur more often at a rate of
30 to 90%, depending on the SNR. In addition, their modulus,
most of the time, is significantly different from unity.

We thus conclude that if we incorporate for CBP a root
finder that searches only on the unit circle the reduction in
performance (as compared to using general root finders) will
be insignificant. On the other hand, root finders searching
only on the unit circle exhibit complexity O(M?) [8), [11],
which is an order of magnitude smaller than the complexity
of general rooting schemes. Note that under such a rooting
scheme the complexity of the second step (rooting) becomes
of the same order as the other two steps (identification and
frequency selection).

D. Rooting Scheme Involving Real Polynomials

There also exists an alternative scheme that one can incor-

porate for the rooting of conjugate symmetric polynomials in.

general. Thus the proposed method can be also used for CSP.
Notice though that this method does not reduce the complexity
by an order of magnitude but rather by a constant percentage.

One can easily prove that in a conjugate symmetric polyno-
mial the roots lie either on the unit circle or appear in mirror,

with respect to the unit circle, pairs. Thus, if the original
polynomial is G(z) and we apply a change of variables using
the bilinear transformation
PR 29)
1—-79s
we can obtain a new polynomial G'(s) that has real coef-
ficients. This is so because under this transformation, roots
located on the unit circle are mapped to real roots, whereas
mirror pairs to complex conjugate pairs. Thus, the resulting
polynomial has only real and/or complex conjugate roots,
meaning that either it is or it can be (trivially) reduced to
a real polynomial. The number of operations needed to obtain
the new polynomial G'(s) from G(z) is O(M?).

Most widely used rooting algorithms that obtain the roots
one by one, have exactly the same form for both real and
complex polynomials [18]. In addition, at every step these
algorithms perform a number of polynomial evaluations which
constitutes the main bulk of operations. The polynomials
involved are usually the original and derivatives of the original
polynomial. This means that if the original polynomial is
real, so is its derivative and all higher derivatives, which
implies that every step of the method involves evaluation
of only real polynomials. If we are thus searching for real
roots we will have only real operations in the evaluation
process. For the evaluation of polynomials, Horner’s scheme
is usually used requiring M multiplications and M additions
[15]. When these operations are between complex numbers
then this corresponds to 4M real multiplications and 4M
real additions. Thus it is clear that when we evaluate real
polynomials with real arguments then this requires 75% less
operations than evaluating complex polynomials with complex
arguments. On the other hand if we are looking for a complex
root, even if the polynomial is real, there is absolutely no gain
in the evaluation process with Homer’s scheme (i.e., requires
the same number of operations as a complex polynomial).
Since for the CBP the (transformed) roots are mostly real,
we will have this 75% reduction of the computation. In other
words, the complexity will be one forth of the complexity
required for the determination of complex roots. For CSP the
gain depends on the number of real and complex roots that
appear in the corresponding polynomial.

In any case, if the polynomial is real it is possible to
apply other techniques that involve only real arithmetic. For
example instead of finding the roots one by one, we can
look for real second-order polynomials that divide the original
polynomial. This corresponds to simultaneously obtaining
complex conjugate root pairs [15].

V. PERFORMANCE COMPARISON OF LS PREDICTORS

Thus far, we have seen, through a numerical example,
that the CBP exhibits less asymptotic bias. In order to test
the proposed method in the finite data case we will conduct
the typical experiment of [6]. Specifically we will apply the
methods we like to compare to a number of independent data
realizations so as to derive conclusions about the statistical
behavior of the estimation error. The performance of the
methods will be tested through the mean estimation error (bias)
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Fig. 2. Estimation error variance for LS-based methods: CBP (solid),
FBLP (dashed), CSP (dotted), combination CBP-FBLP (dash-dotted), and
Cramer-Rao bound (half-tone).

and the estimation error variance. For this reason a block of
25 signal points is generated using the formula

S(’II,) — ej27r0.5n + ej(2ﬂ0,52n+7r/4) n=0,1,---,24. (30)

To the signal block we add 500 statistically independent
noise blocks. Each noise block contains 25 samples of com-
plex white Gaussian noise with variance ¢Z. The SNR per
exponential is defined as 10log;4(1/202) and SNR values
range from 10 to 30 dB. For each block of data, each
SNR value and each estimation method, the angles of the
roots closest to the true frequencies, are considered as the
frequency estimates. This is of course an ideal case but it
is indicative of the true performance of each method. The
bias and the variance o7 of the frequency estimate of f; is
computed over the 500 realizations for each SNR value. In
Fig. 2, the quantity 10log,4(1/0%) is plotted versus SNR,
for the different methods. Fig. 3 presents the corresponding
biases. For each particular method the order that had the
smallest variance was selected. In both figures the solid line
corresponds to the CBP with order equal to 12, the dashed line
to the FBLP with order equal to 13 and the dotted line to the
CSP with order 13. We also present in Fig. 2 the Cramer—Rao
bound (half-tone line). The estimation variance of the CBP is
2-5 dB inferior to that of the FBLP, whereas the CSP has a
significantly poorer performance. On the other hand, the bias
of the CBP is the smallest among all methods.

A. Combination of the CBP and FBLP

From the above we conclude that the FBLP method is a
few decibels superior in performance with respect to the CBP
method. On the other hand, the CBP method is computation-
ally the most efficient among the existing LS methods since it
reduces drastically the complexity of the rooting part. In the
following, we briefly describe a method which performs like
the FBLP method (and even better) and has a computational
complexity practically the same with that of the CBP method.

14219 . v . . . , . .
12F
10
8F
6.
g af
2]
2_
°r s m I AT W T ST
.-9"_":.: —————————————
2} oo
7
Kd
-4F //
I
6 . A . . . ) ) ) .
10 12 14 16 18 20 22 24 26 28 30
SNR (dB)
Fig. 3. Estimation error bias for LS-based methods: CBP (solid), FBLP

(dashed), CSP (dotted), combination CBP-FBLP (dash-dotted).

Recall that both predictors (FBLP and CBP) are obtained as
by-products of the same algorithm as discussed in Section IV.
Thus, for each block of data, both predictors are computed with
almost no additional complexity using basically the algorithm
of [1]. This is the first step of the combination method. In
the second step the CBP is rooted. From its roots, we select
the ones that can be considered as estimates of the true
frequencies. These roots are in turn used as starting points
to any appropriate rooting algorithm in order to compute the
corresponding zeros of the FBLP polynomial. Combining the
angles of the two sets of roots, we select the angles that are
closest to the true frequencies as our final estimates. This
process might yield selections from either the CBP roots or
the FBLP roots or both.

In our experiments, we used the Muller scheme [15] to
obtain the FBLP roots from the CPB roots. In all the ex-
periments, less than 10 iterations were enough for the scheme
to converge. Note that the complexity of the Muller scheme is
approximately 2M operations per iteration. Thus, the number
of extra operations needed to obtain the required subset of
FBLP roots is O(M?), yielding a total complexity of the same
order. This complexity is an order of magnitude smaller than
the one used in the FBLP method (O(M®)) and required by
the general rooting algorithm.

The dashed-dotted line in Figs. 2 and 3 corresponds to the
above described combination of the CBP and FBLP. As we
can observe the combination method exhibits a smaller than
the FBPL variance, whereas the bias is almost the same.

Remark: It should be stressed again that in the simulations
the frequencies closest to the true frequencies were used as our
estimates. This was done for simplicity and in order to observe
the true capabilities of each method. In an actual case however
the true frequencies are unknown and the rooting part must be
accompanied by a root selection method. A variety of methods
based on different criteria have been proposed so far [6], [12],
[13]. All these methods were tested in our case and the one in
[12] was found to be appropriate for the proposed techniques,
mainly for two reasons. First, it exhibits very low thresholds,



MOUSTAKIDIS AND BERBERIDIS: NEW EFFICIENT LS AND SVD BASED TECHNIQUES 91

and second, it does not use as criterion the closeness of the
roots to the unit circle (recall that all roots of the bidirectional
polynomial lie on the unit circle). We applied this method in
all the above experiments and the performance of all methods,
under this selection technique, was very similar to the ideal
one.

VI. MINIMUM NORM ESTIMATION OF CBP
AND CSP BASED ON SVD DECOMPOSITION

In this section, a minimum norm method will be presented
for obtaining the CBP and the CSP. The method is based
on SVD decomposition of the data correlation matrix and
follows similar steps as in [7]. Methods that are based on
SVD are known to yield superior results compared to their
LS counterparts because, with the use of SVD, the effect of
noise on the data is drastically reduced. As we will see in
the simulation results, this is also the case for the CBP and
CSP. Specifically, both predictors improve their performance
by almost 5-10 dB and extend their range of acceptable
performance significantly.

Before defining the optimization problems that will lead
us to the optimum symmetric predictors, let us first explore
the rich structure of the data correlation matrix Qpr41. As
we have seen in Section II, this matrix is positive definite,
Hermitian, and persymmetric satisfying (9). We can thus prove
the following lemma.

Lemma: All eigenvectors of (Qpr41 can take a conjugate
symmetric form.

Proof: Since the matrix (Qar41 is Hermitian, it has real
eigenvalues (actually positive). Thus, if A, v is.an eigenvalue-
eigenvector pair, then using (9), we have

QuiJv* = JQfMH”* = JQh41v"

= J(Qar11v)" = AJv" (31)
which suggests that Jv™ is also an eigenvector for A. If v, Jv*
are eigenvectors for A, so is their sum v + Jv*, which is
conjugate symmetric. This completes the proof.

There are two reasons for introducing conjugate symmetric
eigenvectors. First, notice that both predictors of our interest
have this conjugate symmetric form and thus can be eas-
ily defined as a linear combination of conjugate symmetric
eigenvectors. The second reason is that, as we will prove in
the next theorem, conjugate symmetric eigenvectors can be
obtained through an eigendecomposition problem of a real
symmetric matrix. It is clear that for such a case the necessary
computational complexity is lower as compared to the complex
case.

Theorem: If A v is an eigenvalue-eigenvector pair for the
matrix (Jar41 with v a conjugate symmetric vector, then this
pair can be obtained by the following eigendecomposition
problem.

Case M +1 =2m:

\ [v, } _ [AT +B.J

—A; + B,J | |v,

Ar — B,-J v;

where the matrix Q2,, and the eigenvector v have the form

Q _ Ar + JAz B’r + ]Bz
Im =\ JB.J —jJB;J JAJ — jJAT
_ v + ju;
v= [J‘UT - iji]' 33)
Case M+1=2m+1:
v,
N
v;
A.+ B.J V2b. -A;+B;J v,
=| V2.  w/V2 V2B £/V?2
A;+ B;J \/§bl A, - B,.J v;
(34)

where the matrix (Q)2,,,4+1 and the eigenvector » have the form

(22m+1 =
A+ jA; b, + jb; B, +jB;
bt — jb! w btJ + bl
JB.J —jJB;J Jb.—jJb; JA,J—jJAJ
v+ Ju;
v= 3 (35)
Jv, — jJu;

and both matrices involved in the two real eigendecomposition
problems are symmetric.
Proof: The proof is given in the Appendix.

A. Definition of the Optimum Symmetric Predictors

Let E,, E, denote the collection of singular vectors (that
coincide with the eigenvectors) that correspondingly span the
signal and noise subspaces of the matrix Qps+1. As we have
seen in the theorem, these vectors can be obtained through a
real eigendecomposition problem. Our aim now is to find a
conjugate symmetric predictor of the form of the CBP or CSP
that is orthogonal to the signal subspace E, and has minimum
norm. Depending on the predictor type, we have different
constraints for the minimum norm problem. Specifically, for
the CBP, we require the two end predictor elements to have
unit magnitude, whereas for the CSP, the central element
should be equal to unity.

Let us recall that the vectors in E,, are conjugate symmetric.
Thus, if we like to form a conjugate symmetric vector by
linearly combining the vectors of E, we must use for the
combination only REAL coefficients. In other words, the
predictors we are looking for, can be put under the form E,.t,,,
where £, is a real vector. Let us now consider the following
two partitions of the matrix E,

el L
E,=|E and E,=| I (36)
eH JL*

where the e is the top row of the matrix E,, while the I' is the
central row. The first partition of F,, will be used for the CBP
problem and the second for the CSP. For the second partition
notice that it can be applied only to odd length vectors and
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since the vectors in E,, are conjugate symmetric we conclude
that { is a real vector.

From the orthonormality of the singular vectors we conclude
that ||E,t,|| = ||t.|- Thus, looking for the minimum norm
combination is equivalent to looking for the minimum norm
real vector ¢,,. The solution to the minimum norm problem is
given by the following proposition.

Proposition: Let us define a conjugate symmetric predictor
as F,t,. Then, the optimum vectors t,, that yield a minimum
norm CBP and a minimum norm CSP are defined as the
solution to the following optimization problems.

Case CBP: The solution to

utlin It |* under |e't,| =1 37)
is given by
L2
tn = [erei]— (38)
Mlzall

where e = e, + je; and A, z, is the largest eigenvalue and the
corresponding eigenvector of the following 2 x 2 matrix

el eres

i) @
Case CSP: The solution to
ntliu [I£,.]|* under I't,, =1 (40)
is given by
4

t, = —. (41)

S

Proof: The proof of the proposition is given in the
Appendix.

B. Computational Issues

As in the LS methods, we will examine the complexi-
ties of the first two steps (identification and rooting) of the
whole frequency estimation process for the above mentioned
methods.

Note that for minimum norm FBLP, CBP, CSP as well as
for Root-MUSIC, in order to identify the corresponding pre-
dictors, we need to perform SVD on the matrix Qp741. SVD
requires complexity O(M3) (see p. 239 of [16]) regardless of
the type of the matrix (real or complex) 5;41. Unfortunately,
in the literature, it was not possible to find exact complexities
for the two types so that we could compare them exactly.
We instead performed simulations in MATLAB and using the
command “flops™ [17] we counted the operations required
for each type. The conclusion was that for the real case it
required approximately 50 to 70% less operations than in the
complex case for matrix sizes ranging from M = 1 to M =
200. We must emphasize that this gain in SVD is possible
for all the above methods since there is no problem in any
of them if we require the singular vectors to be conjugate
symmetric.

As was the case in the LS method, the minimum norm CBP
has most of the time its roots on the unit circle. Actually the

70, T T

1/(Mean Squared Error) (dB)
o
o

.
40F ,

a5
35

15 20 25 30
SNR (dB)

Fig. 4. Estimation error variance for SVD-based methods: CBP (solid),
FBLP (dashed), CSP (dotted), Root-MUSIC (dash-dotted), and Cramer—Rao
bound (half-tone).

percentage of non unit modulus roots is much smaller than in
the LS case. Specifically, in thousands of experiments, only 2%
of the roots were found not lying on the unit circle at SNR=0
dB and practically no such root occurred above SNR=15 dB.
This was true for predictor orders close to the value 3N/4
(which is known from practice to yield the best results for
other SVD methods [6]). For other orders, the percentage of
nonunit modulus roots was a little higher.

Due to the root positioning in the case of the CBP, we can
again apply either of the two methods presented in Section IV
to reduce the complexity of the rooting part. Notice though
that here, even if we reduce this complexity by an order of
magnitude (using root searching on the unit circle), the overall
complexity remains O(M?) because of SVD. In any case even
if we have not gained an order of magnitude in the overall
complexity we have nevertheless gained a significant saving
in complexity. Note also that since CSP and Root-MUSIC
require the rooting of complex conjugate polynomials it is
possible to use for these two frequency estimators the method
of rooting real polynomials of Section IV.

C. Simulation Results

To test the performance of the two new minimum norm
predictors we conducted the same experiments as in Section
V. The results are presented in Figs. 4 and 5. The solid line
is the CBP with order 17, the dashed line is the minimum
norm FBLP with order 19, the dotted line the CSP with order
17 and finally the dashed-dotted line the Root-MUSIC with
order 19. We also present in Fig. 4 the Cramer—Rao bound
(half-tone line). Again, we selected the orders for each case
that yielded the smallest variance. Observing the estimation
variance and the bias, the CBP behaves comparably to the
minimum norm and Root-MUSIC while again the CSP has a
significantly poorer performance. Notice that in this case it is
not really necessary to define a combined CBP-FBLP scheme
(as the one in the LS case) since it yields only an insignificant
improvement.
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Bias
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Fig. 5. Estimation error bias for SVD-based methods: CBP (solid), FBLP

(dashed), CSP (dotted), Root-MUSIC (dash-dotted).

VII. CONCLUSION

A new conjugate symmetric predictor for estimating fre-
quencies of sinusoids in noise was presented. The optimum
form of the predictor was obtained by using the LS and the
minimum norm criterion. The proposed predictor, in simu-
lations, exhibited better performance than the well known
symmetric Smoother predictor and comparable performance
to the FBLP and Root-MUSIC. Also, the proposed predictor
was shown to have all its roots on the unit circle in the
asymptotic case, while in the finite data case, through extensive
simulations, it exhibited this property more than 98% of the
cases. This fact allows for the use of specialized rooting
algorithms that have very low complexity, as compared to
general rooting algorithms.

For the LS case adequate hints were given on how to derive
a fast order recursive algorithm for the proposed predictor
based on an existing algorithm for FBLP. A new technique
combining the proposed predictor and the FBLP in the LS
case was shown to have extremely good performance and
low complexity. Finally, the eigenstructure of the Hermitian
and persymmetric matrices was investigated and a useful
theorem was proved. Based on this result a real SVD problem,
necessary for the minimum norm FBLP, CBP, CSP methods,
and the Root-MUSIC method was defined having reduced
complexity as compared to the commonly used complex SVD
problem.

APPENDIX A
PROPERTIES OF CBP AND CSP ASYMPTOTIC BIAS

For the LS case, the asymptotic bias for CBP, CSP in
estimating two frequencies fi, fo is the same in absolute value
for both frequencies; it also depends only on their difference
fi = fa

We will show the above properties for CSP onlys; it is a little
more involved for CBP. Using (24) for p = 2 and forming the

corresponding polynomial, we obtain

G(z)=1+p Z (e7I¥2mh 4 gmik2mhz) ok

42)
k=—m
k#0
where
m
p =02 4+ 420052 (k27r (flg—f;!>) . 43)
k=1
If we change variables in the above polynomial as follows
z= yeﬂ"h’;r_j2 (44)

we obtain the following polynomial in ¥

m
G'y) =1+ Zchos (lwr (—é—Zﬁ)) (y’c +y7%). (45)
k=1 /
Notice that with the above change of variables, the two desired
roots ei27f1 | ¢32752 are transformed to €27 52 —i2nigH
which is a reciprocal pair. We can thus conclude that the roots
of G'(y) try to estimate this pair. Note that the roots of G'(y)
come in reciprocal pairs as well. Thus, if pe27x y~1e=727x
is such a pair used for the estimation of the desired roots then
the corresponding estimates for the two initial frequencies,
using (44), will be

flz—fI;fZ+Xa fz=é’;f2—x

Forming the absolute error (absolute asymptotic bias), we can
see that it is equal to |x — (f1 — f2)/2| for both cases. Since
x comes from (45) it depends only on the difference of the
two initial frequencies. We thus conclude that both absolute
asymptotic biases are equal and depend only on the difference

f.l - fZ-

(46)

APPENDIX B
PROOF OF THE THEOREM

It can be easily proved using the persymmetry property that
the two possible forms of 5741 (depending on M being even
or odd) are the ones given in (33) and (35). From the Hermitian
symmetry of Qar4+1, we have that

AL = A, A=A

JB!J =B, JB!J=B5B; (47)

and that w is real. Because of the conjugate symmetry of v, the
element £ in (35) is also real. We will now prove the theorem
for the first case only. The proof is similar for the other case.
The eigendecomposition problem we are interested in is

v = ngv.

Because of the Hermitian form of Qqx, we know that all
eigenvalues are real thus substituting (@sx and v from (33) in
(48) and separating real from imaginary parts, after performing
block operations, we have

v, (A + B, Y, + (— 4 + B;J)v;
Av; (A, + B,;J)‘l}r + (Ap - BTJ)‘Ui ’

(48)

49
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Actually there are two additional relations, but they are equiv-
alent to the ones given in (49). Notice that (32) is exactly (49)
in matrix form. Using (47), it is easy to see that the matrix
involved in (32) is symmetric. This concludes the proof.

APPENDIX C
PROOF OF THE PROPOSITION

We shall prove the proposition for the CBP case only, it can
be similarly proved for the other case. Notice that, since ¢,, is
real, we can write for the constraint

le't,|? = (elt,)? + (eit,)? = t! [eqei]lere:]'t, = 1. (50)

It is known that for any symmetric matrix T and any vector
t we have

t'Tt

"tt—t S /\max(T)
where Amax(T) is the largest eigenvalue of 7. We have
equality in (51) when ¢ is equal to the eigenvector that
corresponds to Apax. Using (50) and (51), we conclude that

[[£all? 2> 1/ Amax([erei] [eres]”) (52

with equality when %, is the eigenvector corresponding to
Amax. It is known that for any matrix 7 if X\, z) is an
eigenvalue-eigenvector pair for 7*7 then A, Tz is an eigen-
value—cigenvector pair for T'T*. Because of this statement we
conclude that £,, can take the form defined in the proposition.
The multiplicative constant in the definition of ¢, in (38) is
needed in order for £, to meet the constraint. This concludes
the proof.

(51
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