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Abstract—We consider multiple-input multiple-output (MIMO)
radar systems with widely spaced antennas. Such antenna con-
figuration facilitates capturing the inherent diversity gain due to
independent signal dispersion by the target scatterers. We con-
sider a new MIMO radar framework for detecting a target that
lies in an unknown location. This is in contrast with conventional
MIMO radars which break the space into small cells and aim at
detecting the presence of a target in a specified cell. We treat this
problem through offering a novel composite hypothesis testing
framework for target detection when 1) one or more parameters of
the target are unknown and we are interested in estimating them,
and 2) only a finite number of observations are available. The test
offered optimizes a metric which accounts for both detection and
estimation accuracies. In this paper, as the parameter of interest
we focus on the vector of time-delays that the waveforms undergo
from being emitted by the transmit antennas until being observed
by the receive antennas. The analytical and empirical results es-
tablish that for the proposed joint target detection and time-delay
estimation framework, MIMO radars exhibit significant gains
over phased-array radars for extended targets which consist of
multiple independent scatterers. For point targets modeled as
single scatterers, however, the detection/estimation accuracies
of MIMO and phased-array radars for this specific setup (joint
target detection and time-delay estimation) are comparable.

Index Terms—Diversity gain, finite-sample, generalized likeli-
hood ratio test (GLRT), joint estimation/detection.

I. INTRODUCTION

I NSPIRED by the diversity gains yielded by multiple-input
multiple-output (MIMO) communication systems for al-

leviating wireless fading impediments, the concept of MIMO
radar systems has been first introduced in [1] and further
developed in [2]–[8]. The underlying idea of MIMO radar for
offering diversity gains is to illuminate uncorrelated waveforms
at the target such that their corresponding reflections remain
uncorrelated and hence offer independent observations of
the target. It has been demonstrated that such diversities in
observing the target bring about performance improvement by
enhancing the accuracy in detecting the target and estimating
its associated parameters, e.g., range, speed, and direction.
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MIMO radar systems can be exploited for capturing radar
cross section (RCS) diversity via deploying widely separated
antennas [4], or for establishing more degrees of freedom by
configuring co-located antennas [9]. While the former configu-
ration improves detection and estimation qualities and supports
high-resolution target localization [5], the latter one enhances
the power of probing in the vicinity of target location [6], [7],
[10].

In this paper, we consider a widely spaced antenna config-
uration and treat two problems. First, we analyze the problem
of target detection when some radar parameters are unknown
and needed to be estimated. We offer a framework for joint
target detection and parameter estimation (with optimality prop-
erties provided in Section III) when the receive antennas can ac-
quire only a finite number of observations. While the proposed
framework can be exploited for detecting the target in conjunc-
tion with estimating any parameter of interest, we consider the
problem of detecting a target that lies in an unknown location.
In our formulation, the uncertainty about the target location is
accounted for through the time-delays that the transmitted wave-
forms undergo before reaching the receive antennas. We formu-
late this problem as a composite hypothesis test which is shown
to be solved optimally via the widely known generalized likeli-
hood ratio test (GLRT). Note that the existing optimality results
of the GLRT hold only asymptotically for an infinite number of
observations under certain assumptions [11, Sec. 5.6].

As the second problem, we analyze the diversity gain of the
proposed detector, which is defined as the decay rate of the
mis-detection probability with the increasing signal-to-noise
ratio (SNR) for a fixed false alarm probability [4]. We analyt-
ically quantify the diversity gain as a function of the number
of transmit and receive antennas. This notion of diversity gain
for MIMO radars has been first examined for MIMO radars in
[3] and [4] for the MIMO radar model introduced in [3], which
considers detecting the presence of a target at a given location.
It is noteworthy that another notion of diversity gain defined as
the detector’s divergence in high SNR regimes has also been
analyzed in [3].

We treat the two aforementioned problems for two target
models: point targets which are modeled as single scatterers
[4], [5]; and extended targets, which are comprised of many
isotropic and independent scatterers. The summary of the
contributions and results of this work is as follows.

We propose an optimality measure which is shaped by target
detection performance, parameter estimation accuracy and false
alarm probability. The corresponding optimal composite hy-
pothesis test that satisfies some optimality criteria is introduced
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and deployed for detecting a target in an unknown location.
Next, for an MIMO radar system we characterize the
maximum likelihood (ML) estimate of the time-delay vector
which consists of components corresponding to different
pairs of transmit–receive antennas. The optimal detector cor-
responding to such ML estimate is also derived. This detector
differs from the existing ones in the literature in the sense that
it aims at detecting a target in an unknown location, whereas
the existing MIMO radar detectors break the space into small
cells and detect the presence of the target in a specific cell.
Finally, we demonstrate that for the proposed detector, in an

MIMO radar system with widely spaced antennas and
with an upper-limit constraint on the false alarm probability,
the mis-detection probability decays as SNR for extended
targets and decays as SNR for point targets. Such mis-detec-
tion probability in phased-array radars for both extended and
point targets is shown to decay as SNR . The same obser-
vations for extended targets and phased-array radars have also
been made in [3] and [4], albeit for a different MIMO radar
model and different detectors.

The remainder of the paper is organized as follows. Section II
provides the MIMO radar system model. The statement of the
composite detection problem and the definition of optimality are
provided in Section III. We formulate and analyze the joint esti-
mation and detection problem for MIMO radars for extended
and point targets in Sections IV and V, respectively, and for
phased-array radars in Section VI. The analysis on the diversity
gain are presented in Section VII. Simulation results are illus-
trated in Sections VIII and IX provides the concluding remarks.

II. MIMO RADAR

We consider a MIMO radar system comprising of and
transmit and receive antennas, respectively, and adopt the clas-
sical Swerling case I model [12] extended for multiple-antenna
systems [3], [4]. According to this model, a target consists of
one or more small scatterers exhibiting random, independent
and isotropic scintillation.

We define as the number of the target’s scatterers and de-
note the locations of these scatterers in the Cartesian coordina-
tion by for . Also, we denote the reflectivity
factor of the th scatterer by and assume that are
identically and independently distributed as zero-mean complex
random variables with variance . The target and reflectivity
factors are assumed to remain constant during a finite number
of observations denoted by and change to independent states
afterwards. Motivated by capturing the inherent diversity pro-
vided by independent scatterers, the antennas are spaced widely
enough (such that they satisfy the conditions in [3, Sec. II.A])
to ensure that the received antennas capture uncorrelated reflec-
tions from the target. As illustrated in Fig. 1, we assume that the
transmit antennas are located at , for , and
the receive antennas are located at , for . The
transmit antennas emit narrowband waveforms of duration

with baseband equivalent models given by
for , where is the total transmitted energy and

. In contrast to the conventional phased-array
radars which deploy waveforms that are identical up to a scaling

Fig. 1. MIMO radar system.

factor [13], in MIMO radar systems these waveforms are de-
signed such that they facilitate acquiring independent observa-
tions of each scatterer and often are assumed to be orthonormal
[4], i.e.,

(1)

where denotes complex conjugate and is the Dirac’s delta
function. As depicted in Fig. 1, the waveform illuminated by the

th transmit antenna to the th scatterer and received by the th
receive antenna passes through an end-to-end distance which we
denote by and undergoes a time-delay which we denote
by , where is the speed of light. By defining

as the path-loss exponent and superimposing the effects of all
scatterers, the baseband equivalent of the signal received by the

th receive antenna due to the waveform (transmitted by
the th transmit antenna) is given by

(2)

Note that this model differs from those of [3] and [4] in the
sense that we have added the attenuation effects of path-losses
by including the terms . The expo-
nential term in (2) represents the effect of
propagation phase shift, where is the carrier frequency, and

, denotes the additive white Gaussian
noise.

We define as the location of the gravity center of the target
and denote its associated time-delays and distances by
and , respectively. We assume that the distances
are considerably larger than the dimensions of the object such
that we can replace the distances and the time-delays associated
with the scatterer with those corresponding to the gravity
center of the target , i.e., and ,

. Therefore,

for

and (3)
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Using (2)–(3), the received signal at the th antenna, which is a
superposition of all emitted waveforms, is given by

(4)

where . Furthermore, we
assume that the waveforms are narrowband. Based on the nar-
rowband assumption we get [4]

for and (5)

which in conjunction with the orthonormality assumption (1)
implies that

(6)
We also define the time-delay vector .
Based on the model given in (2) and noting that the noise-terms

are unit-variance, the transmission signal-to-noise ratio,
denoted by SNR, is given by SNR .

III. PROBLEM STATEMENT

We assume that the receive antennas sample the re-
ceived signal at the rate of samples per second.
By defining , , and

, the discrete-time baseband equivalent
of the received signal when a target is present is given by

for (7)

We also assume that the sampling rate is high enough to ensure
that the discrete-time signals remain orthogonal
for arbitrary delays , i.e.,

. Let us define for
and .

The target detection framework that we propose is different
from the conventional target detection with MIMO radars. In
conventional MIMO radars, e.g., [3] and references therein, the
space is broken into small cells and the radar detects the pres-
ence of the target in a given cell. In such radar models, the
location to be probed is given, which means that the corre-
sponding time-delay vector is also given. Therefore, the de-
tection problem can be cast as testing whether a target exists at
a given set of time-delays (cf. [3]). In contrast, our objective is

to detect the presence of a target that lies in an unknown loca-
tion and thereof has unknown corresponding time-delays. For
this purpose we treat the time-delay vector as the unknown
parameter to be estimated and based on that we formulate the
target detection problem. In other words we exploit as an in-
termediate variable which we estimate for being able to carry
out target detection. Therefore, in our framework the main ob-
jective of estimating the time-delays is to facilitate performing
detection. As a minor application, such time-delays can also be
exploited for estimating the location of the target. Such target
localization, however, is not optimal and for achieving optimal
target localization one needs to treat the target location as the
unknown parameter of interest and deploy the same framework
for carrying out joint target detection and target localization (in-
stead of time-delay estimation).

Let denote the probability density function (pdf) of the
received signal when a target is not present. When a target is
present, the pdf of the received signal depends on an unknown
parameter (in this paper, is the vector of time-delays) and is
denoted by . Therefore, by defining the estimate of
by , the detection part of the problem can be cast as

.
(8)

Our objective is to jointly characterize the estimator and find
the test for deciding between the hypotheses and . For this
purpose we define and optimize a measure which combines es-
timation and detection accuracies. The underlying idea for per-
forming such optimization is to deploy the notions of random-
ized tests and randomized estimators. For any given observation
vector we assign complementary probability terms

and to the hypotheses and ,
respectively. In a randomized test, for is the prob-
ability that hypothesis is selected. Clearly deterministic tests
are special cases of randomized tests where take only
the values 0 or 1. Whenever the decision is in favor of , we
also have to estimate the unknown parameter . In determin-
istic approaches, the estimate of is a deterministic function of
the observed data. On the contrary, randomized estimators, in-
stead of generating a deterministic value , generate a random
variable according to a distribution which is a function of the
observed data. Deterministic estimators can be classified as a
special case of randomized estimators.

We strive to identify the decision rules and such
that the error in estimating , conditioned on the hypothesis
being true, is minimized. This minimization is also subject to an
upper bound constraint on the false alarm probability

. When the hypothesis is true, there exist two types of
errors in estimating . First, the test result can be correctly in
favor of , but is estimated erroneously, where we denote the
cost function associated with such estimation error by .
Second, the test output might be wrongly in favor of , which
leads to misestimating and results in an error cost which we
denote by . Note that the cost function can be
selected arbitrarily. In this paper, we consider the mean-square
error (MSE) cost given by and

.
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Subject to a maximum tolerable level of false alarm proba-
bility , the estimation strategy which minimizes the average
cost over all possible randomized estimators is given by

.
(9)

The optimal hypothesis test (formalized by ) and the op-
timal estimation strategy yielded by solving the problem
for the choice of when and 1 otherwise
are described in the following theorem.

Theorem 1 (Moustakides [14]): For a finite cardinality vector
and an unknown vector parameter , solving

provides the optimal estimation strategy and the subse-
quent optimal detection rule for deciding between and
are given by

and (10)

where is the prior distribution of and the estimation cost
functions are when and 1 otherwise.

The above theorem essentially establishes the GLRT as the
optimal estimation/detection strategy with properties P1-P4
enumerated in the sequel. Several other asymptotic optimality
results are known for the GLRT which are all based on having
an infinite number of observation (cf. [14] and [15, Ch. 22]).
given in (10) is the maximum a posteriori (MAP) estimate of .
As we do not have any prior information about the parameter to
be estimated (the vector of time-delays ), throughout the anal-
ysis we assume that has a uniform distribution. Hence, the
MAP estimate of becomes its ML estimate. The estimator and
detector provided by Theorem 1 have the following properties.

P1) The ML estimator minimizes the average minimum-
mean square estimation error of .
P2) The false alarm probability of the target detector is kept
below a certain level.
P3) For the given set of ML estimates , the target detector
is Bayesian-optimal, i.e., the Bayes risk is minimized [16,
Sec. II.B].
P4) The test requires only a finite number of samples, i.e.,

.
In order to apply the theorem above to our joint estimation/de-
tection problem we set the vector of time-delays as the param-
eter to be estimated, i.e., . For deploying the optimal es-
timator and detector provided in (10) we also need to charac-
terize the domain of which in Theorem 1 is denoted by

. Note that the vector cannot be any arbitrary vector in the
space . This is due to the fact that for any given placement
of antennas, there exists a correlation between the elements of

and there are some equations relating these time-delays. For
the given antenna placements and let us
define . Also for the given antenna placement

define as the set which contains the vectors
that can be valid choices for .

Precise characterization of is crucial for attaining the
optimal estimation and detection performance. Any inaccuracy
in such characterization degrades the performance and provides

only sub-optimal estimators and detectors. In the sequel we pro-
vide necessary conditions for a given to be a valid time-delay
vector. Such necessary conditions describe a set of time-delay
vectors which is a superset of . We also conjecture that
these conditions are sufficient which consequently can char-
acterize precisely. If these conditions are not sufficient,
then the resulting approximation of will only provide a
sub-optimal solution.

For establishing the necessary conditions let us break down
the end-to-end time-delay as , where
is the time required for the waveform to travel from the th
transmit antenna to the target and is the time required for the
reflected waveform to travel from the target to the th receive
antenna. If a given is a valid time-delay vector then

the three terms , , and should
constitute the lengths of a triangle with its vertices given by the
locations of the th transmit antenna, the th transmit antenna,
and the target ( is the distance between the th and
th transmit antennas). The triangular inequalities impose that

is a valid time-delay vector only if

for

Similarly, by considering the triangles corresponding to the re-
ceive antennas we get the necessary conditions

for

By recalling that , we find that
and . Therefore,

for the subspace we have

and (11)

We conjecture that any vector that satisfies the conditions
above is a valid time-delay vector and therefor the subset oper-
ator can be replaced by equality. We underline that, however,
in the case that these conditions are not sufficient, performing
optimization on the above superset of will provide only
sub-optimal estimators and detectors.

IV. JOINT DETECTION AND ESTIMATION

FOR EXTENDED TARGETS

In this section, we consider the targets that are extended
enough to be modeled as a group of isotropic and independent
scatterers, i.e., in (2). Our objective is to optimally
detect a target, based on the model in (8), and simultaneously
estimate the vector of time-delays . At the same time we
assume that only a finite number of observations are available.
According to Theorem 1 this problem can be solved via the
GLRT given in (10) for and for given in (11).

We start by deriving the ML estimate of and then provide
the detection-related analysis. We also develop a technique in
Section VIII based on the Newton–Raphson method for local-
izing the target by using the estimated time-delay vector. Ex-
ploiting this simple target localization method is not the optimal
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strategy and is merely intended to provide some numerical eval-
uations to show the improvement gained by deploying MIMO
radars.

A. Time-Delay Estimation

The hypothesis given in (8) can be cast as

.

(12)
Define , where , as defined
in (4), accounts for the effects of the position and reflective-
ness of the scatterers corresponding to the th transmit and the

th receive antennas. The antennas are widely separated and
the reflectivity factors are complex and independently dis-
tributed with zero mean and variance with . There-
fore, by using the central limit theorem, are i.i.d. and
distributed as [3].

Based on the model given in (7), when a target is present,
the vector of the received signals depends on the time-delays,
which we are interested in estimating, as well as on the unknown
random vector . Therefore, when a target is present, the pdf of

for any given and is . In order to obtain
the ML estimate of one approach is to estimate it through
solving , which requires recovering

from by averaging over all realizations of
. Alternatively, we can estimate it jointly with when doing so

is deemed to be beneficial. The latter approach is more beneficial
when an accurate estimate of is available, e.g., in the high SNR
regimes, while averaging leads to a better performance when the
estimate is very inaccurate, e.g., in the low SNR regimes. The
ML estimate of is provided in the following theorem for both
scenarios.

Theorem 2: The ML estimate of for extended targets and a
given antenna placement :

1) through MAP estimation of is given by

2) and through averaging over all realizations of is given by

Proof: See Appendix A.

B. Target Detection

Based on the ML estimates of the time-delay vector pro-
vided in Theorem 2, we proceed to find the corresponding op-
timum detectors. We show that both estimates give rise to the
same optimal detector given in the following lemma.

Lemma 1: The optimal test for extended targets and for the
given estimate is

(13)

Proof: Based on the model in (12) the likelihood
under the null hypothesis is given by

(14)

Finding the estimate is carried out by jointly estimating
and . For this estimate of , by setting the optimal

detector characterized in (10) is found as

where and are the MAP estimates obtained in Theorem
2. By following the same line of argument as in Appendix A
(30)–(39) and recalling the definitions of and given in
(32) and (35), respectively, the detector is given by (15)–(16),
shown at the bottom of the page, where .

(15)

(16)
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We further define and
. Therefore, the value of the threshold

is linked to the probability of false alarm as

Note that under , is distributed as and
therefore, is exponentially distributed with parameter

. Hence, have exponential distributions with
distinct parameters . Thus, is
the sum of independent exponential random variables
with different parameters and its pdf is given by [17]

(17)

If we denote the cumulative distribution function (CDF) of
this random variable by , then can be determined as

. By following a similar line of analysis for
the case that we deploy the estimate , the same detector is
found.

It is noteworthy that our detection scheme has two major dif-
ferences with that of [3] provided in [3, Eq. (24)]. First, the de-
tector in [3, Eq. (24)] tests whether a target exists at a known
time-delay while we try to detect a target with unknown time-de-
lays. Second, the model of [3] embeds the effect of the time-de-
lays only as phase shifts and ignores the path-loss effect. By
recalling that the path-losses also depend on the time-delays we
have modified the model of [3] to also capture the effects of
path-losses.

V. JOINT DETECTION AND ESTIMATION FOR POINT TARGETS

In this section, we consider the application of MIMO radars
for detecting point targets or exposing single-scatterers. In this
case, the target is modeled by one scatterer located at its gravity
center . Note that in (4) by setting we get

. Unlike in extended targets, the previous section,
the distribution of the reflectivity factor is not known and
thereof it should be treated as an unknown quantity to be es-
timated along with the time-delays. Therefore, the null and al-
ternative hypotheses are given by

.

(18)
As before, we are interested in solving the optimum test given
in (10) and we start by determining the ML estimates of the
reflectivity and the time-delay vector .

A. Time-Delay Estimation

Based on the model given in (18) and the fact that the dis-
tribution of is not known a priori, we estimate along with

. The pdf of the received vector for any given and is
. By setting and using the optimal test

given in (10) the ML estimate of can be found as shown in the
following theorem.

Theorem 3: The ML estimate of for point targets and an-
tenna placement is given by

Proof: See Appendix B.

B. Target Detection

Based on the ML estimate of provided in Theorem 3 the
optimal detector is characterized by the following lemma.

Lemma 2: The optimal test for point targets and for the given
estimate is

Proof: As we are estimating jointly with , by setting
and applying Theorem 1 the optimal detector is given

by

By following the same line of argument as in Section IV-B and
by using the estimates and given in Theorem 3 and (44),
respectively, the optimum test for a point target is given by (19),
shown at the bottom of the page. Moreover, by setting

, the test can be cast as

In order to determine the value of the threshold , note
that is distributed as

under and is inde-
pendent of for or .
As a result, under we have
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and consequently

Exponential

Therefore, for a given value of , the threshold level is found
as

VI. OPTIMAL JOINT ESTIMATION/DETECTION FOR

PHASED-ARRAY RADAR

We will compare the performance of MIMO radars against
that of conventional phased-array radar systems. A phased-array
system utilizes an array of closely located antennas and there-
fore, the channel coefficients are fully correlated, i.e.,

. For the case of extended targets is distributed
as and for point targets its distribution is unknown
[3]. Moreover, all the emitted waveforms are equal up to a
scaling factor, i.e., for such
that (for having the total transmitted en-
ergy equal to ). Therefore, by using (7) and the narrowband
assumption, the system model is given by

for (20)

The following lemma is instrumental to deriving the ML esti-
mate of the time-delay vector.

Lemma 3: For any given set of functions where
and , we have

Proof: See Appendix C.
For the purpose of analyzing the diversity gains as given in

Section VII, as well as comparing estimation performance, we
provide the optimal detector and estimator for phased-array
radars in the following lemmas. For further analysis we de-
fine and

. Similar
to which we defined for MIMO radars, we also define

such that it contains the valid choices of the time-delays
for a phased-array radar with closely located antenna placement

.
Lemma 4: For a given antenna placement , the ML es-

timate of the time-delay vector and the optimal detector in
phased-array radars are as follows.

1) For extended targets through estimating we have

2) For extended targets through averaging over all realizations
of we have

3) For point targets through estimating we have

Proof: See Appendix D.
Based on the ML estimates of provided in Lemma 4, the

optimal detectors are presented in the following lemma.
Lemma 5: The optimal test for the given estimate is given

as follows.

(19)
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1) For extended targets

2) For point targets

Proof: For the case that we are estimating and jointly,
we set and therefore, the optimal detector is given by

Proceeding with the same line of argument as in Section IV-B,
the optimal test is given by

or equivalently

where

Under , the term is distributed
as and is indepen-
dent of for . As a result, under
we have

and consequently

Exponential

Therefore, for a given value of , the threshold level is found
by

We can similarly find the same detector when the estimate
is computed by averaging out the effect of .

VII. DIVERSITY GAIN ANALYSIS

In order to compare the performance of MIMO and phased-
array radars quantitatively, we analyze the diversity gain, which
determines how fast the mis-detection probability decays as the
transmission SNR increases while there is an upper-bound con-
straint on the false alarm probability [4]. More specifically we
are interested in finding

SNR

SNR
SNR

where SNR denotes the mis-detection probability at the
signal-to-noise ratio SNR. The diversity gain for the MIMO
radar model provided in [3] has also been examined in [3], [4].
[3] also analyzes another notion of diversity, which is the asymp-
totic value of the detectors’s divergence.

Throughout the analysis in the sequel, we say two func-
tions and are asymptotically equal when

and denote it by .

We also define and accordingly. We also say two
functions and are exponentially equal when

and denote it by
.

Remark 1: Asymptotic equality is a sufficient condition for
exponential equality.

We will use the following lemma for analyzing the diversity
gain of MIMO and phased-array radars.

Lemma 6: For any independent Gaussian random vari-
ables , , where and

, and for any given , in the asymptote
of large values of we have

(21)

where .
Proof: See Appendix E.

By using the lemma above, in the following theorem we es-
tablish the diversity gain achieved by MIMO and phased-array
radars for both extended and point targets. SNR .

Theorem 4: The diversity gain achieved by the following:
1) an MIMO radar system for extended targets is

, i.e., SNR SNR ;
2) an MIMO radar system for point targets is 1, i.e.,

SNR SNR ;
3) an phased-array system for extended and point

targets is 1, i.e., SNR SNR .
Proof:

1) For extended targets, by recalling the definitions
of and

Authorized licensed use limited to: George Moustakides. Downloaded on February 11, 2010 at 04:03 from IEEE Xplore.  Restrictions apply. 



TAJER et al.: OPTIMAL JOINT TARGET DETECTION AND PARAMETER ESTIMATION BY MIMO RADAR 135

, from the optimal test in (13)
we have

SNR (22)

We define , . Therefore,
the mis-detection probability given in (22) is equivalently
given by

SNR

(23)

By further defining and
we can provide the following upper and

lower bounds on the probability in (23)

SNR

(24)

On the other hand, under hypothesis from (12) we have

which in turn provides

Furthermore, by defining and
we have and

and

Now, we apply Lemma 6 by setting ,
, ,

, and
. Thus, we get

SNR

SNR

Hence, for the choices of and we
find that the lower and upper bounds on SNR given
in (24) are both exponentially equal to SNR . This
results in an identical exponential order for SNR ,
i.e.,

SNR SNR

which establishes the desired result for MIMO radars with
extended targets.

2) We define

Therefore, is distributed as

By following a similar line of argument as for extended
targets and defining , and
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we get

and

and

SNR

Now, we apply Lemma 6 by setting ,
, , ,

and . There-
fore,

SNR SNR

3) We provide the proof for extended targets. Similar line of
argument and appropriate modifications provide the proof
for point targets. Based on the optimal test for detecting
extended targets by phased-array radars given in Lemma 5
we have

Under hypothesis from (20) for extended targets we
have

where . Therefore,

Similarly as before we define , ,
and , where we have

and

and

Again we apply Lemma 6 by setting ,
, ,

, and . Thus, we
get

SNR

As a result we find the following diversity gain achieved
by phased-array radar systems for extended targets

SNR SNR

Although we are using a MIMO radar model different from
[3] and subsequently derive a different detector, the results
above conform with those of [3] which considers detecting
the presence of a target at a given location. This result
demonstrates that in terms of diversity gain, our proposed
MIMO radar model is capable of capturing the same diver-
sity gain achieved by the MIMO radar model of [3].

VIII. SIMULATION RESULTS

A. Extended Targets

In this section, we provide simulation results on the perfor-
mance of the proposed joint estimation/detection framework.
We consider two antenna configurations with
and , . For the MIMO radar we assume that the
transmit and receive antennas are located at
for and for ,
respectively. For the phased-array radar we assume that the
transmit antennas are all closely located around
for , and the receive antennas are closely located
around for . Also we assume
that the target to be detected is located at ,
where all the distances are in kilometer (km). The path loss
coefficient is and the carrier frequency is
MHz. We assume that the target comprises of
scatterers and the number of signal samples is .
Finally, for the MIMO radar the emitted waveforms are

, where
is the unit step function and denotes the duration of the

waveform and the sampling rate at the receiver is .
For the phased-array radar all the emitted waveforms are equal
to .

We first consider the performance of parameter estimation.
Fig. 2 depicts the average normalized mean-square errors
(MSE), i.e., , for
phased-array and MIMO radars as a function of received
SNR. It is observed that the MIMO radar outperforms the
phased-array in all SNR regimes and in particular, by a large
margin in the low SNR regime, which is of more interest in
radar applications. Moreover, it is seen that in MIMO radars, the
MAP estimator performs better than the estimator
in the high SNR regime, while the estimator outperforms
the MAP estimator in the low SNR regime, as expected
and discussed in Section IV-A.

It should be noted that comparing the accuracies of the time-
delay estimators are not as informative as comparing the accura-
cies of the detectors. This is mainly because the time-delay esti-
mates have different roles in MIMO and phased-array radars.
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Fig. 2. Average normalized MSE of time-delay estimates versus SNR for ex-
tended targets.

Fig. 3. Average normalized MSE of location estimates versus SNR for ex-
tended targets.

Nevertheless, we perform such comparisons as the detectors
accuracies in our formulations depend on the estimators accu-
racies, which justifies comparing the time-delay estimator in
MIMO and phased-array radars.

We next illustrate the localization performance of MIMO
radar in Fig. 3. Once the vector is available, it is then possible
to further estimate the location of the gravity center of the
target. The localization problem can be formulated in the form
of the following nonlinear equations:

(25)

where is the noise term, and
is the vector of func-

tions defined as

(26)

where and are the positions of the th and th transmit
and receive antennas, respectively. We can solve for from

Fig. 4. Probability of mis-detection versus SNR for a false alarm� � ��

for extended targets.

(25) iteratively as follows. Denote as the solution at the th
iteration. By linearizing with respect to we get

(27)
where is the Jacobian of the function evaluated

at . Then, the least-square estimate of the position based
on (25) and (27) is given by

(28)

where and therefore

has to satisfy the normal equation

(29)
An initial estimate can be obtained, e.g., using the method
in [18]. It is seen that the 4 8 MIMO radar performs consider-
ably better than the 2 2 MIMO radar, which is due to the fact
that 32 time-delays provide much more information about the
position of the target than four time-delays do.

Finally we consider the detection performance. In Fig. 4, the
probability of mis-detection versus SNR is illustrated. The tests
are designed such that the probability of false alarm is

. As analyzed in Section VII and observed in this figure, the
slope of the mis-detection probability of the phased-array radar
is 1 decade per 10 dB, whereas that of the MIMO radar is
times steeper. Fig. 5 shows the receiver operating curve (ROC)
for the MIMO and the phased-array systems, for SNR dB.
It is seen that the MIMO radar significantly outperforms the
phased-array radar over a wide range of false alarm values.

B. Point Targets

We use a similar system setup as in Section VIII-A. Fig. 6 il-
lustrates the normalized average MSE in estimating the time-de-

Authorized licensed use limited to: George Moustakides. Downloaded on February 11, 2010 at 04:03 from IEEE Xplore.  Restrictions apply. 



138 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 1, FEBRUARY 2010

Fig. 5. Probability of target detection versus probability of false alarm for
SNR � � dB for extended targets.

Fig. 6. Average normalized MSE of time-delay estimates versus SNR for point
targets.

lays versus SNR. Unlike for extended targets, it is observed that
for point targets, conventional phased-array and MIMO radars
exhibit similar target detection and time-delay estimation accu-
racies. Therefore, when considering joint target detection and
time-delay estimation, deploying MIMO radars are not much
advantageous for point targets. This conclusion is nevertheless
limited to the specific problem analyzed in this paper and MIMO
radars can be potentially advantageous in other scenarios like
those discussed in [4] and references therein. This is due to the
fact that point targets lack independent scattering section and
thereof provide no diversity gain.

In Figs. 7 and 8, the probability of mis-detection versus SNR
and the ROC are plotted, respectively. For Fig. 7 the tests are
designed such that the probability of false alarm is
and for Fig. 8 we have set SNR dB. It is seen from Fig. 7 that
both the phase-array and the MIMO radars exhibit a diversity
gain of 1, which verifies Theorem 4.

Fig. 7. Probability of mis-detection versus SNR for point targets and � �

�� for point targets.

Fig. 8. Probability of target detection versus probability of false alarm for point
targets and SNR � � dB for point targets.

IX. CONCLUSION

In this paper, we have offered a framework for jointly de-
tecting the presence of a target and estimating some unknown
target parameters. We have provided a composite hypothesis test
that satisfies some optimality criteria for both target detection
and parameter estimation. By using this framework, we have
proposed a new MIMO radar model for detecting the presence
of a target in an unknown location and formulated a composite
hypothesis test for solving this problem. In this problem, the un-
known parameter of interest to be jointly estimated along with
target detection, is the vector of time-delays that a transmitted
waveform experiences from being emitted by the transmit an-
tennas until being received by the receive antennas. For the pro-
posed detection scheme, we also have analyzed the decay rate of
the probability of mis-detection with increasing SNR while the
false alarm probability is kept below a certain level (diversity
gain). Our simulation results demonstrate that for the specific
problem of joint target detection and time-delay estimation, de-
ploying MIMO radars is advantageous for extended targets. On

Authorized licensed use limited to: George Moustakides. Downloaded on February 11, 2010 at 04:03 from IEEE Xplore.  Restrictions apply. 



TAJER et al.: OPTIMAL JOINT TARGET DETECTION AND PARAMETER ESTIMATION BY MIMO RADAR 139

the other hand, for point targets, the accuracies of target detec-
tion and time-delay estimation by conventional phased-array are
comparable with those yielded by MIMO radars.

APPENDIX

Proof of Theorem 2: The pdf of the vector of received sig-
nals for any given and is given by (30), shown at the
bottom of the page. By taking into account the orthogonality as-
sumption ,
we can further simplify the term defined in (30) as fol-
lows:

(31)

For any given time-delay vector , define

and

(32)

Then, can be represented in the matrix form as

(33)

By noting that the pdf of is given by
, we find the estimates of as follows.

1) For finding by denoting the MAP estimate of by ,
setting , and considering the independence
of and , from (10) we get

or equivalently

and (34)

Using (30), (33) and (34) and noting the definition of
given in (32) provides that

(35)

(30)
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Based on the above estimate of , given in (33)
becomes

(36)

Hence, the ML estimate of can be found by solving

(37)

(38)

which concludes the proof.

2) For this case which we average out the effect of by setting
from (10) we get (39)–(41), shown at the bottom of

the page. Noting the definition of given in (31)
concludes the proof.
Proof of Theorem 3: In order to find the ML estimate of

and form (10) we have

or equivalently

and

On the other hand, from (18) the likelihood is given
by (42), shown at the bottom of the page. By taking into account
the orthonormality assumption on we get

(39)

(40)

(41)

(42)
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(43)

is quadratic in and its minimum which is attained at
the ML estimate of is given by

(44)

By substituting (44) back in (43), and after some manipulation,
becomes

Therefore,

(45)

Proof of Lemma 3: We provide the proof by induction.
1) . We define

Then

and therefore,

For finding we set
and obtain

We can check that this is a maximum by noting that

Hence,

2) Inductive assumption

3) Claim

Let and , then
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If we set , then

Also is a maximum since

Therefore, by substituting and some simple manipu-
lations we get

As a result

Proof of Lemma 4:
1) By recalling the definition of

and the
pdf of given by , the likelihood
under hypothesis is given by

We further simplify as follows:

Therefore, the MAP estimate of is given by

(46)

which in turn after some manipulations provides that

Therefore,

Authorized licensed use limited to: George Moustakides. Downloaded on February 11, 2010 at 04:03 from IEEE Xplore.  Restrictions apply. 



TAJER et al.: OPTIMAL JOINT TARGET DETECTION AND PARAMETER ESTIMATION BY MIMO RADAR 143

(47)

which is the desired result.
2) By recalling the definition of

and the
pdf of given by , the likelihood
under hypothesis is given by the equation, shown at
the bottom of the page. We further simplify as
follows:

(48)

By following the same line of argument as in the proof
of Theorem 2, it can be readily demonstrated that the ML
estimate of the time-delay for phased-array system is given
by

3) Setting in (4), it is seen that
. Therefore, the likelihood

under hypothesis becomes as shown in the
equation at the bottom of the page. By defining

and
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following the same line of argument as in the previous
part the ML estimate for is found as

and consequently

Therefore, by following a similar approach as in part 1 we
get

(49)

which is the desired result.
Proof of Lemma 6: We define the events

and

and

Clearly as we have
, where is the probability of interest in (21).

In order to analyze , we define random variables
, for which we have

(50)

(51)

where the transition in (50) holds by noting that for any choice
of , from the table of function it is readily verified
that for sufficiently large values of , and any fixed value ,

. The asymptotic equality in (51) is justified

by noting that . By further using the following
known bounds on the :

we get

By further taking into account that
and noting Remark 1 we get

(52)

Invoking the exponential equivalence in (52) on (51) provides

(53)

As is an unknown random variable distributed as ,
by averaging out its effect we get

(54)

Next, by considering the statistical independence of
we consequently find

(55)

Note that, as long as the asymptotic behavior is concerned, the
asymptotic exponential order of does not depend
on the choice of and by following the same line of argument
as above we can extend the same result for the choice of
and thereof for the exponential order of . As a result,
we can similarly show that

(56)

By noting that and using (55)
and (56) we get that
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which concludes the proof.
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