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Abstract—We consider a well-defined joint detection and param-
eter estimation problem. By combining the Bayesian formulation
of the estimation subproblem with suitable constraints on the de-
tection subproblem, we develop optimum one- and two-step test
for the joint detection/estimation setup. The proposed combined
strategies have the very desirable characteristic to allow for the
trade-off between detection power and estimation quality. Our the-
oretical developments are, then, applied to the problems of retro-
spective changepoint detection and multiple-input multiple-output
(MIMO) radar. In the former case, we are interested in detecting a
change in the statistics of a set of available data and provide an esti-
mate for the time of change, while in the latter in detecting a target
and estimating its location. Intense simulations in theMIMO radar
example demonstrate that by using jointly optimum schemes, we
can experience significant improvement in estimation quality, as
compared to generalized the likelihood ratio test or the test that
treats the two subproblems separately, with only small sacrifices in
detection power.

Index Terms—Joint detection/estimation, multiple-input mul-
tiple-output (MIMO) radar, retrospective change detection.

I. INTRODUCTION

T HERE are important applications in practice where one
is confronted with the problem of distinguishing between

different hypotheses and, depending on the decision, to proceed
and estimate a set of relevant parameters. Characteristic exam-
ples are detection and estimation of objects from images [1]; ret-
rospective changepoint detection, where one desires to detect a
change in statistics but also estimate the time of the change [2],
[3]; defect detection from radiographies, where in addition to
detecting presence of defects one would also like to find their
position and shape [4]; finally, multiple-input multiple-output
(MIMO) radar where we are interested in detecting the pres-
ence of a target and also estimate several target characteristics
as position, speed, etc. All these applications clearly demand
for detection and estimation strategies that address the two sub-
problems in a jointly optimum manner.
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One could apply two straightforward approaches to deal
with combined problems. The first consists in treating the
two subproblems separately and use, in each case, the corre-
sponding optimum technique. In particular, one can use the
Neyman–Pearson optimum test for detection and the optimum
Bayesian estimator for parameter estimation to solve the com-
bined problem. As it is reported in [5] and we will also have
the chance to verify with our analysis, treating each part sepa-
rately with the optimum scheme does not necessarily result in
optimum overall performance. The second methodology con-
sists in using the well-known generalized likelihood ratio test
(GLRT) which detects and estimates at the same time with the
parameter estimation part relying on the maximum likelihood
estimator. Even though GLRT is very popular, it lacks solid op-
timality properties, especially under a finite-sample-size setup
[6]. We must also mention that both approaches lack versatility
since they are not capable of emphasizing each subproblem
according to the needs of the corresponding application.
In [1], [7]–[10], several methodologies are reported that have

as common element the reduction of the joint detection/estima-
tion problem into an equivalent multihypothesis setup by sam-
pling the parameter space at a finite number of points. It is clear
that such approaches lack optimality when the parameters as-
sume a continuum of values since they constitute approxima-
tions to the original problem. Furthermore, it is not clear how
one can incorporate popular costs, as mean square error (MSE)
or mean absolute error, that constitute classical figures of merit
for the estimation subproblem.
Surprisingly, there is very limited literature that deals with op-

timum solutions of the joint detection and estimation problem.
Purely, Bayesian techniques are reported in [5] and [11] under
a fixed sample size setup offering optimum detection and esti-
mation structures for the joint problem.
Bayesian approaches that do not lead to jointly optimum de-

tection/estimation schemes are reported in [12] and [13]. In par-
ticular, the first article deals with recursive signal estimation
algorithms with parallel signal detection, while the second ad-
dresses communication problems and presents receiver struc-
tures of detector/estimator type. We should also mention [14],
[15] where the Bayesian approach for the joint detection/esti-
mation problem is analyzed under a sequential setup. Again, no
optimum scheme is established.
Finally, a combination of Bayesian and Neyman–Pearson-

like methodology is developed in [16] and [17]. Specifically,
the error probabilities under the two hypotheses, used in the
classical Neyman–Pearson approach, are replaced by estimation
costs. Mimicking the Neyman–Pearson formulation and con-
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straining the estimation cost under the nominal hypothesis while
optimizing the corresponding cost under the alternative give rise
to a number of interesting combined tests that can be used as al-
ternatives to GLRT.1

It is clear that in order to properly formulate the joint problem,
we must define a suitable performance measure that depends on
both parts, that is, the detection and the estimation. Since each
subproblem is characterized by its own figure of merit, in order
to produce a unique performance measure, there are basically
two possible directions one can follow. We can either combine
the two performance measures, which is the logic behind the
Bayesian approach [5], [11], or focus on one subproblem and
attempt to optimize its efficiency while assuring satisfactory
performance for the second subproblem through suitable con-
straints. This is the direction we intend to follow in this paper. In
particular, we will define a cost function for the estimation part
which will depend on both, the detector and the estimator. This
performance measure will, then, be optimized with respect to
the detector/estimator pair assuring, at the same time, the satis-
factory performance of the detection part with appropriate con-
straints on the decision error probabilities. This idea will lead
to two novel optimum tests that have no equivalent in [5], [11],
and [16].
We would like to point out that the theory in [5], [11], [16],

[17] as well as the one we are going to develop in our paper
makes sense only when both subproblems constitute desired
goals in our setup, that is, when we are interested in detecting
and estimating. These results cannot provide optimum schemes
for the case where one is interested only in detection and is
forced to use parameter estimation due to presence of param-
eters that are regarded as nuisance.
Our paper is organized as follows. In Section II, we define

the joint detection and estimation problem and propose two dif-
ferent optimal solutions. As a quick example, our results are,
then, applied to the problem of retrospective change detection.
In Section III, we make a thorough presentation of the MIMO
radar problem under a joint detection and estimation formula-
tion and use the results of the previous section in order to solve
this problem optimally. Specifically, we develop closed-form
expressions for all quantities that are needed to apply our theory
and perform simulations to evaluate the performance of the op-
timum scheme, addressing also computational issues. Finally,
in Section IV, we have our concluding remarks.

II. OPTIMUM JOINT DETECTION AND PARAMETER ESTIMATION

Let us define the problem of interest. Motivated by most ap-
plications mentioned in Section I, we limit ourselves to the bi-
nary hypothesis case with parameters present only under the
alternative hypothesis. Suppose we are given an observation
vector for which we have the following two hypotheses:2

:
: ,

1In [17], for completeness, there is also a very brief presentation of the theo-
retical developments contained in the current article.
2Throughout our paper, scalar quantities are denoted with lower case, vec-

tors with upper case, and matrices with bold-face upper case letters. We also
use calligraphic letters to denote certain important quantities and a special letter
style for the two hypotheses, decisions, probability measures, and their corre-
sponding expectations.

where are known probability density
functions (pdfs) and “ ” means “distributed according to.” For
simplicity, we will assume that the pdfs are well-behaved func-
tions not having any nonzero probability masses over lower
dimensional manifolds (this is the equivalent of not having
any “point masses,” or its corresponding pdf not containing any
delta functions, when is scalar). As we can see, we assume
that under we know the pdf of completely, whereas under
the pdf of contains a collection of random parameters

for which we have some prior available pdf . The goal is to
develop a mechanism that distinguishes between , and,
furthermore, every time it decides in favor of , it provides an
estimate for . Our combined detection/estimation scheme
is, therefore, comprised of a randomized test
with denoting the randomization probability for deciding
in favor of in a random decision game (like coin flipping
using an unfair coin), and a function that provides
the necessary parameter estimates. Clearly, and

.
Let us recall, very briefly, the optimum detection and es-

timation theory when the two subproblems are considered
separately.
Neyman–Pearson Hypothesis Testing: Fix a level

; if denotes our decision, then we are in-
terested in selecting a test [namely the randomization
probabilities ] so that the detection probability

is maxi-
mized subject to the false alarm constraint

. Equivalently, the previous maximiza-
tion can be replaced by the minimization of the probability
of miss . It is
clear that refers to the probability measure induced by the
corresponding pdf . The optimum detection scheme is the
well-celebrated likelihood ratio test [18, pp. 22–25], which
takes the following form for our specific setup:

(1)

where

(2)

is the corresponding marginal density of . In other words,
we decide whenever the likelihood ratio exceeds the
threshold , whenever it falls below the threshold, and
randomize with a probability when the likelihood ratio is equal
to the threshold. The threshold and the probability are
selected to satisfy the false alarm constraint with equality. The
randomization probabilities corresponding to
the Neyman–Pearson test are given by

(3)

where denotes the indicator function of the set .
Bayesian Parameter Estimation: Suppose we knowwith cer-

tainty that the observation vector comes from hypothesis ;
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then, we are interested in providing an estimate for the
parameters . We measure the quality of our estimate with the
help of a cost function . We would like to se-
lect the optimum estimator in order to minimize the average
cost
where, as we can see, expectation is with respect to and .
From [18, p. 142], if denotes the posterior cost func-

tion

(4)

where expectation is with respect to for given , then the
optimum Bayesian estimator is the following minimizer:

(5)

In other words, for every given , is the value of
that minimizes , with the latter considered as a func-
tion of only. As it is the usual practice in most textbooks,
e.g., [18, p. 142], [19, p. 117], in order to avoid the definition
of -optimum estimators, or sequence of estimators with perfor-
mance converging to the optimum, complicating unnecessarily
our presentation, we will assume that , for every value
of , always exhibits a minimum over which is attained at

, namely the Bayesian estimator. The latter is for-
mally expressed with (5). Finally, we denote the optimum pos-
terior cost as , that is

(6)

This quantity will play a very important role in the development
of our theory as it constitutes a genuine quality index for the
estimate .
Let us now consider the combined problem. We recall that

the hypothesis testing part distinguishes between and .
As we have seen, the Neyman–Pearson approach provides the
best possible detection structure for controlling and optimizing
the corresponding decision error probabilities. However, with
a decision mechanism that focuses on the decision errors, we
cannot necessarily guarantee satisfactory performance for the
estimation part. Consequently, as we argued in Section I, the
detection part cannot be treated independently from the estima-
tion part. Following this rationale, we propose two possible ap-
proaches involving one- and two-step schemes that differ in the
number of decision mechanisms they incorporate and the way
they combine the notion of reliable estimate with the detection
subproblem.

A. One-Step Tests

Let us begin our analysis by introducing a proper perfor-
mance measure for the estimation subproblem. Following the
Bayesian approach, we assume the existence of the cost function

. Computing the average cost that will play the role
of our performance measure is not as straightforward as in the
pure estimation problem case and requires some consideration.

Note that an estimate is provided only when we decide
in favor of . On the other hand, averaging of makes
sense only under the alternative hypothesis , since under the
nominal there is no true parameter . Consequently, we pro-
pose the following performance criterion:3

(7)

where, as we can see, expectation is with respect to and .
Using (2) and (4), we can immediately obtain a more convenient
expression for our conditional average estimation cost, namely

(8)

We realize that in our criterion, unlike the classical estimation
problem, the estimation performance depends on both the esti-
mator (through ) and the detector (through ) and we
compute the average cost over the event , which is
the only case an estimate is available. Consequently, optimizing
this criterion will result in the optimum detector/estimator pair.
One would immediately argue that the measure in (7), even

though it takes into account both parts, its optimization does not
guarantee, in any sense, the satisfactory performance of the de-
tection subproblem. This is indeed the case but, as wementioned
in Section I, by imposing proper constraints on the two error
probabilities of the detection part we can easily overcome this
crucial weakness. Specifically, we can impose the familiar false
alarm constraint but also a constraint on the
probability of miss where . With
these two constraints, we have complete control over the deci-
sion mechanism and therefore, now, it makes sense to attempt
to minimize the conditional average estimation cost
over the decision rule and the estimator. Consequently, we pro-
pose the following constrained optimization problem:

(9)

subject to

(10)

Note that the two constraints guarantee satisfactory perfor-
mance for the detection part and, by minimizing our criterion,
we can enjoy the best possible performance in the estimation
part. We would like to emphasize once more that even though
we optimize the estimation performance, this is achieved by
simultaneously optimizing over both parts, the detector and the
estimator.

3Since , by specifying we define, completely,
the decision rule.
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Let us carry out the desired optimization gradually based on
the following equality:

(11)

In other words, we first fix the decision rule (and hence
as well) and optimize with respect to the esti-

mator . The resulting outcome will depend on and
it will be further optimized with respect to this quantity over de-
cision rules that satisfy the two constraints in (10). For the first
minimization, we have the following lemma that provides the
solution to this problem.

Lemma 1: Let be any scalar nonnegative function;
then, the following functional of :

(12)

is minimized when is the optimum Bayesian estimator
defined in (5).

Proof: The proof is simple. We can write

(13)

where for the last two equalities we used (6).

Lemma 1 is a very interesting result because it demonstrates
an extended optimality property of the classical Bayesian esti-
mator. In particular, by selecting , we can con-
clude that continues to be optimum even if estimation
is dictated by a decision mechanism and not performed over all
data , as is the usual practice with Bayesian estimation. Conse-
quently, we can now fix our estimator to the Bayesian estimator

and for the resulting performance we have

(14)

From (11), we can now see that

(15)
In other words, we need to minimize the resulting over

but with the detection structure and
satisfying the two constraints in (10). Before addressing

this last step of our optimization problem,we need tomake some
remarks.

Remark 1: We recall that in our setup we have the two error
probability constraints defined in (10). By fixing the false alarm
probability to , the probability of miss is minimized by the
Neyman–Pearson test; call this minimum value . Since
no test, with false alarm probability not exceeding , can have
a probability of miss which is smaller than , this sug-
gests that in our constraint on the probability of miss, must
be selected to satisfy . Consequently, if we select
to strictly exceed , we are in fact allowing the reduc-

tion, in a completely controlled manner, of the detection power
as compared to the Neyman–Pearson test, in the hope to use
this extra space to improve the estimation quality. In fact, the
goal is to make the best possible use of this flexibility since we
are looking for the detector/estimator pair that will optimize this
improvement.

Remark 2: The proposed setup, in a sense, is interested in de-
tections only if they result in reliable estimates. In other words,
with this formulation, the null hypothesis is not distinguished
from the alternative if the latter cannot provide reliable param-
eter estimates. We should point out that there are applications
where this setup makes sense. For example, segmentation prob-
lems in images, where one is interested in identifying objects
in an image is such a possibility. Indeed, in this application, a
simple object detection has no practical meaning if it is not ac-
companied by object boundary specification. Of course, there
are other applications, as, for example, MIMO radar where, as
we will see in the next section, this formulation is not suitable
and where detection makes sense even if it is not followed by
reliable estimation.
Let us now present our first theorem that gives the optimum

solution for the joint detection/estimation problem introduced
earlier.

Theorem 1: Let and
with denoting the probability of miss of the
Neyman–Pearson test when is the false alarm probability
level. Let be the solution of the equation

(16)

where is defined in (6). Then, the optimum detector/es-
timator pair that minimizes (9) under the two constraints in (10)
is comprised of the Bayesian estimator defined in (5)
for the estimation part, while the corresponding decision rule is
given by

(17)

(18)

where in (18), and are selected so that the two error proba-
bility constraints are satisfied with equality.

Proof: The proof is presented in the Appendix.
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From (17) and (18), we deduce that the detector compo-
nent in the optimum pair takes into account the estimation
part through which constitutes a quality index for the
estimate . If this index is sufficiently large, then the
estimate is considered unreliable and the test, in both cases,
decides in favor of (since in this approach, as we argued in
Remark 2, unreliable estimates are not distinguished from the
null hypothesis). In particular, in (18), this decision may occur
even if, in the classical Neyman–Pearson test, the likelihood
ratio exceeds the threshold , that is, decides in favor
of .
Summarizing, our first optimum combined test consists in ap-

plying (17) or (18) to decide between the two hypotheses and
every time we make a decision in favor of we use
defined in (5) to provide the optimum parameter estimate.

B. Two-Step Tests

In the previous setup, our decision was between and
and we were sacrificing detection power to improve estimation.
However, in many applications, giving up part of the detec-
tion capacity may be regarded as undesirable. For example, in
MIMO radar, it is still helpful to detect a target even if we cannot
reliably estimate its parameters.
It is possible to preserve the detection power and at the same

time ameliorate the estimation performance if we follow a
slightly different approach that involves two-step mechanisms.
Specifically, we propose the use of an initial detection strategy
that distinguishes between and ; whenever we decide in
favor of then, at a second step, we compute the estimate

and employ a second test that decides whether the
estimate is reliable or unreliable, denoted as and ,
respectively. Consequently, we propose to make three different
decisions , and with the union of the last two
corresponding to hypothesis . As we can see, estimate
is trustworthy only when we decide in favor of , but we
have detection even if we discard the estimate as unreliable,
that is, we decide .
For the first test, we use our familiar randomization proba-

bilities , while for the second we employ a new
pair . The latter functions are the randomiza-
tion probabilities needed to decide between reliable/unreliable
estimation given that the first test decided in favor of . There-
fore, we have and .
For every combination of the four randomization probabilities
we define, similarly to the previous section, the corresponding
average conditional cost for the estimator , namely4

(19)

4Similarly to the first decision mechanism, in the second, since
, we only need to specify .

where for the last equality, again, we used (2) and (4). As we
can see, we now condition on the event since this
is the only case when the estimate is accepted. We also
note that, for given , the probability to decide in favor of is

because we must decide in favor of in the first
step (with probability ) and for in the second (with
probability ).
In the first step, we would like to adopt the best possible de-

tector to select between and . We follow the classical
Neyman–Pearson approach and impose the false alarm proba-
bility constraint , while we minimize the prob-
ability of miss . This leads to the Neyman–Pearson
test defined in (1) with corresponding randomization probabili-
ties , given in (3).
Having identified the first, let us proceed to the second step

of our detection/estimation mechanism that involves parameter
estimation and a second test that labels the estimate as reliable/
unreliable. Consider the conditional average estimation cost

(20)
which, of course, we would like to minimize with respect to the
estimator and the second decision mechanism . Note, how-
ever, that, in addition to this minimization, we are also interested
in generating as many “reliable estimates” as possible when ap-
plying the second decision rule. These two goals are conflicting;
therefore, we adopt a Neyman–Pearson-like approach in order
to come up with an optimum scheme. In other words, we con-
strain one quantity and optimize the other.
To find a suitable constraint, we note that since
, the probability of deciding in favor of
(reliable estimate) satisfies

(21)

In other words, this probability is upper bounded by the de-
tection probability of the Neyman–Pearson test
where denotes the corresponding minimum miss prob-
ability. The last inequality expresses the obvious fact that, only
a portion of our initial decisions in favor of of the first step,
will provide reliable estimates in the second step. Actually, it
is this portion we intend to control by imposing the inequality

where, because of (21), we need, again,
to select . Summarizing, we are interested in
solving the following constrained optimization problem:

(22)

subject to

(23)
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The constraint in (23) expresses our desire that at least a fraction
of

(24)

of the initial decisions in favor of must provide reliable es-
timates. Subject to this constraint, the goal is to obtain the best
possible estimation performance by minimizing the conditional
average estimation cost in (22) over the estimator and the second
decision mechanism.
As in the previous test, we can perform this optimization in

steps. We first fix ; then, from Lemma 1, by selecting
, we conclude that this criterion is min-

imized when , that is, again with the optimum
Bayes estimator defined in (5). Call

(25)

the corresponding performance. The final step is to minimize
by selecting properly over the class of decision

mechanism that satisfy the constraint in (23) or (24). The so-
lution to this constrained optimization problem is given in the
next lemma.

Lemma 2: Let ; then, the decision mecha-
nism that minimizes defined in (25) subject to the con-
straint in (23) is given by

(26)

where is selected to satisfy (23) with equality and is
defined in (6).

Proof: The proof goes along the same lines of the proof
of Theorem 1. Since it presents no particular difficulty, it is
omitted.

As in the previous section, constitutes a quality index
for the estimate .With Lemma 2, we end up with the very
plausible decision rule of accepting as reliable whenever
this index falls below some threshold , while the estimate is
discarded as unreliable whenever the same quantity exceeds the
threshold.
Summarizing our second optimum detection/estimation

scheme, we first use the Neyman–Pearson test (1) to decide
between and . Whenever we decide in favor of , we
compute the estimate from (5) and its corresponding
quality index from (6); then, we use the test in (26) to
characterize the estimate as reliable/unreliable.

Remark 3: In both our tests, we have the parameter
which controls the level of the probability of miss. Of course,

since the miss probability delivered by the
Neyman–Pearson test is the smallest possible (for given false
alarm rate ). If we select , then both our tests
reduce to the case where we treat the two subproblems sepa-
rately and apply the corresponding optimum scheme in each

subproblem, namely, the Neyman–Pearson test to decide be-
tween the two hypotheses and the optimum Bayesian estimator
to provide the necessary parameter estimate (every time the
detector decides in favor of ). This latter test constitutes,
of course, a straightforward selection for solving the joint
detection/estimation problem and, as we pointed out, it is
simply a limiting case of our more general schemes. The
advantage offered by our methodology is the flexibility to trade
detection power for estimation accuracy by just controlling this
parameter . Such flexibility does not exist when we treat the
two subproblems separately or if we solve the joint problem
by applying the GLRT. Furthermore, in the next section, we
will have the opportunity to confirm that with the proposed
detection/estimation structures, we can enjoy substantial gains
in estimation quality as compared to GLRT and the test that
treats the two problems separately. This will be achieved with
only mild or even minor sacrifices in detection power.

C. MSE Cost and Uniform Prior

If we call the conditional likelihood
ratio, then all quantities entering in the two tests can be ex-
pressed with the help of and the prior probability .
We start with the likelihood ratio which is part of both tests and
observe that it can be written as

(27)

From (4), we can see that the posterior cost can be
computed as

(28)

suggesting that the Bayes estimator
and the corresponding optimum

posterior cost can be expressed with
the help of the conditional likelihood ratio as well.
Let us now examine the special case where for the cost func-

tion we adopt the squared error which
leads to the MSE criterion. From [18, p. 143], we know that the
optimum estimator is the conditional mean . If
we also assume the prior to be uniform over some known
set with finite Lebesgue measure , then

(29)

We can see that does not enter in the computation of the
estimate and its quality index . Although
does appear in the likelihood ratio , it is easy to verify
that, in both tests, it can be transferred to the right-hand side and
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absorbed by the corresponding threshold . We, therefore, con-
clude that explicit knowledge of this quantity is necessary only
if we compute the thresholds and the performance analytically
(and not through simulations). Finally, we note that in the MSE
criterion, is the conditional variance of which,
clearly, constitutes a very meaningful quality index for the cor-
responding estimate.
We have now completed the development of our theory that

addresses the joint detection and estimation problem. To demon-
strate the power and originality of our analysis, first we apply
our results to the example of retrospective change detection and
then in Section III, at a much greater extent, we use them to
solve the MIMO radar problem.

D. Example: Retrospective Change Detection

Retrospective change detection is the problem where within
a given set of data , there is a possible time
instant where the data switch statistics from some nominal pdf

before to an alternative pdf after . We consider
as the last time instant under the nominal regime. Given ,

we are interested in detecting the change but also estimating the
time the change took place. Among other applications, offline
segmentation problems can be put under a retrospective change
detection setup.
We should point out that retrospective change detection

methodology is largely dominated by sequential techniques
[3]. However, this constitutes a serious misusage of these
methods since, in the retrospective formulation, the data are
all available at once, whereas in the sequential setup the data
become available sequentially. This means that by adopting
sequential tests for the solution of the retrospective problem
results in an inefficient utilization of the existing information.
Let us now apply our previous theory. Note that for
, and by using the Bayes rule, the two pdfs can be decomposed

as

(30)

We first need to define the data pdf under the two hypotheses.
Under , we are under the nominal model; therefore, clearly,

. Under and with a change occurring at ,
we define the pdf as follows:

(31)

In other words, from the decompositions in (30), we combine
the first part of the nominal pdf with the second part of the alter-
native.With this changepointmodel, we assume that the data be-
fore the change affect the data after the change through the con-
ditional pdf. In other words, the switching in the statistics is ap-
plied on the conditional data density. This is the most common
model used in change detection theory but, we should mention
that, it is also possible to come up with practically meaningful
alternatives [20]. Note that means that all the data
are under the nominal regime (i.e., there is no change) whereas

means that all the data are under the alternative regime.

Therefore, under , we have with some prior
.

Let us compute the quantities that are necessary to apply our
tests. Using (30), we can write for the conditional likelihood
ratio

(32)

suggesting that the likelihood ratio, from (27), takes the form
.

Consider now the estimation problem. We propose the fol-
lowing cost function , penalizing incorrect
estimates by a unit cost. The average cost in this case coin-
cides with the probability to estimate incorrectly. Observing that

, from (28) we can write

(33)

Consequently, the optimum estimator that minimizes
over is

(34)

which is the MAP estimator [18, pp. 145–150], while the corre-
sponding optimum posterior cost becomes

(35)

The classical test that treats the two subproblems separately
consists in comparing the likelihood ratio to the threshold

in order to distinguish between the two hypotheses and
uses to estimate the time of change. GLRT, on the other
hand, compares to a threshold with the
argument of this maximization providing the estimate for the
time of change.
Applying our theory to this problem, for the single-step test,

we use for the estimate of the changetime and either

(36)

or

(37)

for the decision. For the two-step scheme, we compare the like-
lihood ratio to the threshold to decide between the
two hypotheses; use for the changepoint estimate and, fi-
nally, apply

(38)

to label the estimate as reliable/unreliable. Both combined
schemes resulting from our theory are completely orig-
inal, nonsequential, and make efficient use of all available
information.
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III. APPLICATION TO MIMO RADAR

A context where performing joint detection and estimation is
of particular interest is in radar systems. Radars are, often, de-
ployed not only to detect a target but also estimate unknown pa-
rameters associated with the target, e.g., position and velocity.
Recent developments in radar systems equip radars with mul-
tiple transmit and receive arrays that considerably improve their
detection power and estimation accuracy compared with the
conventional phased-array radars.
In this section, we examine themerits of the tests developed in

the previous section for enhancing the detection and estimation
quality by employing MIMO radar systems with widely sepa-
rated antennas [22]. In particular, we are interested in the detec-
tion of a single target, and the estimation of its location every
time the target is ruled present. This is, somewhat, different from
the more conventional approaches inMIMO radar systems, e.g.,
[23] and references therein, where the probe space is broken
into small subspaces and the radar detects the presence of the
target in each of the subspaces separately. In this approach, as
the location to be probed is given, one is only testing whether a
target is present in a certain given subspace [23]. This necessi-
tates implementing multiple detection tests in parallel, one for
each subspace. In this section, we develop detectors and esti-
mators based on the optimality theory discussed in the previous
section which are used only once for the entire space.

A. System Description

We consider an MIMO radar system with transmit and
receive antennas that are widely separated. Such spacing among
the antennas ensures that the receivers capture uncorrelated re-
flections from the target. Conditions involving the distance be-
tween antennas in combination with the parameters of the trans-
mitted waves that guarantee this behavior can be found in [23,
Sec. II-A]. Both transmit and receive antennas are located at
positions , for , and , for

, respectively, known at the receiver.
The th transmit antenna emits the waveform with baseband

equivalent model given by where is the transmitted
energy of a single transmit antenna (assuming to be the same
for all transmitters); where denotes the
common duration of all signals .
We aim to detect the presence of an extended target and when

deemed to be present also estimate its position. The extended
target consists of multiple scatterers exhibiting random, inde-
pendent, and isotropic scintillation, each modeled with a com-
plex random variable of zero mean and unknown distribution.
This corresponds to the classical Swerling case I model [21] ex-
tended for multiple-antenna systems [22], [23]. The reflectivity
factors are assumed to remain constant during a scan and are al-
lowed to change independently from one scan to another.
We define as the location of the gravity center of the target

and as the aggregate distance that a probing waveform
travels from the th transmit antenna to the target and

from the target to the th receive antenna, i.e.

(39)

The time delay the waveform is experiencing by traveling
this distance is equal to

(40)

where is the speed of light. When the target dimensions are
considerably smaller than the distance of the target from the
transmit and receive antennas, the distance of the antennas to
each scatterer of the target can be well approximated by their
distances from the gravity center of the target. Therefore, the
measured signal at the th receive antenna is the superposition
of all emitted waveforms and is given by the following equation
[24]:

(41)

where is the path loss with denoting the path-loss expo-
nent; denotes a standard complex-valued Gaussian “white
noise” process distributed as5 ; and accounts for
the reflectivity effects of the scatterers corresponding to the th
transmit and the th receive antennas. It can be readily verified
that are independent and identically distributed (i.i.d.)
with distribution [23], [24]. We note that we have as-
sumed for the noises and the coefficients that they
are of unit variance. In fact, if we use any other values, e.g.,
and , respectively, then in the final test these quantities

are combined with the transmitted signal power in the form
of . Consequently, provided that in the general case
and are known then, without loss of generality, we may as-
sume and let express the final combination.
For define

(42)

where we recall that and are known functions
of defined in (39) and (40) and or denote
the transpose and Hermitian (transpose and complex conjugate),
respectively, of a vector or a matrix . Using (42), we can
write

(43)

Since we intend to use results from Itô Calculus, we will
rewrite the previous equation under a stochastic differen-
tial equation form. We note that the Gaussian white noise
process can be considered as the derivative of a corre-
sponding standard complex-valued Wiener process , i.e.,

. Furthermore, if we consider the measured

5 denotes the distribution of a complex Gaussian random variable
with mean where the real and imaginary parts are uncorrelated
(and therefore independent) Gaussian random variables with mean , re-
spectively, and of variance equal to .
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signal to be the derivative of another process , that
is, , then we can rewrite (43) as

(44)

which in Itô Calculus is expressed under the following sto-
chastic differential equation form:

(45)

Let us, now, formulate the joint detection and estimation
problem for the specific signal model we just introduced.

B. Target Detection/Localization With MIMO Radar

For , we distinguish the following two hypotheses
satisfied by the received signals

:
: .

As we can see, when there is no target present, the received
signals are pure Wiener processes, whereas with the appear-
ance of a target we have the emergence of the nonzero drifts

.
For simplicity, let us use to denote the signal acquired by

the th receive antenna during the time interval , that is,
. The collection of these sig-

nals constitutes the complete set of observations; in other words,
plays the role of the observation vector of the

previous section. Of course, here, we slightly abuse our orig-
inal definition since was considered to be a random vector,
while is a collection of random signals. Never-
theless, this should not discourage us because we can always
sample (arbitrarily fine) in time the signals and end up with a
random vector. This slight inconsistency was deemed necessary
in order to be able to use existing results from Itô Calculus that
provide, directly, closed-form expressions for the (conditional)
likelihood ratio which is needed to define the tests of interest.
The same results would have required a significantly more cum-
bersome analysis to obtain if we had followed the classical dis-
crete-time methodology that goes through sampling of the re-
ceived signals and then passes to the limit to obtain the corre-
sponding continuous-time analog.
Clearly, our goal is to use in order to decide

between the presence or absence of a target and, every time a
target is detected, to provide a reliable estimate of its position.
To apply the theory developed in the previous section, according
to Section II-D, we need to find the conditional likelihood ratio

which, here, becomes . The following
theorem provides the required formula.

Theorem 2: The conditional likelihood ratio
of the received signals is given by

(46)

where

(47)

denotes the identity matrix of size , and the determi-
nant of the matrix .

Proof: The proof is presented in the Appendix.

A final quantity which is of major interest for the next sec-
tion is the appropriate definition of SNR. Note that, depending
on the position of the target, the received signals exhibit
different SNR levels. This is due to the path-loss effect, which
is, particularly, severe for distant targets. We, therefore, propose
to measure the SNR by aggregating the signal and noise ener-
gies at the receivers but also averaging these quantities over all
possible target positions . Specifically, by adopting the
uniform model for , we define

(48)

where from standard Itô Calculus, the expectation in the denom-
inator is equal to . For the approximate equality, we over-
looked the boundary effects in the numerator, that is, we as-
sumed that for all which,
of course, is not true when is close to the boundary of . If
there is no path loss, that is , then the previous equation
reduces to the simple formula . The transmitted
energy will be tuned through these equations in order to de-
liver the appropriate SNR level at the receivers.
We have now developed all necessary formulas that allow us

to use the results in Section II in theMIMO radar problem. In the
next section, we evaluate the joint detection/estimation scheme
with Monte Carlo simulations that cover various combinations
of SNR values and number of transmit/receive antennas. We
apply only the two-step test developed in Section II-C since,
as we briefly argued earlier, it is more well suited for the MIMO
radar problem.

C. Simulations

We consider the 2-D analog of the MIMO radar problem with
two configurations consisting of and
antennas, where the th transmit and the th receive antenna
are located at and (expressed in
kilometers), respectively.
The emitted waveforms are for

where is the signal duration. Moreover,
we select an integration time . This
integration limit can accommodate delays that do not
exceed (for larger delays, we simply measure noise during the
interval ). The maximal delay defines a region in space
where every point has at least one aggregate distance

, defined in (39), from one transmit and one receive
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antenna that does not exceed the value . Actually,
the points in space that have an aggregate distance from a pair
of transmit/receive antennas not exceeding 150 km lie in the
interior of a well-defined ellipse. Since we have pairs of
transmit/receive antennas, we conclude that is the union of an
equal number of such ellipses. By considering that all antennas
are roughly positioned at the origin, all ellipses become circles
and can be approximated by a disk of approximate radius of
75 km.
As is the usual practice in MIMO radar literature, we assume

, namely, no path loss. This means that we are going to
tune our energy parameter through the simplified equation

.We consider SNR values , , 0, and 10 dB.
Assuming that the target position is uniformly distributed

within and that for the cost function we employ the MSE cri-
terion, we can use the formulas in (29) for the joint detection/es-
timation scheme. From (29) and (47), we observe the need for
space and time integration. Both integrals will be evaluated nu-
merically. For time integration, we use canonical sampling and
consider points within the time interval . For inte-
gration in space, we form a canonical square grid of points for
. Denote with the number of points that lie in the in-

terior of the region . The two integrals are, then, approximated
by sums. Specifically, the quantities in (47), for , are ap-
proximated by

(49)

and under (needed to compute the threshold )
takes the form

(50)

while for the same quantity under we can write

(51)

Parameter denotes the “true” target position selected uni-
formly within , and is one of the grid points in the
interior of the same set. The coefficients are selected ran-
domly from a Gaussian , while each is also
Gaussian . For each run, the quantities and

are the same for all . For our simulations, we use
samples and a grid with cells 10 km 10

km that generates 179 points in the interior of .
For the test in Section II-C, according to (29), the likelihood

ratio test is implemented as

(52)

Every time a decision is made in favor of , we provide the
following estimate of :

(53)
with corresponding quality index , where

(54)
The estimate is characterized as reliable/unreliable de-
pending on whether is below/exceeds the threshold .
As we discussed in Remark 3, selecting re-

duces our test to the case where the two subproblems are treated
separately with the corresponding optimum schemes. This test
clearly constitutes a straightforward selection for solving the
joint detection/estimation problem and becomes a special in-
stance of our two-step scheme corresponding to a fraction value
equal to 1. This is true because if we substitute in (24)

, the fraction value becomes 1, suggesting that all detec-
tions of the Neyman–Pearson test of the first step are considered
to provide reliable estimates through the Bayesian estimator

; consequently, there is no need to apply the second de-
cision mechanism.
An alternative straightforward test is clearly the pop-

ular GLRT where we maximize the likelihood ratio
in (46) over and compare it to a threshold.

We recall that GLRT decides between the two hypotheses and,
at the same time, provides ML estimates for the parameters.
The threshold is selected so that the corresponding false alarm
probability is equal to . Furthermore, every time the test
decides in favor of , we are using the corresponding estimate
as reliable, consequently, for this test as well the fraction value
is equal to 1.
For convenience, wewill refer to GLRT and the test that treats

the two subproblems separately as conventional tests. The goal
of our simulation is to examine whether it is possible to enjoy
any significant gains in performance when adopting our two-
step method as compared to these two conventional tests.
Monte Carlo simulations were carried out in order to study the

performance of the different tests. For each SNR value, 200 000
simulations were implemented to validate our theoretical devel-
opments. In our simulations, we fixed the false alarm proba-
bility to . The (conditional) MSE was computed as

where is the total number of cases where
the combined test decided in favor of (that is, in the first
step and in the second).
In Fig. 1, we depict the MSE normalized by the (approxi-

mate) radius of squared ( ) as a function of the fraction
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Fig. 1. Normalized MSE as a function of the fraction of reliable estimates for different values of SNR. Configuration : optimum is solid and GLRT is
; configuration : optimum is dashed and GLRT is . Each curve for yields the performance of the test that treats the two subproblems
separately with the corresponding optimum scheme.

of reliable estimates, i.e., . The fraction value is con-
trolled through the threshold of the second decision mecha-
nism defined in (26). We recall that fraction value equal to 1 in
our test corresponds to the test that treats the two subproblems
separately. For fraction value equal to 1, we also depict the per-
formance of GLRT with little black or white circles (depending
on the configuration).
The first important observation is that the two conventional

tests have very similar performances. This is indeed the case
since the little circles are either exactly on top of the beginning
of each curve or very close to this performance value.
By moving to fraction values strictly smaller than 1, we start

using our two-step test. We observe that as the fraction value be-
comes smaller, the corresponding estimation error performance
is improving. More specifically, for , we need
to sacrifice more than 50% of our detections (more accurately in
these cases we regard the estimates as unreliable) to reduce the
MSE by a factor of 2 as compared to the performance we obtain
by the two conventional tests. For larger SNR values, we can
have more important (even enormous) gains. For example, for

by sacrificing 50% of the detections, in the 2 2
case, we gain an order of magnitude in estimation performance,
while the same gain in the 3 3 configuration is achieved with
only 25% reduction. Finally, in the 10 dB case, the gain can be
improved even by two orders of magnitude with only a minor
reduction in detection power. A last observation is that, apart
the very low SNR case of , the 3 3 antenna configu-
ration is preferable to the 2 2 since it exhibits uniformly better
performance.
Summarizing: from the simulations, we can assess that our

scheme can produce non-negligible improvements in estima-
tion accuracy, as compared to the two conventional tests, with
only small sacrifices in detection power. In fact, in the case of
medium SNR values, the corresponding gain can even become

substantial (two orders of magnitude) with minor degradation
in detection power.
We would like to complete our simulations section by

pointing out that the assumption of uniform prior for the
target position is clearly arbitrary. In order to overcome this
practically serious modeling issue, one could use Bayesian
nonparametric techniques [26], [27]. It is expected that such
methods can play a significant role when we consider the
problem of multiple target detection/localization and, more
importantly, when the number of targets is unknown. Further-
more, techniques similar to the ones proposed in [28] could
turn out to be beneficial when attempting to extend our MIMO
radar results to cover the problem of target tracking.

IV. CONCLUSION

We have presented two possible formulations of the joint
detection and estimation problem and developed the corre-
sponding optimum solutions. Our approach consists in properly
combining the Bayesian method for estimation with suitable
constraints on the detection part. The resulting optimum
schemes allow for the trade-off between detection power
and estimation quality, thus emphasizing each subproblem
according to needs of the actual application. Our theory was,
then, applied to the problems of retrospective change detection
and MIMO radar. In particular, in the second application, ex-
tensive simulations demonstrated the possibility to experience
important improvement in estimation quality, as compared
to GLRT and the approach that treats the two subproblems
separately. In fact, with only small sacrifices in detection power
even for low (as 0 dB) SNR values, the improvement can be
non-negligible, while for medium (as 10 dB) SNR values the
corresponding gain can be substantial.
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APPENDIX

In order to avoid unnecessary technical complications in
our proofs, we are going to make some additional simplifying
assumptions. For a random variable , let us denote with

its essential infimum and supremum, respectively,
and call the interval of support of . Observe now
that the optimum posterior cost , the likelihood ratio

and with , due
to the randomness of , become scalar random variables. We
are going to assume that each of these three random variables
has a pdf that possesses no delta functions and is strictly posi-
tive on the corresponding interval of support. This assumption
guarantees that these random variables have a cumulative
distribution function (cdf) which is continuous and strictly
increasing from 0 to 1 in the corresponding interval of support.

1) Proof of Theorem 1: We are interested in mini-
mizing defined in (14) subject to the two constraints

and . We
first note that if we have a pair for which
the second inequality is strict, then we can find another
pair which satisfies the second constraint
with equality and has exactly the same estimation perfor-
mance. Indeed, if we select ,

, then we observe that since we as-
sumed , we have

, suggesting that is
a legitimate probability (because is multiplied by a
factor smaller than 1 to produce ); consequently, the
complementary probability is legitimate as well. The
fact that the alternative pair has exactly the same estimation
performance, namely , can be verified by direct
substitution.
Because of the previous observation, we can limit our

search for the optimum within the class of tests that satisfy
the constraint on the probability of miss with equality, that is,

. Equivalently, we consider only tests
that satisfy the equality constraint
on the detection probability. Under this equality, mini-
mizing is equivalent to minimizing the numerator

in (14).
Due to the nonnegativity of , we note that, for ,

the function , in terms of , is the cdf of the
random variable . Since the cdf is continuous and strictly
increasing in the interval of support of , for ,
there exists unique that satisfies (16).
Suppose that we are in the case where

and consider a test that satisfies the equality
. We can, then, write

(55)

where . Comparing the first with the last
term yields ,
which proves that (17) is the optimum since it minimizes the
estimation criterion and satisfies both constraints. We observe
in this case that, for the optimum test, the false alarm constraint
can be strict.
Consider now the case and let us show

that there is a pair for which the test in (18) satisfies both
constraints with equality. Define the functions

Then, is clearly increasing in and decreasing in .
In particular, for fixed , the monotonicity with respect to
is strict within the interval of support of the random variable

since we assumed that the corresponding pdf
is positive inside this interval. We will show that is also
continuous with respect to each of its arguments when the other
is fixed. Continuity with respect to is straightforward since,
if we fix , the resulting function is the complementary cdf of

. The latter random variable was assumed to
have no point masses; consequently, its (complementary) cdf is
continuous. To show continuity with respect to requires a little
more work. Consider , , and let ; then,
we can write

(56)

Sending and using the continuity of the function
with respect to , we conclude that for every

we have

(57)
Sending now , we deduce

suggesting right continuity with respect to . With
similar steps, we can show left continuity.
Let us now show that for any we can find

that satisfies the equality constraint for the detection probability,
namely

(58)

Consider and fix
; then, due to the monotonicity and continuity properties of

, we have
, with the second

equality being true because and
[the latter being valid from the definition of in (16)]. We also
observe that . Since
is continuous in and strictly monotone, from 0 to 1, in the
interval of support of , while
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and for sufficiently large , we can conclude
that there exists unique such that (58) is satisfied.
Regarding as a function of , it is simple to show that it

is increasing in . We will now prove that it is also continuous
with respect to . As earlier, consider , , and let

, then

(59)

Letting first and using the continuity of with
respect to its second argument, and, then, sending , we
conclude that

(60)

suggesting that is the solution of (58) for ; con-
sequently, . In other words, is right con-
tinuous. In the same way, we can show left continuity.
There are two pairs which we can describe explicitly.

From the definition of , we know that when we have
. To find the second pair, let and assume that
; then, is the solution to the equation

(61)

This is true because the test in (18), after dividing each side by
and letting , reduces to the likelihood ratio test with

threshold . Since by assumption we have where
is the probability of miss of the Neyman–Pearson test,

we conclude that . This suggests that

(62)

The next step is to show that there exists a value for and
the corresponding threshold that satisfy the false alarm
constraint with equality, namely

(63)

Consider the function
. We will show that this function is continuous in . Let
; then, due to the monotonicity of the with respect

to each of its arguments and using the monotonicity of , we
can write

(64)
Using the continuity of with respect to each of its ar-
guments and the continuity of , by letting , we can
conclude that

(65)

which proves right continuity. In the same way, we can show
left continuity.
Consider now the function . As we have

shown, this function has opposite signs for and
and it is continuous in ; consequently, there exists and corre-
sponding for which the value of this function is exactly 0.
To show that the test in (18) is optimum, let be the

previous pair and let be any test that satisfies

the equality constraint for the detection probability and the in-
equality constraint for the false alarm. Then, we can write

(66)

where . Again comparing the
first with the last term proves optimality of the test in (18) and,
therefore, concludes the proof of Theorem 1.

2) Proof of Theorem 2: Due to independence across re-
ceivers for the noises and the reflection coefficients

, we deduce

(67)

It is, thus, sufficient to show that

(68)

Since is random, we can first compute by con-
ditioning on the coefficients corresponding to the th re-
ceiver and, then, average out . For given , the received
signal under the two hypotheses differs only in the drift;
consequently, we can apply Girsanov’s theorem [25, p. 191] to
compute the corresponding likelihood ratio. We can treat the
complex-valued Wiener process as a 2-D real-valued
Wiener process, with the real and imaginary parts of the com-
plex process constituting the two independent components of
the 2-D process. Since the corresponding variances, by assump-
tion, are equal to 0.5, it is straightforward to show that

(69)

where are defined in (47)
In order to compute from , we need to

average out . We recall that the real and imaginary parts of
are Gaussian uncorrelated (and thus independent) vectors,

each with mean 0 and covariance matrix equal to . For
notational simplicity, we drop in all quantities their dependence
on and . Let us also define the following decompositions into
real and imaginary parts , ,

, and, finally, denote , ,
and ; then, we can write the previous
likelihood ratio as follows:

(70)
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where we used the fact that , by being Hermitian, satisfies
and . We can now average out by

recalling that . We have that

(71)

which can be obtained by “completing the square” in the expo-
nential in the second line and reducing the integral, after proper
normalization, into an integral of a Gaussian pdf with mean

and covariance matrix which
is equal to 1.
From the nonegative definiteness of , we have

for any complex vector . Using the observation that for any
real vector , it is true that , as a result of

, we can show that
where . Hence, is nonegative definite as well,
implying that is positive definite.
Define two square matrices of size as the solu-

tion to the following two equations:
and (there always exists a solution
due to the positive definiteness of ); then, by direct com-
putation, we can verify that and

.With the help of
the previous equalities, we can show that

. This proves the correctness of the exponen-
tial term in (68).
What is left to prove is that . Since

, if is an eigen-
value of this matrix with corresponding eigenvector ,
then is a double eigenvalue because by direct computation
we can verify that is a second eigenvector (orthog-
onal to the first and, thus, different) for the same eigenvalue .
Consequently, the eigenvalues of are of the form

with (because of the positive defi-
niteness of ), implying .
We can now verify that if is an eigenvalue-eigen-

vector pair of , then is an eigenvalue-
eigenvector pair of . This suggests that
must also be an eigenvalue-eigenvector pair for the samematrix.
However, we observe that , which
means that the two eigenvectors are colinear and, therefore, co-
incide. Consequently, for the complexmatrix , the eigen-
values are the , meaning that the corresponding de-
terminant satisfies . This proves that the
desired equality for the two determinants demonstrates the va-
lidity of (68) and concludes the proof of Theorem 2.
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