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Abstract—We consider decentralized detection through dis-
tributed sensors that perform level-triggered sampling and
communicate with a fusion center (FC) via noisy channels. Each
sensor computes its local log-likelihood ratio (LLR), samples
it using the level-triggered sampling mechanism, and at each
sampling instant transmits a single bit to the FC. Upon receiving a
bit from a sensor, the FC updates the global LLR and performs a
sequential probability ratio test (SPRT) step. We derive the fusion
rules under various types of channels. We further provide an
asymptotic analysis on the average decision delay for the proposed
channel-aware scheme, and show that the asymptotic decision
delay is characterized by a Kullback-Leibler information number.
The delay analysis facilitates the choice of the appropriate sig-
naling schemes under different channel types for sending the 1-bit
information from the sensors to the FC.

Index Terms—Asymptotic analysis, channel-aware fusion, de-
centralized detection, KL information, level-triggered sampling,
sequential analysis, SPRT.

I. INTRODUCTION

W E consider the problem of binary decentralized detec-
tion where a number of distributed sensors, under band-

width constraints, communicate with a fusion center (FC) which
is responsible for making the final decision. In [1] it was shown
that under a fixed fusion rule, with two sensors each transmitting
one bit information to the FC, the optimum local decision rule is
a likelihood ratio test (LRT) under the Bayesian criterion. Later,
in [2] and [3] it was shown that the optimum fusion rule at the FC
is also an LRT under the Bayesian and the Neyman-Pearson cri-
teria, respectively. It was further shown in [4] that as the number
of sensors tends to infinity it is asymptotically optimal to have
all sensors perform an identical LRT. The case where sensors
observe correlated signals was also considered, e.g., [5], [6].
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Most works on decentralized detection, including the above
mentioned, treat the fixed-sample-size approach where each
sensor collects a fixed number of samples and the FC makes its
final decision at a fixed time. There is also a significant volume
of literature that considers the sequential detection approach,
e.g., [7]–[12]. Regarding [10]–[12] we should mention that
they use, both locally and globally, the sequential probability
ratio test (SPRT), which is known to be optimal for i.i.d. ob-
servations in terms of minimizing the average sample number
(decision delay) among all sequential tests satisfying the same
error probability constraints [13]. SPRT has been shown in [14,
Page 109] to asymptotically require, on average, four times
less samples (for Gaussian signals) to reach a decision than the
best fixed-sample-size test, for the same level of confidence.
Relaxing the one-bit messaging constraint, the optimality of the
likelihood ratio quantization is established in [15]. Data fusion
(multi-bit messaging) is known to be much more powerful than
decision fusion (one-bit messaging) [16], albeit it consumes
higher bandwith. Moreover, the recently proposed sequential
detection schemes based on level-triggered sampling in [11]
and [12] are as powerful as data-fusion techniques, and at
the same time they are as simple and bandwidth-efficient as
decision-fusion techniques.
Besides having noisy observations at sensors, in practice the

channels between sensors and the FC are noisy. The conven-
tional approach to decentralized detection ignores the latter, i.e.,
assumes ideal transmission channels, and addresses only the
first source of uncertainty, e.g., [1], [11]. Adopting the conven-
tional approach to the noisy channel case yields a two-step so-
lution. First, a communication block is employed at the FC to
recover the transmitted information bits from sensors, and then
a signal processing block applies a fusion rule to the recov-
ered bits to make a final decision. Such an independent block
structure causes performance loss due to the data processing in-
equality [17]. To obtain the optimum performance the FC should
process the received signal in a channel-aware manner [18],
[19]. Most works assume parallel channels between sensors and
the FC, e.g., [20], [21]. Other topologies such as serial [22] and
multiple-access channels (MAC) [23] have also been consid-
ered. In [24] a scheme is proposed that adaptively switches be-
tween serial and parallel topologies.
In this paper, we design and analyze channel-aware sequen-

tial decentralized detection schemes based on level-triggered
sampling, under different types of discrete and continuous noisy
channels. In particular, we first derive channel-aware sequen-
tial detection schemes based on level-triggered sampling. We
then present an information theoretic framework to analyze the
decision delay performance of the proposed schemes based on
which we provide an asymptotic analysis on the decision de-
lays under various types of channels. Based on the expressions
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of the asymptotic decision delays, we also consider appropriate
signaling schemes under different continuous channels to min-
imize the asymptotic delays.
The remainder of the paper is organized as follows. In

Section II, we describe the general structure of the decentral-
ized detection approach based on level-triggered sampling with
noisy channels between sensors and the FC. In Section III, we
derive channel-aware fusion rules at the FC for various types
of channels. Next, we provide analyses on the decision delay
performance for ideal channel and noisy channels in Section IV
and Section V, respectively. In Section VI, we discuss the
issue of unreliable detection of the sensor sampling times by
the FC. Simulation results are provided in Section VII. Finally,
Section VIII concludes the paper.

II. SYSTEM DESCRIPTIONS
Consider a wireless sensor network consisting of sensors

each of which observes a Nyquist-rate sampled discrete-time
signal . Each sensor computes the
log-likelihood ratio (LLR) of the signal it observes,
samples the LLR sequence using the level-triggered sampling,
and then sends the LLR samples to the fusion center (FC). The
FC then combines the local LLR information from all sensors,
and decides between two hypotheses, and , in a sequential
manner.
Observations collected at the same sensor, , are as-

sumed to be i.i.d., and in addition observations collected at
different sensors, , are assumed to be independent.
Hence, the local LLR at the -th sensor, , and the global
LLR, , are computed as

(1)

respectively, where is the LLR of the sample
received at the -th sensor at time ; , , 1, is the prob-
ability density function (pdf) of the received signal by the -th
sensor under . The -th sensor samples via the level-trig-
gered sampling at a sequence of random sampling times
that are dictated by itself. Specifically, the -th sample is
taken from whenever the accumulated LLR ,
since the last sampling time exceeds a constant in abso-
lute value, i.e.,

(2)
Let denote the accumulated LLR during the -th inter-sam-
pling interval, , i.e.,

(3)

Immediately after sampling at , as shown in Fig. 1, an infor-
mation bit indicating the threshold crossed by is trans-
mitted to the FC, i.e.,

(4)

Fig. 1. A wireless sensor network with sensors , and a fusion
center (FC). Sensors process their observations , and transmits information
bits . Then, the FC, receiving through wireless channels, makes a
detection decision . are the observed, transmitted and
received information entities respectively, which will be defined in Section IV.

Note that each sensor, in fact, implements a local SPRT [cf.
(8), (9)], with thresholds and within each sampling in-
terval. At sensor the -th local SPRT starts at time and
ends at time when the local test statistic exceeds either
or . This local hypothesis testing produces a local decision
represented by the information bit , and induces local error
probabilities and which are given by

(5)

respectively, where , , 1, denotes the probability
under .
Let us now analyze the signals at the FC. Denote the received

signal at the FC corresponding to as [cf. Fig. 1]. The FC
then computes the LLR of each received signal and approx-
imates the global LLR as

(6)

where is the total number of LLR messages the -th sensor
has transmitted up to time , and , , 1, is the pdf of
under . In fact, the FC recursively updates whenever it re-
ceives an LLR message from any sensor. In particular, suppose
that the -th LLR message from any sensor is received at
time . Then at , the FC first updates the global LLR as

(7)

It then performs an SPRT step by comparing with two
thresholds and , and applying the following decision rule

(8)

The thresholds are selected to satisfy the error prob-
ability constraints and
with equalities, where are target error probability bounds,
and

(9)

is the decision delay.
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With ideal channels between sensors and the FC, we have
, so from (5) we can write the local LLR ,

where
if ,

if
(10)

where the inequalities can be easily obtained by applying a
change of measure. For example, to show the first one, we
have where is the
expectation under , , 1 and is the indicator function.

Noting that , we can write

Note that for the case of continuous-time and continuous-path
observations at sensors, the inequalities in (10) become equali-
ties as the local LLR sampled at a sensor [cf. (1)] is now a contin-
uous-time and continuous-path process. This suggests that the
accumulated LLR during any inter-sampling interval [cf. (3)]
due to continuity of its paths will hit exactly the local thresholds

. Therefore, from Wald’s analysis for SPRT
[25]; hence a transmitted bit fully represents the LLR

accumulated in the corresponding inter-sampling interval. Ac-
cordingly, the FC at sampling times exactly recovers the values
of LLR processes observed by sensors [11].
When sensors observe discrete-time signals, due to randomly

over(under)shooting the local thresholds, in (3) is a random
variable which is in absolute value greater than . However,
in (10) is a fixed value that is also greater than in abso-

lute value. While in continuous-time the FC fully recovers the
LLR accumulated in an inter-sampling interval by using only
the received bit, in discrete-time this is not possible. In order
to ameliorate this problem, in [11] it is assumed that the local
error probabilities are available to the FC; and there-
fore the LLR of , i.e., , can be obtained; while in [12] the
overshoot is quantized by using extra bits in addition to . Nev-
ertheless, neither method enables the FC to fully recover un-
less an infinite number of bits is used. In this paper, to simplify
the performance analysis, we will assume, as in [11], that the
local error probabilities are available at
the FC in order to compute the LLR of the received signals.
Moreover, for the case of ideal channels, we use and to
denote the thresholds in (8), i.e., , , and use to
denote the decision delay in (9), i.e., .
In the case of noisy channels, the received signal is not

always identical to the transmitted bit , and thus the LLR

of can be different from of given in (10). In the next
section, we consider some popular channel models and give the
corresponding expressions for .

III. CHANNEL-AWARE FUSION RULES
In computing the LLR of the received signal , we will

make use of the local sensor error probabilities , and the
channel parameters that characterize the statistical property of
the channel. One subtle issue is that since the sensors asynchro-
nously sample and transmit the local LLR, in the presence of
noisy channels, the FC needs to first reliably detect the sam-
pling time in order to update the global LLR. In this section we
assume that the sampling time is reliably detected and focus on
deriving the fusion rule at the FC. In Section VI, we will discuss
the issue of sampling time detection.

A. Binary Erasure Channels (BEC)
Consider binary erasure channels between sensors and the

FC with erasure probabilities , . Under BEC,
a transmitted bit is lost with probability , and correctly
received at the FC, i.e., , with probability . Then
the LLR of is given by

if ,

if .
(11)

Note that under BEC the channel parameter is not needed
when computing the LLR . Note also that in this case, a
received bit bears the same amount of LLR information as in
the ideal channel case, although a transmitted bit is not always
received. Hence, the channel-aware approach coincides with
the conventional approach which relies solely on the received
signal. Although the LLR updates in (10) and (11) are identical,
the fusion rules under BEC and ideal channels are not. This is
because the thresholds and of BEC, due to the informa-
tion loss, are in general different from the thresholds and
of the ideal channel case.

B. Binary Symmetric Channels (BSC)
Next, we consider binary symmetric channels with crossover

probabilities between sensors and the FC. Under BSC, the
transmitted bit is flipped, i.e., , with probability ,
and it is correctly received, i.e., , with probability .
The LLR of can be computed as in (12) at the bottom of the
page where and are the effective local error probabilities
at the FC under BSC. Similarly we can write

(13)

(12)
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Note that , if , ,
which we assume true for . Thus, we have

from which we expect the performance loss under
BSC to be higher than the one under BEC. The numerical re-
sults provided in Section V-B will illustrate this claim. Finally,
note also that, unlike the BEC case, under BSC the FC needs to
know the channel parameters to operate in a channel-aware
manner.

C. Additive White Gaussian Noise (AWGN) Channels

Now, assume that the channel between each sensor and the
FC is an AWGN channel. The received signal at the FC is given
by

(14)

where , is a known constant complex channel
gain; ; is the transmitted signal at sampling
time given by

if ,
if . (15)

where the transmission levels and are complex in general.
The distribution of the received signal is then

. The LLR of is given by

(16)

where and .

D. Rayleigh Fading Channels

If a Rayleigh fading channel is assumed between each
sensor and the FC, the received signal model is also given
by (14), (15), but with . We then have

; and accordingly, similar to (16),
is written as

(17)

where , ,

and .

E. Rician Fading Channels

For Rician fading channels, we have in
(14), and hence . Using
and as defined in the Rayleigh fading case, and defining

, we can write as in (17).

IV. PERFORMANCE ANALYSIS FOR IDEAL CHANNELS
In this section, we first find the non-asymptotical expres-

sion for the average decision delay , and then provide

an asymptotic analysis on it as the error probability bounds
. Before proceeding to the analysis, let us define some

information entities which will be used throughout this and
next sections.

A. Information Entities

Note that the expectation of an LLR corresponds to a Kull-
back-Leibler (KL) information entity. For instance,

(18)

are the KL divergences of the local LLR sequence under
and , respectively. Similarly

(19)

are the KL divergences of the local LLR sequences and
respectively. Define also ,

, and as the KL divergences of
the global LLR sequences , , and respectively.
In particular, we have

(20)

as the KL information numbers of the LLR sequence ; and
, , 1 are those of the global LLR

sequence . Moreover,

(21)

are the KL information numbers of the local LLR sequences
, , and , respectively, under . Likewise, we

have , , and
under . To summarize, , , and are

respectively the observed (at sensor ), transmitted (by sensor
), and received (by the FC) KL information entities as illus-
trated in Fig. 1.
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Next we define the following information ratios,

(22)

which represent how efficiently information is transmitted from
sensor and received by the FC, respectively. Due to the data
processing inequality, we have , , for , 1 and

. We further define

(23)

as the effective transmitted and received values corresponding
to the KL information , respectively. Note that and

are not real KL information numbers, but projections of
onto the filtrations generated by the transmitted, (i.e.,
), and received, (i.e., ), signal sequences, respec-

tively. This is because sensors do not transmit and the FC does
not receive the LLR of a single observation, but instead they
transmit and it receives the LLR messages of several obser-
vations. Hence, we cannot have the KL information for single
observations at the two ends of the communication channel, but
we can define hypothetical KL information to serve analysis
purposes. In fact, the hypothetical information numbers
and , defined using the information ratios and , are
crucial for our analysis as will be seen in the following sections.
The KL information of a sensor whose information

ratio, , is high and close to 1 is well projected to the FC. Con-
versely, of a sensor which undergoes high information
loss is poorly projected to the FC.Note that there are two sources
of information loss for sensors, namely, the overshoot effect
due to having discrete-time observations and noisy transmis-
sion channels. The latter appears only in , whereas the former
appears in both and . In general with discrete-time obser-
vations at sensors we have and .
Lastly, note that under ideal channels, since , we
have .

B. Asymptotic Analysis of Detection Delay

Let denote the inter-arrival times
of the LLR messages transmitted from the -th sensor. Note
that depends on the observations , and since

are i.i.d., are also i.i.d. random variables. Hence, the
counting process is a renewal process. Similarly the LLRs

of the received signals at the FC are also i.i.d. random
variables, and form a renewal-reward process. Note from (9)
that the SPRT can stop in between two arrival times of sensor ,
e.g., . The event occurs if and only if

and , so it
depends on the first LLR messages. From the definition
of stopping time [26, pp. 104] we conclude that is not a
stopping time for the processes and since it depends
on the -th message. However, is a stopping
time for and since we have

which depends only on the first LLR messages.

Hence, from Wald’s identity [26, pp. 105] we can directly write
the following equalities

(24)

(25)

We have the following theorem on the average decision delay
under ideal channels.
Theorem 1: Consider the decentralized detection scheme

given in Section II, with ideal channels between sensors and
the FC. Its average decision delay under is given by

(26)

where is a random variable representing the time interval
between the stopping time and the arrival of the first bit from
the -th sensor after the stopping time, i.e., .

Proof: From (24) and (25) we obtain

where the left-hand side equals to . Note that
is the expected stopping time of the local SPRT at the

-th sensor and byWald’s identity it is given by ,
provided that . Hence, we have

where we used the fact that
and simi-

larly . Note that
is the expectation with respect to and under .
By rearranging the terms and then summing over on both
sides, we obtain

which is equivalent to (26).
The result in (26) is in fact very intuitive. Recall that

is the KL information at the detection time at the FC. It natu-
rally lacks some local information that has been accumulated
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at sensors, but has not been transmitted to the FC, i.e., the in-
formation gathered at sensors after their last sampling times.
The numerator of the second term on the right hand side of
(26) replaces such missing information by using the hypothet-
ical KL information. Note that in (26) ,
i.e., , since and are not inde-
pendent.
The next result gives the asymptotic decision delay perfor-

mance under ideal channels.
Theorem 2: As the error probability bounds tend to zero, i.e.,

, the average decision delay under ideal channels given
by (26) satisfies

(27)
where represents a constant term.

Proof: Wewill prove the first equality in (27), and the proof
of the second one follows similarly. Let us first prove the fol-
lowing lemma.
Lemma 1: As we have the following KL informa-

tion at the FC

(28)
Proof: We will show the first equality and the second one

follows similarly. We have

(29)

where are overshoot and undershoot respectively given
by if and if .
From [11, Theorem 2], we have and ,
so as (29) becomes .
From (10) we have if , . If we assume

and , then we have ,
and as a result . Since the overshoot
cannot exceed the last received LLR value, we have

. Similar to Eq. (73) in [11] we can
write and where by
the above argument, or equivalently, and

. Hence we have and

.
From the assumption of , we also have

. Moreover, we have since
. Note that all the terms on the right-hand side of (26)

except for do not depend on the global error probabilities
, so they are as . Finally, substituting (28)

into (26) we get (27).
It is seen from (27) that the hypothetical KL information

number, , plays a key role in the asymptotic decision delay
expression. In particular, we need to maximize to asymp-
totically minimize . Recalling its definition

we see that three information numbers are required to compute
it. Note that and , which is
given in (30) below, are computed based on local observations

at sensors, thus do not depend on the channels between sensors
and the FC. Specifically, we have

(30)

where and are local over(under)shoots given by
if and if . Due to

having we have .
On the other hand, represents the information received

in an LLR message by the FC, so it heavily depends on the
channel type. In the ideal channel case, from (10) it is given
by

(31)

Since is the only channel-dependent term in the asymp-
totic decision delay expression, in the next section we will ob-
tain its expression for each noisy channel type considered in
Section III.

V. PERFORMANCE ANALYSIS FOR NOISY CHANNELS
In all noisy channel types that we consider in this paper,

we assume that channel parameters are either constants or
i.i.d. random variables across time. In other words,
are constant for all (see Section III-A, III-B, III-C), and

are i.i.d. for all (see Section III-C, III-D,
III-E). Thus, in all noisy channel cases discussed in Section III
the inter-arrival times of the LLR messages , and the LLRs
of the received signals are i.i.d. across time as in the ideal
channel case. Accordingly the average decision delay in these
noisy channels has the same expression as (26), as given by the
following proposition. The proof is similar to that of Theorem
1.
Proposition 1: Under each type of noisy channel discussed

in Section III, the average decision delay is given by

(32)

where .
The asymptotic performances under noisy channels can also

be analyzed analogously to the ideal channel case.
Proposition 2: As , the average decision delay

under noisy channels given by (32) satisfies

(33)
Proof: Note that in the noisy channel cases the FC, as dis-

cussed in Section III, computes the LLR, , of the signal it re-
ceives, and then performs SPRT using the LLR sum . Hence,
analogous to Lemma 1 we can show that

and as . Note also that
due to channel uncertainties , so we have

and . We also have



306 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 2, JANUARY 15, 2013

as in the ideal channel case. Substituting these
asymptotic values in (32) we get (33).
Recall that in (33) where

and are independent of the channel type, i.e., they are
same as in the ideal channel case. In the subsequent subsections,
we will compute for each noisy channel type. We will
also consider the choices of the signaling levels in (15) that
maximize .

A. BEC

Under BEC, from (11) we can write the LLR of the received
bits at the FC as

with probability ,
with probability .

(34)

Hence we have

(35)

where is given in (31). As can be seen in (35) the per-
formance degradation under BEC is only determined by the
channel parameter . In general, from (27), (33) and (35) this
asymptotic performance loss can be quantified as

. Specifically, if , then we have

as .

B. BSC

Recall from (12) and (13) that under BSC local error proba-
bilities undergo a linear transformation to yield the effec-
tive local error probabilities at the FC. Therefore, using
(12) and (13), similar to (31), is written as follows

(36)

where and .
Notice that the performance loss in this case also depends only
on the channel parameter .
In Fig. 2 we plot as a function of and , for

both BEC and BSC. It is seen that the KL information of BEC is
higher than that of BSC, implying that the asymptotic average

Fig. 2. The KL information, , under BEC and BSC, as a function of the
local error probabilities and the channel error probability .

decision delay is lower for BEC, as anticipated in Section III-B.

C. AWGN

In this and the following sections, we will drop the sensor
index of and for simplicity. In the AWGN case, it
follows from Section III-C that if the transmitted signal is ,
i.e., , then , ; and if , then

, where , ,
. Accordingly, from (16) we write the KL

information as (see (37) at the bottom of the page) where
denotes the expectation with respect to the channel noise
only, and denotes the expectation with respect to both
and under . Since is independent of under both
and , we used the identity in (37).
Note from (37) that we have and

. Similar to we have
. Since we know , the extra terms,
are penalty terms that correspond to the information

loss due to the channel noise. Our focus will be on this term as
we want to optimize the performance under AWGN channels by
choosing the transmission signal levels and that maximize
.

(37)
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Let us first consider the random variables and
which are the arguments of the exponential func-

tions in and in (37). From the definitions of and , we
write where

and denotes the real part of a
complex number. Similarly we have .
Note that since . If

we define , then we have . Upon

defining we can then write and as

If we define and , then we have

(38)

Note from (14) that the received signal, , will have the
same variance, but different means, and , if
and are transmitted respectively. Hence, we expect that
the detection performance under AWGN channels will improve
if the difference between the transmission levels, , in-
creases. Toward that end the following result gives a sufficient
condition under which the penalty term increases with , and
hence with . The proof is given in the Appendix.
Lemma 2: is an increasing function of , , 1, if

and .
Lemma 2 indicates that for values inside the region

shown in Fig. 3, is increasing in . Note that are
local error probabilities which are directly related to the local
threshold . Therefore, even if the hypotheses and are
non-symmetric, we can ensure that we will have inside
the region in Fig. 3 by employing different local thresholds,

and , in (2). In fact, even for values outside the
region in Fig. 3 numerical results show that is increasing in
.
Hence, maximizing is equivalent to maximizing . If

we consider a constraint on the maximum allowed transmission
power at sensors, i.e., , then the antipodal
signaling is optimum, i.e., and .

D. Rayleigh Fading

It follows from Section III-D that ,

when ; and , when where

Fig. 3. The region of specified by Lemma 2.

, , and ,
as defined in Section III-D. Define further

. Hence, using (17) we write the KL information as (see

(39) at the bottom of the page) where and
. Note that when which corresponds

to the optimal signaling in the AWGN case, we have ,
and therefore in (39). This result

is quite intuitive since in the Rayleigh fading case the received
signals differ only in their variances. Note that and are
chi-squared random variables with degrees of freedom, i.e.,

, thus we can write the penalty term as

(40)

Note that given local error probabilities the integrals
in (40) is a function of only. However, maximizing in (40)
with respect to seems analytically intractable. As can be seen
in Section III-D, the received signals at the FC will have zero
mean and the variances and when and

(39)
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Fig. 4. The penalty term for Rayleigh fading channels as a function of .

respectively. Therefore, in this case intuitively we should in-
crease the difference between the two variances, i.e.,

. Consider the following constraints:
and , where the first one is the peak power
constraint as before, and the second is to ensure reliable detec-
tion of an incoming signal by the FC. We conjecture that the
optimum signaling scheme in this case that maximizes cor-
responds to , or , .
To numerically illustrate the behavior of as a function of
, we set , , , , and
plot in Fig. 4. It is seen that has its global minimum when

, which corresponds to the case as expected.
Moreover, , validating our conjecture, monotonically grows
as tends to its minimum and maximum values corresponding
to the cases , and , respectively.
Note that in Fig. 4, the curves for and are mirrored

versions of each other around since we have in
the example. From (40) we can say that the symmetry between
and around will exist whenever , i.e.,

.

E. Rician Fading

In the Rician fading case, upon defining from
Section III-E we have

when ; and

when . We will drop the subscript in for conve-
nience. We further define and
that are zero-mean Gaussian variables with variances and ,

respectively. Then from Section III-E similar to (39) we write
the KL information as

(41)

where and

. Now we will analyze
the exponents and .
Case 1: : For , i.e., , we

can write as

(42)

(43)

(44)

where we used , while
writing (43), and while writing (44). Note that is
a noncentral chi-squared random variable with two degrees of
freedom and the noncentrality parameter .
Using instead of it can be easily shown that (44) holds
for . Similarly one can obtain

for , i.e., , where and

with . Accordingly, for the
non-symmetric case where from (41) we can write
as (see (45) at the bottom of the next page). Similarly, we have

.
The expression in (45) resembles the one in (40) for the

Rayleigh fading case. And maximizing (45) analytically with
respect to and seems even more intractable. Recall that in
the Rayleigh fading case, the optimum signaling scheme was an
OOK-like non-symmetric constellation, i.e.,
or . Considering the same power constraints
we conjecture that the same signaling scheme, that maximizes
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Fig. 5. (a) The penalty term under , i.e., , for Rician channels with , as a function of the transmission levels and . (b) The maximum contour is
shown to exhibit the locus of the optimum signaling levels. is color coded according to the color bar given next to the figure.

the difference between the variances and , is optimum in
this non-symmetric case.
We provide a numerical example to illustrate the behavior

of as a function of and . Using the same values for
as in the Rayleigh fading case, and set-

ting we plot in Fig. 5(a). The maximum contour of
the three-dimensional surface in Fig. 5(a), which corresponds
to the potential optimum signaling level pairs, is clearly shown
in Fig. 5(b). As seen in the figure is maximized when

or validating our conjecture.
Case 2: : For , we have , i.e.,

. Accordingly from (42) we write ,
where similar to Section V-C we de-

fine , and
. Defining standard Gaussian random vari-

ables and , analogous
to the AWGN case, we have and

. Therefore, from (41) is given by (38).
Accordingly, Lemma 2 applies here in the case of
under Rician channels. This case is analogous to the AWGN
case since the received signal has the same variance, but

different means when and . Consequently,
antipodal signaling is optimal. In Fig. 6, is plotted as a
function of the channel gain parameters and . It is
seen that is increasing in and decreasing in when
antipodal signaling is used, which corroborates Lemma 2 since
is increasing in and decreasing in .
In Fig. 7, the difference is plotted as a

function of and . For antipodal signaling is em-
ployed; and for , OOK-like signaling is employed. It is
seen that the OOK-like signaling is much better than antipodal
signaling when the mean is low and the variance is high. Al-
though not visible in Fig. 7, antipodal signaling is only slightly
better than OOK-like signaling when the mean is high and the
variance is low.

VI. DISCUSSIONS
Considering the unreliable detection of the sampling times

under continuous channels, we should ideally integrate this un-
certainty into the fusion rule of the FC. In other words, at the
FC the LLR of the received signal should be computed
at each time instant if the sampling time of the -th sensor
cannot be reliably detected. In the LLR computations in (16)

(45)
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Fig. 6. The penalty term in Rician fading channels with , as a
function of the mean and the variance of the channel gain. and

.

Fig. 7. in Rician fading channels as a function of
and , , .

and (17) the prior probabilities and are
used. These probabilities are conditioned on the sampling time
. Here, we need the unconditioned prior probabilities of the

signal which at each time takes a value of or or 0, i.e.,

(46)

As before, the received signal at time is .
Then, the LLR of is given by (see (47) at the bottom of the
page) where is the probability that the FC receives a signal
from sensor under . Since the FC has no prior information

Fig. 8. Realizations of the LLRs and computed at the FC under reliable
and unreliable detection of the sampling times, respectively.

on the sampling times of the sensors, this probability can be
shown to be , where is the average intersampling
(communication) interval for sensor under , , 1. For
instance, under AWGN channels [cf. (16)] by defining

, , and we have

(48)
Under fading channels is computed similarly. Realizations
of of (48) and of (16) are shown in Fig. 8 where
is used.
Note that in this case, are i.i.d. across time, and so

are where is the global LLR at time .
Hence, fromWald’s identity, similar to Theorem 2 we can write

. Therefore, we again
need to maximize the KL information (resp. ) in
order to minimize the average delay (resp. ). How-
ever, analyzing this expectation is now much more involved
than analyzing (37). On the other hand, in practice we need to
ensure reliable detection of the sampling times by using high
enough signaling levels and . Then, the average delay per-
formance of this unreliable detection scheme becomes identical
to that of the reliable detection scheme analyzed in Section V.
As an alternative approach, in the unreliable detection case

one can follow a two-step procedure to mimic the reliable de-
tection case. Since it is known that most of the computed LLRs

are uninformative that correspond to the no message case,
a simple thresholding operation can be applied to update the
LLR only when it is informative. The thresholding step is in

(47)



YILMAZ et al.: CHANNEL-AWARE DECENTRALIZED DETECTION VIA LEVEL-TRIGGERED SAMPLING 311

fact a Neyman-Pearson test between the presence and absence
of a message signal. The threshold can be adjusted to control the
false alarm and misdetection probabilities. Setting the threshold
appropriately we can obtain a negligible false alarm probability,
leaving us with the misdetection probability. Note that such
a test would turn a continuous channel into a BEC with era-
sure probability, , equal to the misdetection probability. Re-
call from Section III-A that under BEC is the same as in
the ideal channel case which corresponds to the reliable detec-
tion case here. Thus, if an LLR survives after thresholding, in
the second step it is recomputed as in the channel-aware fusion
rules obtained in Sections III-C, III-D and III-E. Moreover, the
KL information in (37), (39) and (41) will only be scaled by

as shown in (35). Consequently, the results obtained in
Sections V-C, V-D, and V-E are also valid in this approach to
the unreliable detection case.

VII. SIMULATION RESULTS

In this section, we provide simulation results to illustrate
the performance of the channel-aware distributed detection
schemes based on level-triggered sampling. Assume there are
two sensors collaborating with an FC. At each time , each
sensor makes a local observation , , 2, with

, under , and under . Hence,
the LLR, , of is computed as .
Each sensor on average samples and transmits 1 bit to the

FC once every four samples they observe, i.e., . And the
local threshold is determined to meet this average sampling
interval. It has been shown in [12, Section IV-A] that one can
use the equation to find . Then, using
the value the local error probabilities and are computed
offline for each sensor. From Lemma 1 and Proposition 2, we
have and

where is the largest received LLR magnitude. Hence,
we can set the global thresholds and to their upper bounds

and respectively tomeet the constraints
and . To achieve the equalities,

(resp. ) should be found via simulations within the interval
(resp. ). Note also

that and as .
We compare our channel-aware designs with the conven-

tional approach where the FC first decides on the received
data bit and then uses it to update the test statistic. Under
BEC and BSC, since the received signal is already binary, in
the conventional approach the FC simply treats the channel
as ideal. On the other hand, under AWGN, Rayleigh fading,
and Rician fading channels, in the conventional approach the
FC first demodulates the received bit by using the following
maximum-likelihood (ML) decision rules

Fig. 9. Error performance comparison between the proposed channel-aware
approach and the conventional methods.

Then, it updates the test statistic either by treating the channel
as ideal, i.e., using (10), (note that this approach cannot guar-
antee to satisfy the target error probabilities since its perfor-
mance highly depends on the performance of the receiver block)
or more reasonably by treating the channel as a BSC assuming
the error rate of the ML receiver is known, i.e., using (12).

A. Error Performance

Firstly, we demonstrate that the channel-aware designs pre-
sented in this paper can meet the target error performance in
noisy channels. We set , ,

, (i.e., for AWGN chan-
nels; for Rayleigh fading channels; and
, for Rician fading channels). We define

. As an example, in Fig. 9 we show the actual
error performances in Rician fading channels for both the pro-
posed channel-aware approach and the conventional methods.
The error performance under ideal channels is also shown. It
is seen that the channel-aware method and the conventional
method treating the channel as BSC can always meet the spec-
ified error bounds under different channel conditions. In fact,
they achieve even smaller error probabilities under bad channel
conditions, i.e., low SNR or high , since they update the test
statistics even more cautiously with smaller increments. How-
ever, the conventional approach that treats the channel as ideal
is vulnerable to noisy channels. Its error performances are far
away from the bounds especially at low SNR. Similar results
are observed for the other noisy channel types.

B. Detection Delay Performance

We now show the actual decision delay performance of the
proposed channel-aware approach as a function of the achieved
error rates. In this subsection, different from the previous one
we do not determine the thresholds and for the given error
probability bounds. But rather, for a specific set of and
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Fig. 10. The average decision delay vs. the achieved error rates in Rician fading
channels.

values we simulate the schemes to obtain their operating char-
acteristics, i.e., the average decision delay and error probabil-
ities. For fair comparisons we set the channel error probabili-
ties of discrete channels, i.e., BEC and BSC, to ;
and set for all continuous channel types. Fig. 10
compares the channel-aware scheme to the two conventional
schemes assuming ideal channels and BSC, respectively, after
bit recovery under Rician fading channels. The average deci-
sion delay of the channel-aware scheme is significantly lower
than those of the conventional schemes. Moreover, the channel-
aware scheme provides more achievable error probabilities than
the conventional schemes, since the step sizes are much finer
for the channel-aware scheme. The discrete nature of the av-
erage decision delay curve is due to having finite number of
values to update the test statistic at the FC. This phenomenon
was explained in detail in [12]. The conventional schemes have
only two possible update values that are given in (10) and (12),
whereas the channel-aware scheme uses a continuum of values
to update its LLR sum as given in (17). Similar results can be
obtained for the other channel types.
Next, we compare the decision delay performances of the

channel-aware schemes under different channels. Fig. 11 and
Fig. 12 show the results for the discrete channels and the con-
tinuous channels, respectively. It is seen that BEC has a supe-
rior performance than BSC. Note from Fig. 11 that the step sizes
are large and the number of achievable error probabilities is the
same for all three cases since there are only two LLR update
values [cf. (10)–(13)]. For each continuous channel type, the
corresponding signaling scheme discussed in Sections V-C–V-E
is used in the simulations. As expected the AWGN channel case
has a much better performance than the fading channel cases
since under AWGN, the channels are deterministic and known
to the FC, whereas in fading cases the channels are random
and only the statistics are known to the FC. Moreover, under
Rayleigh fading, channels have zero mean increasing the un-
certainty, hence this case has the worst performance among the
continuous channel types. Finally we consider the fusion rule

Fig. 11. The average decision delay as a function of the achieved error rate
under different discrete channels.

Fig. 12. The average decision delay as a function of the achieved error rate
under different continuous channels.

(48) that takes into account the unreliable detection of the sam-
pling times. We use for all channels;
under AWGN; under Rician; and ,

under Rayleigh. In Fig. 12, it is seen that the channel
aware scheme has almost identical performances in the reliable
and unreliable detection cases under all continuous channels.

VIII. CONCLUSIONS
We have developed and analyzed channel-aware distributed

detection schemes based on level-triggered sampling. The
sensors form local log-likelihood ratios (LLRs) based on their
observations and sample their LLRs using the level-triggered
sampling. Upon sampling each sensor sends a single bit to the
fusion center (FC). The FC is equipped with the local error rates
of all sensors and the statistics of the channels from all sensors.
Upon receiving the bits from the sensors, the FC updates the
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global LLR and performs an SPRT. The fusion rules under
different channel types are given. We have further provided
an asymptotic analysis on the average decision delay for the
proposed channel-aware scheme. We have shown that the
asymptotic decision delay is characterized by a KL information
number, whose expressions under different channel types have
been derived. Based on the delay analysis, we have also iden-
tified appropriate signaling schemes under different channels
for the sensors to transmit the 1-bit information. Numerical
examples have demonstrated the advantages of the proposed
channel-aware approach over the conventional methods.

APPENDIX
PROOF OF LEMMA 2

We will present the proof under , and the proof under
follows similarly. We need to find the condition for .
From (38), we have (see (49) at the bottom of the page). If
we choose , then we will have which
in turn yields , but here we will reasonably assume

that and accordingly . Therefore, it
is clear that in order to conclude the proof we need to show
that the integral in (49) is positive. Define and

, then we need to show the following inequality
(see (50) at the bottom of the page). Note that (50) holds if the
following inequality holds,

(51)

Thus, after rearranging terms it is sufficient to show that (see
(52) at the bottom of the page). Define ,

(49)

(50)

(52)
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, , ,
, . Multiplying

both sides with 1, and rearranging terms we can rewrite (52)
as follows

(53)

After some manipulations, we obtain the following inequality

(54)

Finally, noting that (since , ) if we cancel the
common term , then the inequality that we need to verify
becomes the following

(55)

Now assuming that , i.e., , it is straightfor-
ward to verify the inequality in (55). Since we have
, we also have , ,
and . Note also that the last five
terms on the right hand side of (55) are positive due to having

, , , , . Hence, is in-
creasing in for all when . Similarly we can show
that is increasing in for all when .
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