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ABSTRACT In traditional time-based sampling, the
sampling mechanism is triggered by predetermined
sampling times, which are mostly uniformly spaced (i.e.,
periodic). Alternatively, in event-based sampling, some
predefined events on the signal to be sampled trigger the
sampling mechanism; that is, sampling times are deter-
mined by the signal and the event space. Such an alter-
native mechanism, setting the sampling times free, can
enable simple (e.g., binary) representations in the event
space. In real-time applications, the induced sampling
times can be easily traced and reported with high accu-
racy, whereas the amplitude of a time-triggered sample
needs high data rates for high accuracy.

In this chapter, for some statistical signal processing
problems, namely detection (i.e., binary hypothesis test-
ing) and parameter estimation, in resource-constrained
distributed systems (e.g., wireless sensor networks), we
show how to make use of the time dimension for
data/information fusion, which is not possible through
the traditional fixed-time sampling.

20.1 Introduction

Event-based paradigm is an alternative to conventional
time-driven systems in control [2,13,28] and signal pro-
cessing [37,43,61]. Event-based methods are adaptive to
the observed entities, as opposed to the time-driven
techniques. In signal processing, they are used for data
compression [37], analog-to-digital (A/D) conversion
[23,30,61], data transmission [42,43,55], imaging appli-
cations [11,26,29], detection [17,24,73], and estimation
[16,75]. We also see a natural example in biological sens-
ing systems. In many multicellular organisms, including
plants, insects, reptiles, and mammals, the all-or-none
principle, according to which neurons fire, that is, trans-
mit electrical signals, is an event-based technique [19].

In signal processing applications, event-based
paradigm is mainly used as a means of nonuniform
sampling. In conventional uniform sampling, the sam-
pling frequency is, in general, selected based on the
highest expected spectral frequency. When the lower
frequency content in the input signal is dominant (e.g.,
long periods of small change), such high-frequency
sampling wastes considerable power. For many emerg-
ing applications that rely on scarce energy resources
(e.g., wireless sensor networks), a promising alternative
is event-based sampling, in which a sample is taken
when a significant event occurs in the signal. Several

closely related signal-dependent sampling techniques
have been proposed, for example, level-crossing sam-
pling [24], Lebesgue sampling [17], send-on-delta [42],
time-encoding machine [29], and level-triggered sam-
pling [73]. In these event-based sampling methods,
samples are taken based on the signal amplitude
instead of time, as opposed to the conventional uniform
sampling. Analogous to the comparison between the
Riemann and Lebesgue integrals, the amplitude-driven
and conventional time-driven sampling techniques are
also called Lebesgue sampling and Riemann sampling,
respectively [2]. As a result, the signal is encoded in
the sampling times, whereas in uniform sampling the
sample amplitudes encode the signal. This yields a
significant advantage in real-time applications, in which
sampling times can be tracked via simple one-bit signal-
ing. Specifically, event-based sampling, through one-bit
representations of the samples, enables high-resolution
recovery, which requires many bits per sample in uni-
form sampling. In other words, event-based sampling
can save energy and bandwidth (if samples are trans-
mitted to a receiver) in real-time applications in terms
of encoding samples.

20.1.1 Event-Based Sampling

In level-crossing sampling, which is mostly used for
A/D conversion [23,50,61], in general, uniform sam-
pling levels in the amplitude domain are used, as shown
in Figure 20.1. A/D converters based on level-crossing
sampling are free of a sampling clock, which is a primary
energy consumer in traditional A/D converters [61].
A version of level-crossing sampling that ignores suc-
cessive crossings of the same level is used to reduce the
sampling rate, especially for noisy signals [28]. This tech-
nique is called level-crossing sampling with hysteresis
(LCSH) due to the hysteretic quantizer it leads to (see
Figure 20.1).

Time-encoding machine is a broad event-based sam-
pling concept, in which the signal is compared with a
reference signal and sampled at the crossings [21,29].
The reference signal is possibly updated at the sam-
pling instants (Figure 20.2). Motivated by the integrate-
and-fire neuron model, a mathematical model for nerve
cells, in some time-encoding machines, the signal is
first integrated and then sampled. The asynchronous
delta–sigma modulator, a nonlinear modulation scheme
mainly used for A/D conversion, is an instance
of integrate-and-fire time-encoding machine [30]. The
ON–OFF time-encoding machine, which models the
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FIGURE 20.1

Level-crossing sampling with uniform sampling levels results in
nonuniform sampling times l1−4 and the quantized signal x̂l(t). If the
repeated crossings at l2 and l3 are discarded, x̂lh(t) is produced by a
hysteretic quantizer. One-bit encoding of the samples is shown below.

x(t)

t
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t

1
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ˆ

FIGURE 20.2

Reference signal representation of a time-encoding machine and the
piecewise constant signal x̂tem(t) resulting from the samples. At the
sampling times, the reference signal switches the pair of offset and
slope between (−δ, b) and (δ,−b), as in [30]. One-bit encoding of the
samples is also shown below.

ON and OFF bipolar cells in the retina [39], uses two
reference signals to capture the positive and nega-
tive changes in the signal. The ON–OFF time-encoding
machine without integration coincides with the LCSH
[29]. Hardware applications of ON–OFF time-encoding
machines are seen in neuromorphic engineering [33,77]
and brain–machine interfaces [3,49].

The theory of signal reconstruction from nonuniform
samples applies to event-based sampling [61]. Exact
reconstruction is possible if the average sampling rate
is above the Nyquist rate (i.e., twice the bandwidth of

the signal) [4,30]. Various reconstruction methods have
been proposed in [4,30,38,70]. The similarity measures
for sequences of level-crossing samples have been dis-
cussed, and an appropriate measure has been identified
in [44].

20.1.2 Decentralized Data Collection

Decentralized data collection in resource-constrained
networked systems (e.g., wireless sensor networks) is
another fundamental application (in addition to A/D
conversion) of sampling. In such systems, the central
processor does not have access to all observations in the
system due to physical constraints, such as energy and
communication (i.e., bandwidth) constraints. Hence, the
choice of sampling technique is of great importance to
obtain a good summary of observations at the central
processor. Using an adaptive sampling scheme, only
the informative observations can be transmitted to the
central processor. This potentially provides a better sum-
mary than the conventional (nonadaptive) sampling
scheme that satisfies the same physical constraints. As a
toy example to adaptive transmission, consider a bucket
carrying water to a pool from a tap with varying flow.
After the same number of carriages, say ten, the scheme
that empties the bucket only when it is filled (i.e., adap-
tive to the water flow) exactly carries ten buckets of
water to the pool, whereas the scheme that periodically
empties the bucket (i.e., nonadaptive), in general, carries
less water.

Based on such an adaptive scheme, the send-on-delta
concept, for decentralized acquisition of continuous-
time band-limited signals, samples and transmits only
when the observed signal changes by ±Δ since the last
sampling time [42,55]. In other words, instead of trans-
mitting at deterministic time instants, it waits for the
event of ±Δ change in the signal amplitude to sample
and transmit. Although the change here is with respect
to the last sample value, which is in general different
from the last sampling level in level-crossing sampling,
they coincide for continuous-time band-limited signals.
Hence, for continuous-time band-limited signals, send-
on-delta sampling is identical to LCSH (Figure 20.1). For
systems in which the accumulated, instead of the cur-
rent, absolute error (similar to the mean absolute error)
is used as the performance criterion, an extension of the
send-on-delta concept, called the integral send-on-delta,
has been proposed [43]. This extension is similar to the
integrate-and-fire time-encoding machine. Specifically,
a Δ increase in the integral of absolute error triggers
sampling (and transmission).

In essence, event-based processing aims to simplify
the signal representation by mapping the real-valued
amplitude, which requires infinite number of bits after
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the conventional time-driven sampling, to a digital
value in the event space, which needs only a few bits.
In most event-based techniques, including the ones dis-
cussed above, a single bit encodes the event type when
an event occurs (e.g., ±Δ change, upward/downward
level crossing, reference signal crossing). In decentral-
ized data collection, this single-bit quantization in the
event space constitutes a great advantage over the
infinite-bit representation of a sample taken at a deter-
ministic time. Moreover, to save further energy and
bandwidth, the number of samples (i.e., event occur-
rences) can be significantly reduced by increasing Δ.
That is, a large enough Δ value in send-on-delta spar-
sifies the signal with binary nonzero values, which is
ideal for decentralized data collection. On the contrary,
the resolution of observation summary at the central
processor decreases with increasing Δ, showing the
expected trade-off between performance and consump-
tion of physical resources (i.e., energy and bandwidth).
In real-time reporting of the sparse signal in the event
space to the central processor, only the nonzero val-
ues are sampled and transmitted when encountered∗.
Since event-based processing techniques, in general, first
quantize the signal in terms of the events of interest, and
then sample the quantized signal, they apply a quantize-
and-sample strategy, instead of the sample-and-quantize
strategy followed by the conventional time-driven pro-
cessing techniques.

20.1.3 Decentralized Statistical Signal Processing

If, in a decentralized system, data are collected for a spe-
cific purpose (e.g., hypothesis testing, parameter estima-
tion), then we should locally process raw observations
as much as possible before transmitting to minimize
processing losses at the central processor, in addition
to the transmission losses due to physical constraints.
For instance, in hypothesis testing, each node in the
network can first compute and then report the log-
likelihood ratio (LLR) of its observations, which is the
sufficient statistic. Assuming independence of observa-
tions across nodes, the central processor can simply
sum the reported LLRs and decide accordingly with-
out further processing. On the contrary, if each node
transmits its raw observations in a decentralized fash-
ion, the central processor needs to process the lossy data
to approximate LLR, which is in general a nonlinear
function. The LLR approximation in the latter report-
and-process strategy is clearly worse than the one in the
former process-and-report strategy.

∗Unlike compressive sensing, the binary nonzero values are simply
reported in real time without any need for offline computation.

An event-based sampling technique, called level-
triggered sampling, has been proposed to report the
corresponding sufficient statistic in binary hypothe-
sis testing [17] and parameter estimation [16] for
continuous-time band-limited observations. The opera-
tion of level-triggered sampling is identical to that of
send-on-delta sampling (i.e., ±Δ changes in the local
sufficient statistic since the last sampling time triggers a
new sample), but it is motivated by the sequential proba-
bility ratio test (SPRT), the optimum sequential detector
(i.e., binary hypothesis test) for independent and iden-
tically distributed (iid) observations. Without a link to
event-based sampling, it was first proposed in [27] as
a repeated SPRT procedure for discrete-time observa-
tions. In particular, when its local LLR exits the interval
(−Δ,Δ), each node makes a decision: null hypothesis H0
if it is less than or equal to −Δ, and alternative hypoth-
esis H1 if it is greater than or equal to Δ. Then another
cycle of SPRT starts with new observations. The central
processor, called the fusion center, also runs SPRT by
computing the joint LLR of such local decisions.

Due to the numerous advantages of digital signal pro-
cessing (DSP) and digital communications over their
analog counterparts, a vast majority of the existing hard-
ware work with discrete-time signals. Although there
is a significant interest in building a new DSP the-
ory based on event-based sampling [30,44,60,64], such
a theory is not mature yet, and thus it is expected
that the conventional A/D converters, based on uni-
form sampling, will continue to dominate in the near
future. Since digital communications provide reliable
and efficient information transmission, with the support
of inexpensive electronics, it is ubiquitous nowadays [25,
page 23]. Hence, even if we perform analog signal pro-
cessing and then event-based sampling on the observed
continuous-time signal, we will most likely later on need
to quantize time (i.e., uniformly sample the resulting
continuous-time signal) for communication purposes. In
that case, we should rather apply event-based sampling
to uniformly sampled discrete-time observations at the
nodes. This also results in a compound architecture
which can perform time-driven, as well as event-driven,
tasks [42,46]. As a result, level-triggered sampling with
discrete-time observations (see Figure 20.3) has been
considered for statistical signal processing applications
[32,73–76].

In level-triggered sampling, a serious complication
arises with discrete-time observations: when a sample
is taken, the change since the last sampling time, in
general, exceeds Δ or −Δ due to the jumps in the
discrete-time signal, known as the overshoot problem
(see Figure 20.3). Note from Figure 20.3 that the sam-
pling thresholds are now signal dependent, as opposed
to level-crossing sampling (with hysteresis), shown in
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FIGURE 20.3

Level-triggered sampling with discrete-time observations.

Figure 20.1. Overshoots disturb the binary quantized
values in terms of Δ change (i.e., the one-bit encoding in
Figure 20.1) since now fractional Δ changes are possible.
As a result, when sampled, such fractional values in
the event space cannot be exactly encoded into a single
bit. Overshoots are also observed with continuous-time
band-unlimited signals (i.e., that have jumps), which are
observed in practice due to noise. Hence, for practical
purposes, we need to deal with the overshoot problem.

In level-triggered sampling, the overshoot problem is
handled in several ways. In the first method, a single-
bit encoding is still used with quantization levels that
include average overshoot values in the event space.
That is, for positive (≥Δ)/negative (≤−Δ) changes, the
transmitted +1/−1 bit represents a fractional change
θ̄ > Δ/

¯
θ < −Δ, where θ̄ − Δ/

¯
θ + Δ compensates for

the average overshoot above Δ/below −Δ. Examples
of this overshoot compensation method are seen in the
decentralized detectors of [27,74], and also in Section
20.2.2, in which the LLR of each received bit at the
fusion center (FC) is computed. There are two other
overshoot compensation methods in the literature, both
of which quantize each overshoot value. In [73] and [75],
for detection and estimation purposes, respectively, each
quantized value is transmitted in a few bits via sepa-
rate pulses, in addition to the single bit representing the
sign of the Δ change. On the contrary, in [76], and also
in Section 20.3.3.2, pulse-position modulation (PPM) is
used to transmit each quantized overshoot value. Specif-
ically, the unit time interval is divided into a number
of subintervals, and a short pulse is transmitted for the
sign bit at the time slot that corresponds to the overshoot
value. Consequently, to transmit each quantized over-
shoot value, more energy is used in the former method,
whereas more bandwidth is required in the latter.

In the literature, level-triggered sampling has been
utilized to effectively transmit the sufficient local
statistics in decentralized systems for several appli-
cations, such as spectrum sensing in cognitive radio
networks [73], target detection in wireless sensor

networks [76], joint spectrum sensing and channel
estimation in cognitive radio networks [71], security
in multiagent reputation systems [32], and power qual-
ity monitoring in power grids [31].

20.1.4 Outline

In this chapter, we analyze the use of event-based sam-
pling as a means of information transmission for decen-
tralized detection and estimation. We start with the
decentralized detection problem in Section 20.2. Two
challenges, namely noisy transmission channels and
multimodal information sources, have been addressed
via level-triggered and level-crossing sampling in Sec-
tions 20.2.2 and 20.2.3, respectively.

Then, in Section 20.3, we treat the sequential estima-
tion of linear regression parameters under a decentral-
ized setup. Using a variant of level-triggered sampling,
we design a decentralized estimator that achieves a
close-to-optimum average stopping time performance
and linearly scales with the number of parameters while
satisfying stringent energy and computation constraints.

Throughout the chapter, we represent scalars with
lower-case letters, vectors with bold lower-case letters,
and matrices with bold upper-case letters.

20.2 Decentralized Detection

We first consider the decentralized detection (i.e.,
hypothesis testing) problem, in which a number of
distributed nodes (e.g., sensors), under energy and
bandwidth constraints, sequentially report a summary
of their discrete-time observations to an FC, which
makes a decision as soon as possible satisfying some
performance constraints.

20.2.1 Background

Existing works on decentralized detection mostly con-
sider the fixed-sample-size approach, in which the FC
makes a decision at a deterministic time using a fixed
number of samples from nodes (e.g., [57,59,67]). The
sequential detection approach, in which the FC at each
time chooses either to continue receiving new samples
or to stop and make a decision, is also of significant
interest (e.g., [8,40,62]). In [17,27,73,74,76], SPRT is used
both at the nodes and the FC. SPRT is the optimum
sequential detector for iid observations in terms of mini-
mizing the average sample number among all sequential
tests satisfying the same error probability constraints
[65]. Compared with the best fixed-sample-size detec-
tor, SPRT requires, on average, four times less samples

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

L
ib

ra
ry

 (
A

nn
 A

rb
or

, F
lin

t, 
&

 D
ea

rb
or

n)
],

 [
Y

as
in

 Y
ilm

az
] 

at
 0

8:
03

 0
8 

D
ec

em
be

r 
20

15
 



T&F Cat #K24071 — K24071 C020 — page 462 — 10/13/2015 — 12:57

462 Event-Based Control and Signal Processing

for the same level of confidence for Gaussian signals
[47, page 109].

Under stringent energy and bandwidth constraints
where nodes can only infrequently transmit a single bit
(which can be considered as a local decision), the opti-
mum local decision function is the likelihood ratio test
(LRT), which is nothing but a one-bit quantization of
LLR, for a fixed decision fusion rule under the fixed-
sample-size setup [57]. Similarly, the optimum fusion
rule at the FC is also an LRT under the Bayesian [6]
and Neyman–Pearson [58] criteria. Since SPRT, which
is also a one-bit quantization of LLR with the dead-
band (−Δ,Δ), is the sequential counterpart of LRT,
these results readily extend to the sequential setup as a
double-SPRT scheme [27].

Under relaxed resource constraints, the optimum local
scheme is a multibit quantization of LLR [66], which
is the necessary and sufficient statistic for the detec-
tion problem, while the optimum data fusion detector
at the FC is still an LRT under the fixed-sample-size
setup. Thanks to the event-based nature of SPRT, even
its single-bit decision provides data fusion capabilities.
More specifically, when it makes a decision, we know
that LLR ≥Δ if H1 is selected, or LLR ≤−Δ if H0 is
selected. For continuous-time bandlimited observations,
we have a full precision, that is, LLR = Δ or LLR =
−Δ depending on the decision, which requires infinite
number of bits with LRT under the fixed-sample-size
setup. The repeated SPRT structure of level-triggered
sampling enables LLR tracking, that is, sequential data
fusion [17,74]. For discrete-time observations, the single-
bit decision at each SPRT step (i.e., one-bit representation
of a level-triggered sample as in Figure 20.3) may pro-
vide high-precision LLR tracking if overshoots are small
compared with Δ. Otherwise, under relaxed resource
constraints, each overshoot can be quantized into addi-
tional bits [73,76], resulting in a multibit quantization
of the changes in LLR with the deadband (−Δ,Δ),
analogous to the multibit LLR quantization under the
fixed-sample-size setup [66].

The conventional approach to decentralized detec-
tion, assuming ideal transmission channels, addresses
only the noise that contaminates the observations at
nodes (e.g., [17,57]). Nevertheless, in practice, the chan-
nels between nodes and the FC are noisy. Following the
conventional approach, at the FC, first a communication
block recovers the transmitted information bits, and
then an independent signal processing block performs
detection using the recovered bits. Such an indepen-
dent two-step procedure inflicts performance loss due
to the data-processing inequality [9]. For optimum
performance, without a communication block, the
received signals should be processed in a channel-aware
manner [7,34].

In this section, we first design in Section 20.2.2
channel-aware decentralized detection schemes based
on level-triggered sampling for different noisy channel
models. We then show in Section 20.2.3 how to fuse mul-
timodal data from disparate sources for decentralized
detection.

20.2.2 Channel-Aware Decentralized Detection

Consider a network of K distributed nodes (e.g., a wire-
less sensor network) and an FC, which can be one of
the nodes or a dedicated processor (Figure 20.4). Each
node k computes the LLR Lk[n] of discrete-time sig-
nal xk[n] it observes, and sends the level-triggered LLR
samples to the FC, which fuses the received samples
and sequentially decides between two hypotheses, H0
and H1.

Assuming iid observations {xk[n]}n across time, and
independence across nodes, the local LLR at node k and
the global LLR are given by

Lk[n] = log
fk,1(xk[1], . . . , xk[n])
fk,0(xk[1], . . . , xk[n])

=
n

∑
m=1

log
fk,1(xk[m])

fk,0(xk[m])

=
n

∑
m=1

lk[m] = Lk[n− 1] + lk[n],

L[n] =
K

∑
k=1

Lk[n],

respectively, where fk,j, j = 0, 1 is the probability
density/mass function of the observed signal at node k
under Hj, and lk[n] is the LLR of xk[n].

FCN1

N2

NK

Ch1

Ch2

ChK

x1[n]

x2[n]

xK [n]

b1,i Z1,i

Z2,i

ZK, i

bK, i

b2,i

ds

FIGURE 20.4

A network of K nodes and a fusion center (FC). Each node k processes
its observations {xk[n]}n and transmits information bits {bk,i}i. The FC
then, upon receiving the signals {zk,i}, makes a detection decision dS

at the random time S.
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20.2.2.1 Procedure at Nodes

Each node k samples Lk[n] via level-triggered sampling
at a sequence of random times {tk,i}i that are determined
by Lk[n] itself. Specifically, the ith sample is taken when
the LLR change Lk[n]− Lk[tk,i−1] since the last sampling
time tk,i−1 exceeds a constant Δ in absolute value, that is,

tk,i � min
{

n > tk,i−1 : Lk[n]− Lk[tk,i−1] �∈ (−Δ,Δ)
}

,
tk,0 = 0, Lk[0] = 0. (20.1)

It has been shown in [73, section IV-B] that Δ can be
determined by

Δ tanh
(
Δ

2

)
=

1
R

K

∑
k=1
|Ej[Lk[1]]|, (20.2)

to ensure that the FC receives messages with an average
rate of R messages per unit time interval.

Let λk,i denote the LLR change during the ith sam-
pling interval, (tk,i−1, tk,i], that is,

λk,i � Lk[tk,i]− Lk[tk,i−1] =
tk,i

∑
n=tk,i−1+1

lk[n].

Immediately after sampling at tk,i, as shown in
Figure 20.4, an information bit bk,i indicating the
threshold crossed by λk,i is transmitted to the FC, that is,

bk,i � sign(λk,i). (20.3)

20.2.2.2 Procedure at the FC

Let us now analyze the received signal zk,i at the FC cor-
responding to the transmitted bit bk,i (see Figure 20.4).
The FC computes the LLR

λ̃k,i � log
gk,1(zk,i)

gk,0(zk,i)
, (20.4)

of each received signal zk,i and approximates the global
LLR, L[n], as

L̃[n] �
K

∑
k=1

Jk,n

∑
i=1

λ̃k,i,

where Jk,n is the total number of LLR messages received
from node k until time n, and gk,j, j = 0, 1, is the pdf
of zk,i under Hj.

In fact, the FC recursively updates L̃[n] whenever it
receives an LLR message from any node. In particular,
suppose that the mth LLR message λ̃m from any sensor

is received at time tm. Then at tm, the FC performs the
following update:

L̃[tm] = L̃[tm−1] + λ̃m,

and uses L̃[tm] in an SPRT procedure with two thresh-
olds A and −B, and the following decision rule

dtm �

⎧⎨⎩
H1, if L̃[tm] ≥ A,
H0, if L̃[tm] ≤ −B,
wait for λ̃m+1, if L̃[tm] ∈ (−B, A).

The thresholds (A, B > 0) are selected to satisfy the
error probability constraints

P0(dS = H1) ≤ α and P1(dS = H0) ≤ β, (20.5)

with equalities, where Pj, j = 0, 1, denotes the probabil-
ity under Hj, α and β are the error probability bounds
given to us, and

S � min{n > 0 : L̃[n] �∈ (−B, A)}, (20.6)

is the decision time.
Comparing (20.1) with (20.6), we see that each node,

in fact, applies a local SPRT with thresholds Δ and −Δ
within each sampling interval. At node k, the ith local
SPRT starts at time tk,i−1 + 1 and ends at time tk,i when
the local test statistic λk,i exceeds either Δ or −Δ. This
local hypothesis testing produces a local decision repre-
sented by the information bit bk,i in (20.3), and induces
the local error probabilities

αk � P0(bk,i = 1) and βk � P1(bk,i = −1). (20.7)

We next discuss how to compute λ̃k,i, the LLR of
received signal zk,i, given by (20.4), under ideal and
noisy channels.

20.2.2.3 Ideal Channels

Lemma 20.1

Assuming ideal channels between nodes and the FC,
that is, zk,i = bk,i, we have

λ̃k,i =

⎧⎪⎨⎪⎩
log P1(bk,i=1)

P0(bk,i=1) = log 1−βk
αk
≥ Δ, if bk,i = 1,

log P1(bk,i=−1)
P0(bk,i=−1) = log βk

1−αk
≤ −Δ, if bk,i = −1.

(20.8)
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PROOF The equalities follow from (20.7). The inequal-
ities can be obtained by applying a change of measure.
To show the first one, we write

αk = P0(λk,i ≥ Δ) = E0[1{λk,i≥Δ}], (20.9)

where Ej is the expectation under Hj, j = 0, 1 and 1{·} is
the indicator function. Note that

e−λk,i =
fk,0(xk[tk,i−1 + 1], . . . , xk[tk,i])

fk,1(xk[tk,i−1 + 1], . . . , xk[tk,i])
,

can be used to compute the expectation integral in terms
of fk,1 instead of fk,0, that is, to change the probability
measure under which the expectation is taken from fk,0
to fk,1. Hence,

αk = E1[e
−λk,i1{λk,i≥Δ}]

≤ e−ΔE1[1{λk,i≥Δ}] = e−ΔP1(λk,i ≥ Δ)

= e−Δ(1− βk),

giving us the first inequality in (20.8). The second
inequality follows similarly.

We see from Lemma 20.1 that the FC, assuming ideal
channels, can compute λ̃k,i, the LLR of the sign bit bk,i
if the local error probabilities αk and βk are available.
It is also seen that λ̃k,i is, in magnitude, larger than the
corresponding sampling threshold, and thus includes a
constant compensation for the random overshoot of λk,i
above Δ or below −Δ. The relationship of this constant
compensation to the average overshoot, and the order-1
asymptotic optimality it achieves are established in [17].

In the no-overshoot case, as with continuous-time
band-limited observations, the inequalities in (20.8)
become equalities since in (20.9) we can write αk =
P0(λk,i = Δ). This shows that the LLR update in (20.8)
adapts well to the no-overshoot case, in which the LLR
change that triggers sampling is either Δ or −Δ.

Theorem 20.1: [17, Theorem 2]

Consider the asymptotic regime in which the target error
probabilities α, β→ 0 at the same rate. If the sampling
threshold Δ→ ∞ is slower than | log α|, then, under
ideal channels, the decentralized detector which uses
the LLR update given by (20.8) for each level-triggered
sample is order-1 asymptotically optimum, that is,

Ej[S]
Ej[So]

= 1 + o(1), j = 0, 1, (20.10)

where So is the decision time of the optimum (cen-
tralized) sequential detector, SPRT, satisfying the error
probability bounds α and β [cf. (20.5)].

For the proof and more details on the result, see
[17, Theorem 2] and the discussion therein. Using the
traditional uniform sampler followed by a quantizer, a
similar order-1 asymptotic optimality result cannot be
obtained by controlling the sampling period with a con-
stant number of quantization bits [73, section IV-B]. The
significant performance gain of level-triggered sampling
against uniform sampling is also shown numerically in
[73, section V].

Order-1 is the most frequent type of asymptotic opti-
mality encountered in the literature, but it is also the
weakest. Note that in order-1 asymptotic optimality,
although the average decision time ratio converges
to 1, the difference Ej[S] − Ej[So] may be unbounded.
Therefore, stronger types of asymptotic optimality are
defined. The difference remains bounded (i.e., Ej[S] −
Ej[So] = O(1)) in order-2 and diminishes (i.e., Ej[S] −
Ej[So] = o(1)) in order-3. The latter is extremely rare in
the literature, and the schemes of that type are consid-
ered optimum per se for practical purposes.

20.2.2.4 Noisy Channels

In the presence of noisy channels, one subtle issue is that
since the sensors asynchronously sample and transmit
the local LLR, the FC needs to first reliably detect the
sampling time to update the global LLR. We first assume
that the sampling time is reliably detected and focus on
deriving the LLR update at the FC. We discuss the issue
of sampling time detection later on.

In computing the LLR λ̃k,i of the received signal zk,i,
we make use of the local sensor error probabilities αk, βk,
and the channel parameters that characterize the statis-
tical property of the channel.

20.2.2.4.1 Binary Erasure Channels

We first consider binary erasure channels (BECs)
between sensors and the FC with erasure probabilities
εk, k = 1, . . . , K. Under BEC, a transmitted bit bk,i is lost
with probability εk, and it is correctly received at the FC
(i.e., zk,i = bk,i) with probability 1− εk.

Lemma 20.2

Under BEC with erasure probability εk, the LLR of zk,i is
given by

λ̃k,i =

⎧⎪⎨⎪⎩
log P1(zk,i=1)

P0(zk,i=1) = log 1−βk
αk

, if zk,i = 1,

log P1(zk,i=−1)
P0(zk,i=−1) = log βk

1−αk
, if zk,i = −1.

(20.11)
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PROOF We have zk,i = b, b = ±1, with probability
1− εk only when bk,i = b. Hence,

Pj(zk,i = b) = Pj(bk,i = b)(1− εk), j = 0, 1.

In the LLR expression, the 1 − εk terms on the numer-
ator and denominator cancel out, giving the result in
(20.11).

Note that under BEC, the channel parameter εk is not
needed when computing the LLR λ̃k,i. Note also that
in this case, a received bit bears the same amount of
LLR information as in the ideal channel case [cf. (20.8)],
although a transmitted bit is not always received. Hence,
the channel-aware approach coincides with the conven-
tional approach which relies solely on the received sig-
nal. Although the LLR updates in (20.8) and (20.11) are
identical, the fusion rules under BEC and ideal channels
are not. This is because under BEC, the decision thresh-
olds A and B in (20.6), due to the information loss, are in
general different from those in the ideal channel case.

20.2.2.4.2 Binary Symmetric Channels

Next, we consider binary symmetric channels (BSCs)
with crossover probabilities εk between sensors and
the FC. Under BSC, the transmitted bit bk,i is flipped
(i.e., zk,i = −bk,i) with probability εk, and it is correctly
received (i.e., zk,i = bk,i) with probability 1− εk.

Lemma 20.3

Under BSC with crossover probability εk, the LLR of zk,i
can be computed as

λ̃k,i =

⎧⎨⎩ log 1−β̂k
α̂k

, if zk,i = 1,

log β̂k
1−α̂k

, if zk,i = −1,
(20.12)

where α̂k = αk(1− 2εk) + εk and β̂k = βk(1− 2εk) + εk.

PROOF Due to the nonzero probability of receiving a
wrong bit, we now have

Pj(zk,i = b) = P(zk,i = b|bk,i = b)Pj(bk,i = b)

+ P(zk,i = b|bk,i = −b)Pj(bk,i = −b),

e.g., P0(zk,i = 1) = (1− εk)αk + εk(1− αk),

j = 0, 1, b = ±1. Defining α̂k = αk(1− 2εk) + εk and β̂k =
βk(1− 2εk) + εk, we obtain the LLR expression given in
(20.12).

Note that for αk < 0.5, βk < 0.5, ∀k, which we assume
true for Δ > 0,

α̂k = αk + εk(1− 2αk) > αk,

and similarly β̂k > βk. Thus, |λ̃BSC
k,i | < |λ̃BEC

k,i | from which
we expect a higher performance loss under BSC than
the one under BEC. Finally, note also that, unlike the
BEC case, under BSC the FC needs to know the channel
parameters {εk} to operate in a channel-aware manner.

20.2.2.4.3 Additive White Gaussian Noise Channels

Now, assume that the channel between each sensor and
the FC is an additive white Gaussian noise (AWGN)
channel. The received signal at the FC is given by

zk,i = yk,i + wk,i, (20.13)

where wk,i ∼ Nc(0, σ2
k) is the complex white Gaussian

noise, and yk,i is the transmitted signal at sampling
time tk,i, given by

yk,i =

{
a, if λk,i ≥ Δ,
b, if λk,i ≤ −Δ, (20.14)

where the transmission levels a and b are complex in
general.

Lemma 20.4

Under the AWGN channel model in (20.13), the LLR of
zk,i is given by

λ̃k,i = log
(1− βk)e−ck,i + βke−dk,i

αke−ck,i + (1− αk)e−dk,i
, (20.15)

where ck,i =
|zk,i−a|2

σ2
k

and dk,i =
|zk,i−b|2

σ2
k

.

PROOF The distribution of the received signal given
yk,i is zk,i ∼ Nc(yk,i, σ2

k). The probability density function
of zk,i under Hj is then given by

gk,j(zk,i) = gk,j(zk,i|yk,i = a)Pj(yk,i = a)

+ gk,j(zk,i|yk,i = b)Pj(yk,i = b),

e.g., gk,1(zk,i) =
(1− βk)e

− |zk,i−a|2
σ2

k + βke
− |zk,i−b|2

σ2
k

πσ2
k

.

(20.16)

Defining ck,i �
|zk,i−a|2

σ2
k

and dk,i �
|zk,i−b|2

σ2
k

, and substi-

tuting gk,0(zk,i) and gk,1(zk,i) into λ̃k,i = log gk,1(zk,i)
gk,0(zk,i)

, we
obtain (20.15).

If the transmission levels a and b are well separated,

and the signal-to-noise ratio |yk,i|
|wk,i| is high enough, then

λ̃k,i ≈
⎧⎨⎩ log 1−βk

αk
, if yk,i = a,

log βk
1−αk

, if yk,i = b,
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resembling the ideal channel case, given by (20.8). Due
to the energy constraints at nodes, assume a maxi-
mum transmission power P2. In accordance with the
above observation, it is shown in [74, Section V-C]
that the antipodal signaling (e.g., a = P and b = −P) is
optimum.

20.2.2.4.4 Rayleigh Fading Channels

Assuming a Rayleigh fading channel model, the
received signal is given by

zk,i = hk,iyk,i + wk,i, (20.17)

where hk,i ∼ Nc(0, σ2
h,k), yk,i, and wk,i are as before.

Lemma 20.5

Under the Rayleigh fading channel model in (20.17), the
LLR of zk,i is given by

λ̃k,i = log

1−βk
σ2

a,k
e−ck,i + βk

σ2
b,k

e−dk,i

αk
σ2

a,k
e−ck,i + 1−αk

σ2
b,k

e−dk,i
, (20.18)

where ck,i =
|zk,i|2
σ2

a,k
, dk,i =

|zk,i|2
σ2

b,k
, σ2

a,k = |a|2σ2
h,k + σ2

k , and

σ2
b,k = |b|2σ2

h,k + σ2
k .

PROOF Given yk,i, we have zk,i ∼ Nc(0, |yk,i|2σ2
h,k +

σ2
k). Similar to (20.16), we can write

gk,1(zk,i) =
1− βk

πσ2
a,k

e−ck,i +
βk

πσ2
b,k

e−dk,i,

gk,0(zk,i) =
αk

πσ2
a,k

e−ck,i +
1− αk

πσ2
b,k

e−dk,i,
(20.19)

where ck,i �
|zk,i|2
σ2

a,k
, dk,i �

|zk,i|2
σ2

b,k
, σ2

a,k � |a|2σ2
h,k + σ2

k , and

σ2
b,k � |b|2σ2

h,k + σ2
k . Substituting gk,0(zk,i) and gk,1(zk,i)

into λ̃k,i = log gk,1(zk,i)
gk,0(zk,i)

, we obtain (20.18).

In this case, different messages a and b are expressed
only in the variance of zk,i. Hence, with antipodal sig-
naling, they become indistinguishable (i.e., σ2

a,k = σ2
b,k)

and as a result λ̃k,i = 0. This suggests that we should
separate |a| and |b| as much as possible to decrease the
uncertainty at the FC, and in turn to decrease the loss
in the LLR update λ̃k,i with respect to the ideal chan-
nel case. Assuming a minimum transmission power Q2

to ensure reliable detection of an incoming signal at the
FC, in addition to the maximum transmission power P2

due to the energy constraints, it is numerically shown
in [74, Section V-D] that the optimum signaling scheme
corresponds to either |a|= P, |b|= Q or |a|= Q, |b|= P.

20.2.2.4.5 Rician Fading Channels

For Rician fading channels, we have hk,i ∼ Nc(μk, σ2
h,k)

in (20.17).

Lemma 20.6

With Rician fading channels, λ̃k,i is given by (20.18),

where ck,i =
|zk,i−aμk|2

σ2
a,k

, dk,i =
|zk,i−bμk|2

σ2
b,k

, σ2
a,k = |a|2σ2

h,k +

σ2
k , and σ2

b,k = |b|2σ2
h,k + σ2

k .

PROOF Given yk,i, the received signal is distributed
as zk,i ∼ Nc(μkyk,i, |yk,i|2σ2

h,k + σ2
k). The likelihoods

gk,1(zk,i) and gk,0(zk,i) are then written as in (20.19) with
σ2

a,k = |a|2σ2
h,k + σ2

k , σ2
b,k = |b|2σ2

h,k + σ2
k , and the new

definitions ck,i =
|zk,i−aμk|2

σ2
a,k

, dk,i =
|zk,i−bμk |2

σ2
b,k

. Finally, the

LLR is given by (20.18).

The Rician model covers the previous two continu-
ous channel models. Particularly, the σ2

h,k = 0 case cor-
responds to the AWGN model, and the μk = 0 case
corresponds to the Rayleigh model. It is numerically
shown in [74, Section V-E] that depending on the values
of parameters (μk, σ2

h,k), either the antipodal signaling of
the AWGN case or the ON–OFF type signaling of the
Rayleigh case is optimum.

20.2.2.4.6 Discussions

Considering the unreliable detection of sampling times
under continuous channels, we should ideally integrate
this uncertainty into the fusion rule of the FC. In other
words, at the FC, the LLR of received signal

zk[n] = hk[n]yk[n] + wk[n],

instead of zk,i given in (20.17), should be computed at
each time instant n if the sampling time of node k can-
not be reliably detected. In the LLR computations of
Lemmas 20.4 and 20.5, the prior probabilitiesPj(yk,i = a)
and Pj(yk,i = b) are used. These probabilities are in fact
conditioned on the sampling time tk,i. Here, we need
the unconditioned prior probabilities of the signal yk[n]
which at each time n takes a value of a or b or 0, that is,

yk[n] =

⎧⎨⎩
a if Lk[n]− Lk[tk,i−1] ≥ Δ,
b if Lk[n]− Lk[tk,i−1] ≤ −Δ,
0 if Lk[n]− Lk[tk,i−1] ∈ (−Δ,Δ),

instead of yk,i given in (20.14).
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Then, the LLR of zk[n] is given by

λ̃k[n] = log
gk,1(zk[n])
gk,0(zk[n])

,

gk,1(zk[n]) =
[

gk,1(zk[n]|yk[n] = a)(1− βk)

+ gk,1(zk[n]|yk[n] = b)βk

]
P1(yk[n] �= 0)

+ gk,1(zk[n]|yk[n] = 0) P1(yk[n] = 0),

gk,0(zk[n]) =
[

gk,0(zk[n]|yk[n] = a)αk

+ gk,0(zk[n]|yk[n] = b)(1− αk)
]

× P0(yk[n] �= 0)
+ gk,0(zk[n]|yk[n] = 0) P0(yk[n] = 0),

where gk,j(zk[n]|yk[n]) is determined by the channel
model. Since the FC has no prior information on the
sampling times of nodes, the probability of sampling,
that is, Pj(yk[n] �= 0), can be shown to be 1

Ej [τk,i]
, where

Ej[τk,i] is the average sampling interval of node k under
Hj, j = 0, 1.

Alternatively, a two-step procedure can be applied
by first detecting a message and then using the LLR
updates previously derived in Lemmas 20.4–20.6. Since
it is known that most of the time λ̃k[n] is uninforma-
tive, corresponding to the no message case, a simple
thresholding can be applied to perform LLR update only
when it is informative. The thresholding step is in fact a
Neyman–Pearson test (i.e., LRT) between the presence
and absence of a message signal. The threshold can be
adjusted to control the false alarm (i.e., type-I error) and
misdetection (i.e., type-II error) probabilities. Setting the
threshold sufficiently high, we can obtain a negligible
false alarm probability, leaving us with the misdetection
probability. Thus, if an LLR survives after thresholding,
in the second step it is recomputed as in the channel-
aware fusion rules obtained in Lemmas 20.4–20.6.

An information-theoretic analysis for the decentral-
ized detectors in Sections 20.2.2.3 and 20.2.2.4 can be
found in [74]. Specifically, using renewal processes,
closed-form expressions for average decision time are
derived under both the nonasymptotic and asymptotic
regimes.

20.2.3 Multimodal Decentralized Detection

In monitoring of complex systems, multimodal data,
such as sensor measurements, images, and texts, are
collected from disparate sources. The emerging con-
cepts of Internet of Things (IoT) and Cyber-Physical
Systems (CPS) show that there is an increasing interest

in connecting more and more devices with various
sensing capabilities [41]. The envisioned future power
grid, called Smart Grid, is a good example for such
heterogeneous networks. Monitoring and managing
wide-area smart grids require the integration of multi-
modal data from electricity consumers, such as smart
home and smart city systems, as well as various elec-
tricity generators (e.g., wind, solar, coal, nuclear) and
sensing devices across the grid [15].

Multisensor surveillance (e.g., for military or envi-
ronmental purposes) is another application in which
multimodal data from a large number of sensors (e.g.,
acoustic, seismic, infrared, optical, magnetic, tempera-
ture) are fused for a common statistical task [18]. An
interesting multidisciplinary example is nuclear facil-
ity monitoring for treaty verification. From a data-
processing perspective, using a variety of disparate
information sources, such as electricity consumption,
satellite images, radiation emissions, seismic vibrations,
shipping manifests, and intelligence data, a nuclear facil-
ity can be monitored to detect anomalous events that
violate a nuclear treaty.

Information-theoretic and machine-learning ap-
proaches to similar problems can be found in [18]
and [56], respectively. We here follow a Bayesian
probabilistic approach to the multimodal detection
problem.

20.2.3.1 Latent Variable Model

Consider a system of K information sources (i.e., a net-
work of K nodes). From each source k, a discrete-time
signal xk[n], n ∈ N, is observed, which follows the prob-
ability distribution Dk(θk) with the parameter vector
θk, k = 1, . . . , K. Given θk, the temporal observations
{xk[n]}n from source k are assumed iid. Some informa-
tion sources may be of same modality.

A latent variable vector φ is assumed to correlate
information sources by controlling their parameters
(Figure 20.5). Then, the joint distribution of all observa-
tions collected until time N can be written as

f
(
{xk[n]}K,N

k=1,n=1

)
=

∫
χφ

∫
χ1

· · ·
∫
χK

f
(
{xk[n]}k,n

∣∣{θk}, φ
)

× f
(
{θk}

∣∣φ)
f
(
φ
)

dθ1 · · ·dθK dφ,

where χφ and χk are the supports of φ and
θk, k = 1, . . . , K. Assuming {θk} are independent,
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φ

θ1 θk θK

x1[n] xk[n] xK[n]

FIGURE 20.5

A Bayesian network of K information sources linked through the
latent variable vector φ. The probability distribution of the observation
xk [n] is parameterized by the random vector θk, whose distribution is
determined by φ, which is also random. The observed variables are
represented by filled circles.

given φ we have

f
(
{xk[n]}k,n

)
=

∫
χφ

{∫
χ1

N

∏
n=1

f
(

x1[n]
∣∣θ1

)
f
(
θ1

∣∣φ)
dθ1

× · · ·
∫
χK

N

∏
n=1

f
(

xK[n]
∣∣θK

)
f
(
θK

∣∣φ)
dθK

}
f
(
φ
)

dφ

=
∫
χφ

f
(
{x1[n]}

∣∣φ)
· · · f

(
{xK[n]}

∣∣φ)
f
(
φ
)

dφ,

(20.20)

where f
(

xk[n]
∣∣θk

)
, k = 1, . . . , K, is the probability

density/mass function of the distribution Dk(θk). If

f
(
θk

∣∣φ)
corresponds to the conjugate prior distribution

for Dk(θk), then f
(
{xk[n]}n

∣∣φ)
can be written in closed

form.

20.2.3.2 Hypothesis Testing

If the latent variable vector φ is deterministically speci-
fied under both hypotheses, that is,

H0 : φ = φ0,
H1 : φ = φ1,

(20.21)

then observations {xk[n]}k from different sources are
independent under Hj, j = 0, 1, since {θk} are assumed
independent given φ. In that case, the global likelihood
under Hj is given by (20.20) without the integral over φ,
that is,

fj({xk[n]}k,n) =
K

∏
k=1

f
(
{xk[n]}n

∣∣φ = φj

)
.

Using f1({xk[n]}k,n) and f0({xk[n]}k,n), the global LLR
at time N is written as

L[N] =
K

∑
k=1

log
f
(
{xk[n]}N

n=1

∣∣φ = φ1

)
f
(
{xk[n]}N

n=1

∣∣φ = φ0

) =
K

∑
k=1

Lk[N].

(20.22)
For sequential detection, SPRT can be applied by com-

paring L[n] at each time to two thresholds A and −B.
The sequential test continues until the stopping time

S = min{n ∈ N : L[n] �∈ (−B, A)}, (20.23)

and makes the decision

dS =

{
H1, if L[S] ≥ A,
H0, if L[S] ≤ −B, (20.24)

at time S.
In a decentralized system, where all observations

cannot be made available to the FC due to resource
constraints, each node k (corresponding to information
source k) can compute its LLR Lk[n] and transmit event-
based samples of it to the FC, as will be described in
Section 20.2.3.4. Then, summing the LLR messages from
nodes, the FC computes the approximate global LLR
L̃[n] and uses it in the SPRT procedure similar to (20.23)
and (20.24).

In many cases, it may not be possible to determinis-
tically specify φ under the hypotheses, but a statistical
description may be available, that is,

H0 : φ ∼ Dφ,0(θφ,0),
H1 : φ ∼ Dφ,1(θφ,1).

(20.25)

In such a case, to compute the likelihood under Hj, we
need to integrate over φ as shown in (20.20). Hence, in
general, the global LLR

L[N]

= log

∫
χφ

f
(
{x1[n]}

∣∣φ)
· · · f

(
{xK[n]}

∣∣φ)
f1

(
φ
)

dφ∫
χφ

f
(
{x1[n]}

∣∣φ)
· · · f

(
{xK[n]}

∣∣φ)
f0

(
φ
)

dφ
,

(20.26)

does not have a closed-form expression. However, for
a reasonable number of latent variables (i.e., entries
of φ), effective numerical computation may be possible
through Monte Carlo simulations. Once L[n] is numer-
ically computed, SPRT can be applied as in (20.23)
and (20.24).

For decentralized detection, each node k can
now compute the functions of {xk[n]}n included in

f
(
{xk[n]}n

∣∣φ)
(see the example below), which has a
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closed-form expression thanks to the assumed conju-
gate prior on the parameter vector θk [see (20.20)], and
send event-based samples to the FC. Upon receiving
such messages, the FC computes approximations to
those functions; uses them in (20.26) to compute L̃[N],
an approximate global LLR; and applies the SPRT
procedure using L̃[N]. Details will be provided in
Section 20.2.3.4.

20.2.3.3 Example

As an example to the multimodal detection scheme pre-
sented in this section, consider a system with three
types of information sources: Gaussian source (e.g.,
real-valued physical measurements), Poisson source
(e.g., event occurrences), and multinomial source (e.g.,
texts). We aim to find the closed-form expression of the

sufficient statistic f
(
{x[n]}∣∣φ)

for each modality. Let the

discrete-time signals

xg[n] ∼ N (μφ, σ2), xp[n] ∼ Pois(λφ),

xm[n] ∼ Mult(1, pφ), n ∈ N, (20.27)

denote the Gaussian, Poisson, and multinomial obser-
vations, respectively (see Figure 20.6). Multinomial dis-
tribution with a single trial and category probabilities
pφ = [pφ,1, . . . , pφ,M] is used for xm[n], whose realiza-
tion is a binary vector with an entry 1 at the index
corresponding to the category observed at time n, and
0 at the others. The Poisson observation xp[n] denotes
the number of occurrences for an event of interest in a
unit time interval, where λφ is the average rate of event
occurrences.

Among the parameters, only the variance σ2 of the
Gaussian model is assumed known. We assume con-
jugate prior distributions for the unknown parameters.
Specifically, we assume a Gaussian prior on the mean

φ

μφ λφ pφσ2

xg[n] xp[n] xm[n]

FIGURE 20.6

The Bayesian network considered in the example. The variance of the
Gaussian source, which is a known constant, is represented by a filled
square.

μφ of the Gaussian model, a gamma prior on the rate
parameter λφ of the Poisson model, and a Dirichlet prior
on the probability vector pφ of the multinomial model,
that is,

μφ ∼ N (μ̄φ, σ̄2
φ), λφ ∼ Γ(αφ, βφ), pφ ∼ Dir(γφ),

(20.28)

where the hyperparameters μ̄φ, σ̄2
φ, αφ, βφ, and γφ are

completely specified by the latent variable vector φ.

Lemma 20.7

For the example given in (20.27) and (20.28), the joint dis-
tribution of observations from each source conditioned
on φ is given by

f
(
{xg[n]}N

n=1
∣∣φ)

=

exp

⎛⎜⎜⎝−∑N
n=1 xg[n]2

2σ2 − μ̄2
φ

2σ̄2
φ

+

(
∑N

n=1 xg [n]

σ2 +
μ̄φ

σ̄2
φ

)2

2

(
N
σ2 +

1
σ̄2
φ

)
⎞⎟⎟⎠

(2π)N/2σN σ̄φ

√
N
σ2 +

1
σ̄2
φ

,

(20.29)

f
(
{xp[n]}N

n=1
∣∣φ)

=
Γ
(
αφ + ∑N

n=1 xp[n]
)

Γ (αφ)∏N
n=1 xp[n]!

β
αφ
φ

(βφ + N)αφ+∑n=1 xp[n]
,

(20.30)

f
(
{xm[n]}N

n=1
∣∣φ)

=
Γ
(

∑M
i=1 γφ,i

)
Γ

(
∑M

i=1
(
γφ,i + ∑N

n=1 xm,i[n]
))

×
M

∏
i=1

Γ
(
γφ,i + ∑N

n=1 xm,i[n]
)

Γ
(
γφ,i

) , (20.31)

where Γ(·) is the gamma function.

PROOF Given φ, {xg[n]} are iid with N (μφ, σ2),
where μφ ∼ N (μ̄φ, σ̄2

φ), hence

f
({xg[n]},μφ

)
=

exp(−∑N
n=1(xg[n]−μφ)2

2σ2 − (μφ−μ̄φ)2

2σ̄2
φ

)

(2π)
N+1

2 σN σ̄φ

.
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After some manipulations, we can show that

f
({xg[n]},μφ

)

=

exp

⎛⎜⎜⎝−∑N
n=1 xg[n]2

2σ2 − μ̄2
φ

2σ̄2
φ

+

(
∑N

n=1 xg [n]

σ2 +
μ̄φ

σ̄2
φ

)2

2

(
N
σ2 +

1
σ̄2
φ

)
⎞⎟⎟⎠

(2π)N/2σN σ̄φ

√
N
σ2 +

1
σ̄2
φ

×

√√√√ 1
σ̄2
φ

+ N
σ2

2π
exp

⎛⎜⎜⎝−
1
σ̄2
φ

+ N
σ2

2

⎛⎜⎝μφ −
μ̄φ

σ̄2
φ

+
∑N

n=1 xg[n]
σ2

1
σ̄2
φ

+ N
σ2

⎞⎟⎠
2⎞⎟⎟⎠

︸ ︷︷ ︸
f (μφ |{xg[n]})

,

where from the conjugate prior property, it is known
that the posterior distribution of μφ is also Gaussian

with mean

μ̄φ

σ̄2
φ

+
∑N

n=1 xg[n]

σ2

1
σ̄2
φ

+ N
σ2

and variance 1
σ̄2
φ

+ N
σ2 . Hence, the

result in (20.29) follows. Note that f
(
{xg[n]}N

n=1

∣∣φ)
is a

multivariate Gaussian distribution, where all entries of
the mean vector are μ̄φ, the diagonal entries of covari-
ance matrix are σ̄2

φ + σ2, and the off-diagonals are σ̄2
φ.

Similarly, for Poisson observations, we write

f
({xp[n]},λφ

)
=

N

∏
n=1

λ
xp[n]
φ e−λφ

xp[n]!

β
αφ
φ

Γ(αφ)
λ
αφ−1
φ e−βφλφ ,

since {xp[n]} are iid with Pois(λφ) given λφ, and the
prior is Γ(αφ, βφ). The posterior distribution is known to
be Γ(αφ + ∑N

n=1 xp[n], βφ + N); hence,

f
({xp[n]},λφ

)
=

(βφ + N)αφ+∑N
n=1 xp[n]

Γ
(
αφ + ∑N

n=1 xp[n]
) λαφ+∑N

n=1 xp[n]−1
φ e−(βφ+N)λφ

︸ ︷︷ ︸
f (λφ|{xp[n]})

×
Γ
(
αφ + ∑N

n=1 xp[n]
)

Γ (αφ) ∏N
n=1 xp[n]!

β
αφ
φ

(βφ + N)αφ+∑N
n=1 xp[n]︸ ︷︷ ︸

f ({xp[n]})

,

proving (20.30).
Finally, for the multinomial observations, {xm[n]} are

iid with the probability vector pφ; the prior is Dir(γφ);

and the posterior is Dir(γφ + ∑N
n=1 xm[n]); hence,

f
(
{xm[n]}, pφ

)
=

M

∏
i=1

p∑N
n=1 xm,i[n]

φ,i

Γ

(
∑M

i=1 γφ,i

)
∏M

i=1 Γ
(
γφ,i

) M

∏
i=1

p
γφ,i−1
φ,i

=
Γ
(

∑M
i=1

(
γφ,i + ∑N

n=1 xm,i[n]
))

∏M
i=1 Γ

(
γφ,i + ∑N

n=1 xm,i[n]
) M

∏
i=1

p
γφ,i+∑N

n=1 xm,i[n]−1
φ,i

×

Γ
(

∑M
i=1 γφ,i

)
Γ
(

∑M
i=1

(
γφ,i + ∑N

n=1 xm,i[n]
))

×
M

∏
i=1

Γ
(
γφ,i + ∑N

n=1 xm,i[n]
)

Γ
(
γφ,i

)︸ ︷︷ ︸
f ({xm[n]}|φ)

,

concluding the proof.

In testing hypotheses that deterministically specify φ

as in (20.21), the local LLR for each modality can be
computed using Lemma 20.7, for example,

Lg [N] = log
f
(
{xg[n]}N

n=1

∣∣φ = φ1

)
f
(
{xg[n]}N

n=1

∣∣φ = φ0

) .

Then, under a centralized setup, SPRT can applied as in
(20.23) and (20.24) using the global LLR

L[N] = Lg [N] + Lp[N] + Lm[N], (20.32)

or under a decentralized setup, each node reports event-
based samples of its local LLR, and the FC applies SPRT
using L̃[N] = L̃g[N] + L̃p[N] + L̃m[N].

On the contrary, while testing hypotheses that statisti-
cally specify φ as in (20.25), the global LLR is computed
using the results of Lemma 20.7 in (20.26). In this case,
for decentralized detection, each node can only compute
the functions of its observations that appear in the con-
ditional joint distributions, given by (20.29)–(20.31), and
do not depend on φ.

For example, the Gaussian node from (20.29) can
compute

∑N
n=1 xg[n]2

2σ2 and
∑N

n=1 xg[n]
σ2 , (20.33)

and send their event-based samples to the FC, which
can effectively recover such samples as will be shown
next, and uses them in (20.29). Although, in this case,
event-based sampling is used to transmit only some sim-
ple functions of the observations, which needs further
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processing at the FC, the advantages of using event-
based sampling on the functions of xg[n], instead of
conventional uniform sampling on xg[n] itself, is still sig-
nificant. First, the error induced by using the recovered
functions in the highly nonlinear expression of (20.29) is
smaller than that results from using the recovered obser-
vations in (20.29) because transmission loss grows with
the processing at the FC. Second, the transmission rate
can be considerably lower than that of uniform sam-
pling because only the important changes in functions
are reported, censoring the uninformative observations.

The Poisson and multinomial processes are inherently
event-based as each observation xp[n]/xm[n] marks an
event occurrence after a random (e.g., exponentially
distributed for Poisson process) waiting time since
xp[n − 1]/xm[n − 1]. Therefore, each new observation
xp[n]/xm[n] is reported to the FC. Moreover, they take
integer values (xm[n] can be represented by the index
of nonzero element); thus, no quantization error takes
place.

20.2.3.4 Decentralized Implementation

Due to the nonlinear processing of recovered messages
at the FC [cf. (20.33)], in the decentralized testing of
hypotheses with statistical descriptions of φ, we should
more carefully take care of the overshoot problem.

In level-triggered sampling, the change in the signal
is measured with respect to the signal value at the most
recent sampling time, which possibly includes an over-
shoot and hence is not perfectly available to the FC
even if a multibit scheme is used to quantize the over-
shoot. Therefore, the past quantization errors, as well as
the current one, cumulatively decrease the precision of
recovered signal at the FC. The accumulation of quan-
tization errors may not be of practical interest if the
individual errors are small (i.e., sufficiently large num-
ber of bits are used for quantization and/or the jumps
in the signal are sufficiently small) and stay small after
the processing at the FC, and the FC makes a quick deci-
sion (i.e., the constraints on detection error probabilities
are not very stringent). However, causing an avalanche
effect, it causes a significant problem for the asymptotic
decision time performance of the decentralized detector
(e.g., in a regime of large decision times due to strin-
gent error probability constraints) even if the individual
errors at the FC are small.

In [31], using of fixed reference levels is proposed to
improve the asymptotic performance of level-triggered
sampling, which corresponds to LCSH (see Figure 20.7).
Since LCSH handles the overshoot problem better than
level-triggered sampling, it suits better to the case in
(20.33) where the FC performs nonlinear processing on
the recovered signal. We here show that it also achieves
a better asymptotic performance at the expense of much
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n
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1 10 00 1

FIGURE 20.7

Level-crossing sampling with hysteresis applied to y[n]. The recovered
signal ỹ[n] at the FC and the transmitted bits are shown. Multiple cross-
ings are handled by transmitting additional bits. Overshoots {qi} take
effect individually (no overshoot accumulation).

more complicated nonasymptotic performance analysis.
Furthermore, we consider multiple crossings of sam-
pling levels due to large jumps in the signal (Figure 20.7).

Sampling a signal y[n] via LCSH with level spacing Δ,
a sample is taken whenever an upper or lower sampling
level is crossed, as shown in Figure 20.7. Specifically, the
ith sample is taken at time

ti � {n > ti−1 : |y[n]−ψi−1Δ| ≥ Δ}, (20.34)

where ψi−1 is the sampling level in terms of Δ that
was most recently crossed. In general, y[ti] may cross
multiple levels, that is, the number of level crossings

ηi �
⌊ |y[ti]−ψi−1Δ|

Δ

⌋
≥ 1. (20.35)

In addition to the sign bit

bi,1 = sign(y[ti]−ψi−1Δ), (20.36)

which encodes the first crossing with its direction, we
send

r �
⌈
ηi − 1

2

⌉
, (20.37)

more bits bi,2, . . . , bi,r+1, where each following bit 1/0
represents a double/single crossing. For instance, the
bit sequence 0110, where the first 0 denotes down-
ward crossing (i.e., bi,1 = −1), is sent for −7Δ < y[ti]−
ψi−1Δ ≤ −6Δ.

In that way, the FC can obtain ηi from received bits
and keep track of the most recently crossed level as

ψi = ψi−1 + bi,1ηi. (20.38)

It approximates y[n] with

ỹ[n] = ψiΔ, ti ≤ n < ti+1. (20.39)

As a result, only the current overshoot causes error in
ỹ[n]; that is, overshoots do not accumulate, as opposed
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to level-triggered sampling. This is especially important
when reporting signals that are processed further at the
FC [cf. (20.33)]. It also ensures order-2 asymptotic opti-
mality with finite number of bits per sample when used
to transmit iid local LLRs from unimodal sources (i.e.,
the case in Theorem 20.1).

Theorem 20.2

Consider the decentralized detector that uses the LCSH-
based transmission scheme given in (20.34)–(20.39) to
report the local LLRs, {Lk[n]}, from iid nodes to the FC,
and applies the SPRT procedure at the FC substituting
the recovered global LLR, L̃[n] = ∑K

k=1 L̃k[n], in (20.23)
and (20.24). It is order-2 asymptotically optimum, that is,

Ej[S]− Ej[So] = O(1), j = 0, 1, as α, β→ 0, (20.40)

where S and So are the decision times of decentralized
detector and the optimum (centralized) SPRT satisfying
the same (type-I and type-II) error probability bounds α
and β [cf. (20.5)].

PROOF Assuming finite and nonzero Kullback–
Leibler (KL) information numbers −E0[L[1]],E1[L[1]],
for order-2 asymptotic optimality, it suffices to show
that

E1 [L[S]]− E1 [L[So ]] = O(1), j = 0, 1, as α, β→ 0.
(20.41)

The proof under H0 follows similarly. Let us start by
writing

E1 [L[S]] = E1
[
L̃[S] + (L[S]− L̃[S])

]
. (20.42)

Thanks to the multibit transmission scheme based on
LCSH, no overshoot accumulation takes place, and thus
the absolute errors satisfy

|L̃k[n]− Lk[n]| < Δ, ∀k, n,

|L̃[n]− L[n]| =
∣∣∣ K

∑
k=1

L̃k[n]− Lk[n]
∣∣∣

≤
K

∑
k=1
|L̃k[n]− Lk[n]| < KΔ, ∀n. (20.43)

The approximate LLR L̃[S] at the stopping time
exceeds A or −B by a finite amount, that is,

L̃[S] < A + C or L̃[S] > −B− C, (20.44)

where C is a constant. Now let us analyze how the
stopping threshold A behaves as α, β→ 0. Start with

α = P0(L̃[S] ≥ A) = E0

[
1{L̃[S]≥A}

]
,

where applying a change of measure using e−L[S] as in
Lemma 20.1 we can write

α = E1

[
e−L[S]1{L̃[S]≥A}

]
= E1

[
e−L̃[S]+L̃[S]−L[S]1{L̃[S]≥A}

]
.

From (20.43),

α ≤ e−A+KΔ

A ≤ | log α|+ KΔ. (20.45)

Combining (20.42)–(20.45), we get

E1 [L[S]] ≤ | log α|+ 2KΔ+ C. (20.46)

In SPRT with discrete-time observations, due to the over-
shoot problem, the KL divergence at the stopping time
is larger than that in the no-overshoot case [53, page 21],
that is,

E1[L[So]] ≥ (1− β) log
1− β
α

+ β log
β

1− α
= (1− β)| log α| − β| log β|+ (1− β) log(1− β)
− β log(1− α). (20.47)

From (20.46) and (20.47),

E1 [L[S]]− E1[L[So]

≤ 2KΔ+ C− β| log α| − β| log β|
+ (1− β) log(1− β)− β log(1− α),

where the last three terms tend to zero as α, β→ 0.
Assuming α and β tend to zero at comparable rates,
the term β| log α| also tends to zero, leaving us with the
constant 2KΔ + C. The decentralized detector applies
the SPRT procedure with a summary of observations;
hence, it cannot satisfy the error probability constraints
with a smaller KL divergence than that of the centralized
SPRT, that is, E1 [L[S]] − E1[L[So ]] ≥ 0. This concludes
the proof.

In fact, the proof for (20.40) holds also for the case
of multimodal sources in (20.22) and (20.32), where
the local LLRs are independent but not identically dis-
tributed. Since in this non-iid case SPRT may not be
optimum, we cannot claim asymptotic optimality by sat-
isfying (20.40). However, centralized SPRT still serves as
a very important benchmark; hence, (20.40) is a valuable
result also for the multimodal case.

The power of Theorem 20.2 lies in the fact that
the LCSH-based decentralized detector achieves order-
2 asymptotic optimality by using a finite (in most cases
small) number of bits per sample. Order-2 asymptotic
optimality resolves the overshoot problem because it
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is the state-of-the-art performance in the no-overshoot
case (i.e., with continuous-time band-limited observa-
tions), achieved by LCSH, which coincides with level-
triggered sampling in this case. On the contrary, for
order-2 asymptotic optimality with discrete-time obser-
vations, the number of bits per sample required by the
level-triggered sampling-based detector tends to infinity
with a reasonably low rate, log | log α| [73, Section IV-B].

In the LCSH-based detector, to avoid overshoot accu-
mulation, the overshoot of the last sample is included
toward the new sample, correlating the two samples.
Consequently, samples (i.e., messages of change in the
signal) that result from LCSH are neither indepen-
dent nor identically distributed. As opposed to level-
triggered sampling, in which samples are iid and hence
form a renewal process, the statistical descriptions of
samples in LCSH are quite intractable. The elegant
(nonasymptotic and asymptotic) results obtained for
level-triggered sampling in [74] therefore do not apply
to LCSH here.

20.3 Decentralized Estimation

In this section, we are interested in sequentially estimat-
ing a vector of parameters (i.e., regression coefficients)
θ ∈ Rp at a random stopping time S in the following
linear (regression) model:

x[n] = h[n]Tθ+ w[n], n ∈ N, (20.48)

where x[n] ∈ R is the observed sample, h[n] ∈ Rp is the
vector of regressors, and w[n] ∈ R is the additive noise.
We consider the general case in which h[n] is random
and observed at time n, which covers the determin-
istic h[n] case as a special case. This linear model is
commonly used in many applications. For example, in
system identification, θ is the unknown system coeffi-
cients, h[n] is the (random) input applied to the system,
and x[n] is the output at time n. Another example is the
estimation of wireless (multiple-access) channel coeffi-
cients, in which θ is the unknown channel coefficients,
h[n] is the transmitted (random) pilot signal, x[n] is the
received signal, and w[n] is the additive channel noise.

In (20.48), at each time n, we observe the sample
x[n] and the vector h[n]; hence, {(x[m], h[m])}n

m=1 are
available. We assume {w[n]} are i.i.d. with E[w[n]] = 0
and Var(w[n]) = σ2. The least squares (LS) estimator
minimizes the sum of squared errors, that is,

θ̂N = arg min
θ

N

∑
n=1

(x[n]− h[n]Tθ)2, (20.49)

and is given by

θ̂N =

(
N

∑
n=1

h[n]h[n]T
)−1 N

∑
n=1

h[n]x[n]

= (HT
n Hn)

−1HT
n xn, (20.50)

where Hn = [h[1], . . . , h[n]]T and xn = [x[1], . . . , x[n]]T.
Note that spatial diversity (i.e., a vector of observations
and a regressor matrix at time n) can be easily incorpo-
rated in (20.48) in the same way we deal with temporal
diversity. Specifically, in (20.49) and (20.50), we would
also sum over the spatial dimensions.

Under the Gaussian noise, w[n] ∼ N (0, σ2), the LS
estimator coincides with the minimum variance unbi-
ased estimator (MVUE) and achieves the CRLB, that
is, Cov(θ̂n|Hn) = CRLBn. To compute the CRLB, we
first write, given θ and Hn, the log-likelihood of the
vector xn as

Ln = log f (xn|θ, Hn)

= −
n

∑
m=1

(x[m]− h[m]Tθ)2

2σ2 − t
2

log(2πσ2). (20.51)

Then, we have

CRLBn =

(
E

[
− ∂2

∂θ2 Ln
∣∣Hn

])−1

= σ2U−1
n , (20.52)

where E
[
− ∂2

∂θ
2 Ln

∣∣Hn

]
is the Fisher information

matrix and Un � HT
n Hn is a nonsingular matrix. Since

E[xn|Hn] = Hnθ and Cov(xn|Hn) = σ2 I, from (20.50)
we have E[θ̂n|Hn] = θ and Cov(θ̂n|Hn) = σ2U−1

n ; thus,
from (20.52) Cov(θ̂n|Hn) = CRLBn. Note that the maxi-
mum likelihood (ML) estimator that maximizes (20.51)
coincides with the LS estimator in (20.50).

In general, the LS estimator is the best linear unbi-
ased estimator (BLUE). In other words, any linear unbi-
ased estimator of the form Anxn with An ∈ Rn×t, where
E[Anxn|Hn] = θ, has a covariance no smaller than that
of the LS estimator in (20.50), that is, Cov(Anxn|Hn) ≥
σ2U−1

n in the positive semidefinite sense. To see this
result, we write An = (HT

n Hn)−1HT
n + Bn for some

Bn ∈ Rn×t, and then Cov(Anxn|Hn) = σ2U−1
n + σ2BnBT

n ,
where BnBT

n is a positive semidefinite matrix.
The recursive least squares (RLS) algorithm enables us

to compute θ̂n in a recursive way as follows:

θ̂n = θ̂n−1 + qn(x[n]− h[n]T θ̂n−1),

where qn =
Pn−1h[n]

1 + h[n]TPn−1h[n]

and Pn = Pn−1 − qnh[n]TPn−1,

(20.53)

where qn ∈ Rp is a gain vector and Pn = U−1
n . While

applying RLS, we first initialize θ̂0 = 0 and P0 = δ−1I,
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where 0 represents a zero vector and δ is a small num-
ber, and then at each time n compute qn, θ̂n, and Pn as
in (20.53).

20.3.1 Background

Energy constraints are inherent to wireless sensor net-
works [1]. Since data transmission is the primary source
of energy consumption, it is essential to keep transmis-
sion rates low in wireless sensor networks, resulting in
a decentralized setup. Decentralized parameter estima-
tion is a fundamental task performed in wireless sensor
networks [5,10,14,35,45,48,51,52,54,68,69,78]. In sequen-
tial estimation, the objective is to minimize the (aver-
age) number of observations for a given target accuracy
level [36]. To that end, a sequential estimator (S, θ̂S),
as opposed to a traditional fixed-sample-size estima-
tor, is equipped with a stopping rule which determines
an appropriate time S to stop taking new observations
based on the observation history. Hence, the stopping
time S (i.e., the number of observations used in estima-
tion) is a random variable. Endowed with a stopping
mechanism, a sequential estimator saves not only time
but also energy, both of which are critical resources. In
particular, it avoids unnecessary data processing and
transmission.

Decentralized parameter estimation has been mainly
studied under two different network topologies. In
the first one, sensors communicate to an FC that per-
forms estimation based on the received information
(e.g., [14,35,45,48,51,68]). The other commonly studied
topology is called ad hoc network, in which there is no
designated FC, but sensors compute their local estima-
tors and communicate them through the network (e.g.,
[5,10,52,54,78]). Decentralized estimation under both
network topologies is reviewed in [69]. Many existing
works consider parameter estimation in linear models
(e.g., [10,14,35,45,54,68]). Whereas in [5,48,51,52,69,78] a
general nonlinear signal model is assumed. The major-
ity of existing works on decentralized estimation (e.g.,
[10,14,35,45,48,51,52,54,68,69]) study fixed-sample-size
estimation. There are a few works, such as [5,16], that
consider sequential decentralized parameter estimation.
Nevertheless, [5] assumes that sensors transmit real
numbers, and [16] focuses on continuous-time observa-
tions, which can be seen as practical limitations.

In decentralized detection [17,73,74,76] and estima-
tion [75], level-triggered sampling (cf. Figure 20.3), an
adaptive sampling technique which infrequently trans-
mits a few bits, for example, one bit, from sensors to
the FC, has been used to achieve low-rate transmission.
It has been also shown that the decentralized schemes
based on level-triggered sampling significantly outper-
form their counterparts based on conventional uniform
sampling in terms of average stopping time. We here

use a form of level-triggered sampling that infrequently
transmits a single pulse from sensors to the FC and,
at the same time, achieves a close-to-optimum average
stopping time performance [76].

The stopping capability of sequential estimators
comes with the cost of sophisticated analysis. In most
cases, it is not possible with discrete-time observations
to find an optimum sequential estimator that attains
the sequential Cramér-Rao lower bound (CRLB) if the
stopping time S is adapted to the complete observation
history [20]. Alternatively, in [22] and more recently in
[16,75], it was proposed to restrict S to stopping times
that are adapted to a specific subset of the complete
observation history, which leads to simple optimum
solutions. This idea of using a restricted stopping time
first appeared in [22] with no optimality result. In [16],
with continuous-time observations, a sequential estima-
tor with a restricted stopping time was shown to achieve
the sequential version of the CRLB for scalar parameter
estimation. In [75], for scalar parameter estimation with
discrete-time observations, a similar sequential estima-
tor was shown to achieve the conditional sequential
CRLB for the same restricted class of stopping times.

We deal with discrete-time observations in this
section. In Section 20.3.2, the optimum sequential esti-
mator that achieves the conditional sequential CRLB for
a certain class of stopping times is discussed. We then
develop in Section 20.3.3 a computation- and energy-
efficient decentralized scheme based on level-triggered
sampling for sequential estimation of vector parameters.

20.3.2 Optimum Sequential Estimator

In this section, we aim to find the optimal pair (S, θ̂S)
of stopping time and estimator corresponding to the
optimal sequential estimator. The stopping time for a
sequential estimator is determined according to a tar-
get estimation accuracy. In general, the average stopping
time is minimized subject to a constraint on the esti-
mation accuracy, which is a function of the estimator
covariance, that is,

min
S,θ̂S

E[S] s.t. f
(
Cov(θ̂S)

) ≤ C, (20.54)

where f (·) is a function from Rp×p to R and C ∈ R is the
target accuracy level.

The accuracy function f should be a monotonic func-
tion of the covariance matrix Cov(θ̂S), which is positive
semidefinite, to make consistent accuracy assessments;
for example, f (Cov(θ̂S)) > f (Cov(θ̂S′)) for S < S′ since
Cov(θ̂S) � Cov(θ̂S′) in the positive definite sense. Two
popular and easy-to-compute choices are the trace Tr(·),
which corresponds to the mean squared error (MSE),
and the Frobenius norm ‖ · ‖F. Before handling the
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problem in (20.54), let us explain why we are interested
in restricted stopping times that are adapted to a subset
of observation history.

20.3.2.1 Restricted Stopping Time

Denote {Fn} as the filtration that corresponds to the
samples {x[1], . . . , x[n]} where Fn = σ{x[1], . . . , x[n]} is
the σ-algebra generated by the samples observed up
to time n, that is, the accumulated history related to
the observed samples, and F0 is the trivial σ-algebra.
Similarly, we define the filtration {Hn} where Hn =
σ{h[1], . . . , h[n]} and H0 is again the trivial σ-algebra. It
is known that, in general, with discrete-time observations
and an unrestricted stopping time, that is {Fn ∪ Hn}-
adapted, the sequential CRLB is not attainable under
any noise distribution except for the Bernoulli noise [20].

On the contrary, in the case of continuous-time obser-
vations with continuous paths, the sequential CRLB is
attained by the LS estimator with an {Hn}-adapted
stopping time that depends only on HS [16]. Moreover,
in the following lemma, we show that, with discrete-
time observations, the LS estimator attains the condi-
tional sequential CRLB for the {Hn}-adapted stopping
times.

Lemma 20.8

With a monotonic accuracy function f and an {Hn}-
adapted stopping time S, we can write

f
(
Cov(θ̂S|HS)

) ≥ f
(
σ2U−1

S

)
, (20.55)

for all unbiased estimators under Gaussian noise, and
for all linear unbiased estimators under non-Gaussian
noise, and the LS estimator

θ̂S = U−1
S VS, VS � HT

S xS, (20.56)

satisfies the inequality in (20.55) with equality.

PROOF Since the LS estimator, with Cov(θ̂n|Hn) =
σ2U−1

n , is the MVUE under Gaussian noise and the
BLUE under non-Gaussian noise, we write

f
(
Cov(θ̂S|HS)

)
= f

(
E

[
∞

∑
n=1

(θ̂n − θ)(θ̂n − θ)T 1{n=S}
∣∣Hn

])

= f

(
∞

∑
n=1

E
[
(θ̂n − θ)(θ̂n − θ)T∣∣Hn

]
1{n=S}

)
(20.57)

≥ f

(
∞

∑
n=1

σ2U−1
n 1{n=S}

)
(20.58)

= f
(
σ2U−1

S

)
, (20.59)

for all unbiased estimators under Gaussian noise
and for all linear unbiased estimators under non-
Gaussian noise. The indicator function 1{A} = 1 if A
is true, and 0 otherwise. We used the facts that the
event {S = n} is Hn-measurable and E[(θ̂n − θ)(θ̂n −
θ)T|Hn] = Cov(θ̂n|Hn) ≥ σ2U−1

n to write (20.57) and
(20.58), respectively.

20.3.2.2 Optimum Conditional Estimator

We are interested in {Hn}-adapted stopping times to
use the optimality property of the LS estimator in the
sequential sense, shown in Lemma 20.8.

The common practice in sequential analysis mini-
mizes the average stopping time subject to a constraint
on the estimation accuracy which is a function of the
estimator covariance. The optimum solution to this clas-
sical problem proves to be intractable for even moderate
number of unknown parameters [72]. Hence, it is not a
convenient model for decentralized estimation. There-
fore, we follow an alternative approach and formulate
the problem conditioned on the observed {h[n]} val-
ues, which yields a tractable optimum solution for any
number of parameters.

In the presence of an ancillary statistic whose dis-
tribution does not depend on the parameters to be
estimated, such as the regressor matrix Hn, the con-
ditional covariance Cov(θ̂n|Hn) can be used to assess
the accuracy of the estimator more precisely than the
(unconditional) covariance, which is in fact the mean
of the former (i.e., Cov(θ̂S) = E[Cov(θ̂n|Hn)]) [12,22].
Motivated by this fact, we propose to reformulate the
problem in (20.54) conditioned on Hn, that is,

min
S,θ̂S

E[S] s.t. f
(
Cov(θ̂S|HS)

) ≤ C. (20.60)

Note that the constraint in (20.60) is stricter than the
one in (20.54) since it requires that θ̂S satisfies the tar-
get accuracy level for each realization of HS, whereas
in (20.54) it is sufficient that θ̂S satisfies the target accu-
racy level on average. In other words, in (20.54), even
if f

(
Cov(θ̂S|HS)

)
> C for some realizations of HS, we

can still satisfy f
(
Cov(θ̂S)

) ≤ C. In fact, we can always
have f

(
Cov(θ̂S)

)
= C by using a probabilistic stop-

ping rule such that we sometimes stop above C, that
is, f

(
Cov(θ̂S|HS)

)
> C, and the rest of the time at or

below C, that is, f
(
Cov(θ̂S|HS)

) ≤ C. On the contrary,
in (20.60) we always have f

(
Cov(θ̂S|HS)

) ≤ C; more-
over, since we observe discrete-time samples, in general
we have f

(
Cov(θ̂S|HS)

)
< C for each realization of HS.

Hence, the optimal objective value E[S] in (20.54) will,
in general, be smaller than that in (20.60). Note that
on the contrary, if we observed continuous-time pro-
cesses with continuous paths, then we could always
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have f
(
Cov(θ̂S|HS)

)
= C for each realization of HS, and

thus the optimal objective values of (20.60) and (20.54)
would be the same.

Since minimizing S also minimizes E[S], in (20.60)
we are required to find the first time that a mem-
ber of our class of estimators (i.e., unbiased estima-
tors under Gaussian noise and linear unbiased estima-
tors under non-Gaussian noise) satisfies the constraint
f
(
Cov(θ̂S|HS)

) ≤ C, as well as the estimator that attains
this earliest stopping time. From Lemma 20.8, it is seen
that the LS estimator, given by (20.56), among its com-
petitors, achieves the best accuracy level f

(
σ2U−1

S

)
at

any stopping time S. Hence, for the conditional prob-
lem, the optimum sequential estimator is composed of
the stopping time

S = min{n ∈ N : f
(
σ2U−1

n

)
≤ C}, (20.61)

and the LS estimator

θ̂S = U−1
S VS, (20.62)

which can be computed recursively as in (20.53). The
recursive computation of U−1

n = Pn in the test statistic
in (20.61) is also given in (20.53).

Note that for an accuracy function f such that
f (σ2U−1

n ) = σ2 f (U−1
n ), for example, Tr(·) and ‖ · ‖F, we

can use the following stopping time:

S = min{n ∈ N : f
(

U−1
n

)
≤ C′}, (20.63)

where C′ = C
σ2 is the relative target accuracy with respect

to the noise power. Hence, given C′ we do not need
to know the noise variance σ2 to run the test given by
(20.63). Note that Un = HT

n Hn is a nondecreasing pos-
itive semidefinite matrix, that is, Un � Un−1, ∀t, in the
positive semidefinite sense. Thus, from the monotonic-

ity of f , the test statistic f
(
σ2U−1

n

)
is a nonincreasing

scalar function of time. Specifically, for accuracy func-
tions Tr(·) and ‖ · ‖F, we can show that if the minimum
eigenvalue of Un tends to infinity as t→ ∞, then the
stopping time is finite, that is, S < ∞.

In the conditional problem, for any n, we have a sim-
ple stopping rule given in (20.63), which uses the target
accuracy level C

σ2 as its threshold, hence known before-
hand. For the special case of scalar parameter estimation,
we do not need a function f to assess the accuracy of
the estimator because instead of a covariance matrix we
now have a variance σ2

un
, where un = ∑n

m=1 h2
m and hn is

the scaling coefficient in (20.48). Hence, from (20.62) and
(20.63), the optimum sequential estimator in the scalar

case is given by

S = min
{

n ∈ N : un ≥ 1
C′

}
, θ̂S =

vS

uS
, (20.64)

where un
σ2 is the Fisher information at time n. That is,

we stop the first time the gathered Fisher information
exceeds the threshold 1/C, which is known.

20.3.3 Decentralized Estimator

In this section, we propose a computation- and energy-
efficient decentralized estimator based on the optimum
conditional sequential estimator and level-triggered
sampling. Consider a network of K distributed sensors
and an FC which is responsible for determining the stop-
ping time and computing the estimator. In practice, due
to the stringent energy constraints, sensors must infre-
quently convey low-rate information to the FC, which
is the main concern in the design of a decentralized
sequential estimator.

As in (20.48), each sensor k observes

xk[n] = hk[n]
Tθ+ wk[n], n ∈ N, k = 1, . . . , K, (20.65)

as well as the regressor vector hk[n] =
[hk,1[n], . . . , hk,p[n]]T at time n, where {wk[n]}k,n are
independent, zero-mean, that is, E[wk[n]] = 0, ∀k, n,
and Var(wk[n]) = σ2

k , ∀n. Then, similar to (20.50), the
weighted least squares (WLS) estimator

θ̂n = arg min
θ

K

∑
k=1

n

∑
m=1

(
xk[m]− hk[m]Tθ

)2

σ2
k

,

is given by

θ̂n =

(
K

∑
k=1

n

∑
m=1

hk[m]hk[m]T

σ2
k

)−1 K

∑
k=1

n

∑
m=1

hk[m]xk[m]

σ2
k

= Ū−1
n V̄n, (20.66)

where Ūk
n � 1

σ2
k

∑n
m=1 hk[m]hk[m]T , V̄k

n � 1
σ2

k
∑n

m=1 hk[m]

xk[m], Ūn = ∑K
k=1 Ūk

n, and V̄n = ∑K
k=1 V̄k

n . As before, it
can be shown that the WLS estimator θ̂n in (20.66) is the
BLUE under the general noise distributions. Moreover,
in the Gaussian noise case, where wk[n] ∼ N (0, σ2

k) ∀n
for each k, θ̂n is also the MVUE.

Following the steps in Section 20.3.2.2, it is straight-
forward to show that the optimum sequential estimator
for the conditional problem in (20.60) is given by the
stopping time

S = min
{

n ∈ N : f
(

Ū−1
n

)
≤ C

}
, (20.67)

and the WLS estimator θ̂S, given by (20.66). Note
that (S, θ̂S) is achievable only in the centralized case,
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where all local observations until time n, that is,
{(xk[m], hk[m])}K,n

k=1,m=1, are available to the FC. Local

processes {Ūk
n}k,n and {V̄k

n }k,n are used to compute the
stopping time and the estimator as in (20.67) and (20.66),
respectively. On the contrary, in a decentralized system,

the FC can compute approximations Ũ
k
n and Ṽk

n and then
use these approximations to compute the stopping time
and estimator as in (20.67) and (20.66), respectively.

20.3.3.1 Linear Complexity

If each sensor k reports Ūk
n ∈ Rp×p and V̄k

n ∈ Rp to the
FC in a straightforward way, then O(p2) terms need to
be transmitted, which may not be practical, especially
for large p, in a decentralized setup. Similarly, in the lit-
erature, the distributed implementation of the Kalman
filter, which covers RLS as a special case, through its
inverse covariance form, namely the information filter,
requires the transmission of an p× p information matrix
and an p× 1 information vector (e.g., [63]).

To overcome this problem, considering Tr(·) as the
accuracy function f in (20.67), we propose to transmit
only the p diagonal entries of Ūk

n for each k, yielding lin-
ear complexity O(p). Using the diagonal entries of Ūn,
we define the diagonal matrix

Dn � diag
(
dn,1, . . . , dn,p

)
where dn,i =

K

∑
k=1

n

∑
m=1

hk,i[m]2

σ2
k

, i = 1, . . . , p.
(20.68)

We further define the correlation matrix

R =

⎡⎢⎢⎢⎣
1 r12 · · · r1p

r12 1 · · · r2p
...

...
. . .

...
r1p r2p · · · 1

⎤⎥⎥⎥⎦, (20.69)

where rij =
∑K

k=1
E[hk,i[n]hk,j[n]]

σ2
k√

∑K
k=1

E[hk,i[n]2]
σ2

k
∑K

k=1
E[hk,j[n]2]

σ2
k

, i, j= 1, . . . , p.

Proposition 20.1

For sufficiently large n, we can make the following
approximations:

Ūn ≈ D1/2
n R D1/2

n

and Tr
(

Ū−1
n

)
≈ Tr

(
D−1

n R−1
)

.
(20.70)

PROOF The approximations are motivated from
the special case where E[hk,i[n]hk,j[n]] = 0, ∀k, i, j =
1, . . . , p, i �= j. In this case, by the law of large num-
bers for sufficiently large n, the off-diagonal elements

of Ūn
n vanish, and thus we have Ūn

n ≈ Dn
n and

Tr(Ū−1
n ) ≈ Tr(D−1

n ). For the general case where we
might have E[hk,i[n]hk,j[n]] �= 0 for some k and i �= j,
using the diagonal matrix Dn we write

Tr
(

Ū−1
n

)
= Tr

((
D1/2

n D−1/2
n ŪnD−1/2

n︸ ︷︷ ︸
Rn

D1/2
n

)−1
)

,

(20.71)

= Tr
(

D−1/2
n R−1

n D−1/2
n

)
,

= Tr
(

D−1
n R−1

n

)
. (20.72)

Note that each entry rn,ij of the newly defined matrix
Rn is a normalized version of the corresponding entry
ūn,ij of Ūn. Specifically, rn,ij =

ūn,ij√
dn,idn,j

=
ūn,ij√

ūn,iiūn,jj
, i, j =

1, . . . , p, where the last equality follows from the defini-
tion of dn,i in (20.68). Hence, Rn has the same structure
as in (20.69) with entries

rn,ij =
∑K

k=1 ∑n
m=1

hk,i[m]hk,j[m]

σ2
k√

∑K
k=1 ∑n

m=1
hk,i[m]2

σ2
k

∑K
k=1 ∑n

m=1
hk,j[m]2

σ2
k

,

i, j = 1, . . . , p.

For sufficiently large n, by the law of large numbers

rn,ij ≈ rij =
∑K

k=1
E[hk,i[n]hk,j[n]]

σ2
k√

∑K
k=1

E[hk,i[n]2]
σ2

k
∑K

k=1
E[hk,j[n]2]

σ2
k

, (20.73)

and Rn ≈ R, where R is given in (20.69). Hence, for suf-
ficiently large n, we can make the approximations in
(20.70) using (20.71) and (20.72).

Then, assuming that the FC knows the correla-
tion matrix R, that is,

{
E[hk,i[n]hk,j[n]]

}
i,j,k

∗ and
{
σ2

k

}
[cf. (20.69)], it can compute the approximations in (20.70)

if sensors report their local processes
{

Dk
n

}
k,n

to the

FC, where Dn = ∑K
k=1 Dk

n. Note that each local process{
Dk

n

}
n

is p-dimensional, and its entries at time n are

∗The subscripts i and j in the set notation denote i = 1, . . . , p
and j = i, . . . , p. In the special case where E[hk,i[n]2] = E[h�,i[n]2], k,
� = 1, . . . , K, i = 1, . . . , p, the correlation coefficients⎧⎨⎩ξk

ij =
E[hk,i[n]hk,j[n]]√

E[hk,i[n]2]E[hk,j[n]2]
: i = 1, . . . , p− 1, j = i + 1, . . . , p

⎫⎬⎭
k

,

together with
{
σ2

k

}
are sufficient statistics since rij =

∑K
k=1 ξ

k
ij /σ

2
k

∑K
k=1 1/σ2

k
from

(20.73).
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given by
{

dk
n,i = ∑n

m=1
hk,i[m]2

σ2
k

}
i

[cf. (20.68)]. Hence, we

propose that each sensor k sequentially reports the local
processes {Dk

n}n and {V̄k
n}n to the FC, achieving lin-

ear complexity O(p). On the other side, the FC, using
the information received from sensors, computes the
approximations {D̃n} and {Ṽn}, which are then used to
compute the stopping time

S̃ = min
{

n ∈ N : Tr
(

Ũ
−1
n

)
≤ C̃

}
, (20.74)

and the estimator

θ̃S̃ = Ũ
−1
S̃ ṼS̃, (20.75)

similar to (20.67) and (20.66), respectively. The approxi-

mations Tr
(

Ũ
−1
n

)
in (20.74) and Ũ S̃ in (20.75) are com-

puted using D̃n as in (20.70). The threshold C̃ is selected
through simulations to satisfy the constraint in (20.60)

with equality, that is, Tr
(
Cov

(
θ̃S̃|H S̃

))
= C.

20.3.3.2 Event-Based Transmission

Level-triggered sampling provides a very convenient
way of information transmission in decentralized sys-
tems [17,73–76]. Specifically, decentralized methods
based on level-triggered sampling, transmitting low-rate
information, enable highly accurate approximations and
thus high-performance schemes at the FC. They sig-
nificantly outperform conventional decentralized meth-
ods, which sample local processes using the traditional
uniform sampling and send the quantized versions of
samples to the FC [73,75].

Existing methods employ level-triggered sampling to
report a scalar local process to the FC. Using a simi-
lar procedure to report each distinct entry of Ūk

n and
V̄k

n , we need O(p2) parallel procedures, which may be
prohibitive in a decentralized setup for large p. Hence,
we use the approximations introduced in the previ-
ous subsection, achieving linear complexity O(p). Data
transmission and thus energy consumption also scale
linearly with the number of parameters, which may eas-
ily become prohibitive for a sensor with limited battery.
We address this energy efficiency issue by infrequently
transmitting a single pulse with very short duration,
which encodes, in time, the overshoot in level-triggered
sampling [76].

We will next describe the proposed decentralized esti-
mator based on level-triggered sampling in which each
sensor nonuniformly samples the local processes {Dk

n}n
and {V̄k

n }n, and transmits a single pulse for each sample
to the FC, and the FC computes {D̃n} and {Ṽn} using
received information.

20.3.3.2.1 Sampling and Recovery of Dk
n

Each sensor k samples each entry dk
n,i of Dk

n at a sequence
of random times {sk

m,i}m∈N given by

sk
m,i � min

{
n ∈ N : dk

n,i − dk
sk

m−1,i,i
≥ Δk

i

}
, sk

0,i = 0,

(20.76)

where dk
n,i = ∑n

p=1
hk,i[p]

2

σ2
k

, dk
0,i = 0, and Δk

i > 0 is a con-

stant threshold that controls the average sampling
interval. Note that the sampling times {sk

m,i}m in
(20.76) are dynamically determined by the signal to
be sampled, that is, realizations of dk

n,i. Hence, they
are random, whereas sampling times in the conven-
tional uniform sampling are deterministic with a certain
period. According to the sampling rule in (20.76), a sam-
ple is taken whenever the signal level dk

n,i increases by
at least Δk

i since the last sampling time. Note that dk
n,i =

∑n
p=1

hk,i[p]2
σ2

k
is nondecreasing in n.

After each sampling time sk
m,i, sensor k transmits a

single pulse to the FC at time

tk
m,i � sk

m,i + δk
m,i,

indicating that dk
n,i has increased by at least Δk

i since
the last sampling time sk

m−1,i. The delay δk
m,i between

the transmission time and the sampling time is used to
linearly encode the overshoot

qk
m,i �

(
dk

sk
m,i,i
− dk

sk
m−1,i,i

)
−Δk

i , (20.77)

and is given by

δk
m,i =

qk
m,i

φd
∈ [0, 1), (20.78)

where φ−1
d is the slope of the linear encoding function,

as shown in Figure 20.8, known to sensors and the FC.
Assume a global clock, that is, the time index n ∈ N

is the same for all sensors and the FC, meaning that the
FC knows the potential sampling times. Assume further
ultra-wideband (UWB) channels between sensors and
the FC, in which the FC can determine the time of flight
of pulses transmitted from sensors. Then, FC can mea-
sure the transmission delay δk

m,i if it is bounded by unit
time, that is, δk

m,i ∈ [0, 1). To ensure this, from (20.78), we
need to have φd > qk

m,i, ∀k, m, i. Assuming a bound for
overshoots, that is, qk

m,i < θd, ∀k, m, i, we can achieve this
by setting φd > θd.

Consequently, the FC can uniquely decode the over-
shoot by computing qk

m,i = φdδ
k
m,i (cf. Figure 20.8), using

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

L
ib

ra
ry

 (
A

nn
 A

rb
or

, F
lin

t, 
&

 D
ea

rb
or

n)
],

 [
Y

as
in

 Y
ilm

az
] 

at
 0

8:
03

 0
8 

D
ec

em
be

r 
20

15
 



T&F Cat #K24071 — K24071 C020 — page 479 — 10/13/2015 — 12:57

Event-Based Statistical Signal Processing 479

θd

Slope = φd 
Slope = θd 

n

dn,i
k

q1,i
k

s1,i
k t1,i

k

δ1,i
k

Δi
k

s1,i
k +1

FIGURE 20.8

Illustration of sampling time sk
m,i, transmission time tk

m,i, transmission
delay δk

m,i, and overshoot qk
m,i. We encode qk

m,i < θd in δk
m,i = tk

m,i −
sk

m,i < 1 using the slope φd > θd.

which it can also find the increment occurred in dk
n,i

during the interval (sk
m−1,i, sk

m,i] as

dk
sk

m,i,i
− dk

sk
m−1,i,i

= Δk
i + qk

m,i,

from (20.77). It is then possible to reach the signal level
dk

sk
m,i,i

by accumulating the increments occurred until the

mth sampling time, that is,

dk
sk

m,i,i
=

m

∑
�=1

(
Δk

i + qk
�,i

)
= mΔk

i +
m

∑
�=1

qk
�,i. (20.79)

Using
{

dk
sk

m,i,i

}
m, the FC computes the staircase approxi-

mation d̃k
n,i as

d̃k
n,i = dk

sk
m,i,i

, t ∈ [tk
m,i, tk

m+1,i), (20.80)

which is updated when a new pulse is received from
sensor k, otherwise kept constant. Such approximate
local signals of different sensors are next combined to
obtain the approximate global signal d̃n,i as

d̃n,i =
K

∑
k=1

d̃k
n,i. (20.81)

In practice, when the mth pulse in the global order
regarding dimension i is received from sensor km at time
tm,i, instead of computing (20.79) through (20.81), the FC
only updates d̃n,i as

d̃tm,i,i = d̃tm−1,i,i +Δ
km
i + qm,i, d̃0,i = ε, (20.82)

and keeps it constant when no pulse arrives. We initial-
ize d̃n,i to a small constant ε to prevent dividing by zero
while computing the test statistic [cf. (20.83)].

Note that in general d̃tm,i,i �= dsm,i,i unlike (20.80) since
all sensors do not necessarily sample and transmit at
the same time. The approximations

{
d̃n,i

}
i form D̃n =

diag(d̃n,1, . . . , d̃n,p), which is used in (20.74) and (20.75)
to compute the stopping time and the estimator, respec-
tively. Note that to determine the stopping time as in

(20.74), we need to compute Tr
(
Ũ
−1
t

)
using (20.70) at

times
{

tm
}

when a pulse is received from any sensor
regarding any dimension. Fortunately, when the mth
pulse in the global order is received from sensor km
at time tm regarding dimension im, we can compute

Tr
(
Ũ
−1
tm

)
recursively as follows:

Tr
(

Ũ
−1
tm

)
= Tr

(
Ũ
−1
tm−1

)
− κim(Δ

km
im

+ qm)

d̃tm,im d̃tm−1,im

,

Tr
(

Ũ
−1
0

)
=

p

∑
i=1

κi

ε
, (20.83)

where κi is the ith diagonal element of the inverse cor-
relation matrix R−1, known to the FC. In (20.83), pulse
arrival times are assumed to be distinct for the sake of
simplicity. In case multiple pulses arrive at the same
time, the update rule will be similar to (20.83) except that
it will consider all new arrivals together.

20.3.3.2.2 Sampling and Recovery of V̄k
n

Similar to (20.76), each sensor k samples each entry v̄k
n,i

of V̄k
n at a sequence of random times

{
ρk

m,i

}
m written as

ρk
m,i � min

{
n ∈ N :

∣∣v̄k
n,i − v̄k

ρk
m−1,i,i

∣∣ ≥ γk
i

}
, ρk

0,i = 0,

(20.84)

where v̄k
n,i = ∑n

p=1
hk

p,iy
k
p

σ2
k

and γk
i is a constant threshold,

available to both sensor k and the FC. See (20.2) for
selecting γk

i . Since v̄k
n,i is neither increasing nor decreas-

ing, we use two thresholds γk
i and −γk

i in the sampling
rule given in (20.84).

Specifically, a sample is taken whenever v̄k
n,i increases

or decreases by at least γk
i since the last sampling time.

Then, after a transmission delay

χk
m,i =

ηk
m,i

φv
,

where ηk
m,i �

∣∣v̄k
ρk

m,i,i
− v̄k

ρk
m−1,i,i

∣∣− γk
i is the overshoot, sen-

sor k at time

τk
m,i � ρk

m,i + χk
m,i,

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

L
ib

ra
ry

 (
A

nn
 A

rb
or

, F
lin

t, 
&

 D
ea

rb
or

n)
],

 [
Y

as
in

 Y
ilm

az
] 

at
 0

8:
03

 0
8 

D
ec

em
be

r 
20

15
 



T&F Cat #K24071 — K24071 C020 — page 480 — 10/13/2015 — 12:57

480 Event-Based Control and Signal Processing

transmits a single pulse bk
m,i to the FC, indicating

whether v̄k
n,i has changed by at least γk

i or −γk
i since the

last sampling time ρk
m−1,i. We can simply write bk

m,i as

bk
m,i = sign

(
v̄k
ρk

m,i,i
− v̄k

ρk
m−1,i,i

)
. (20.85)

Assume again that (i) there exists a global clock among
sensors and the FC, (ii) the FC determines channel delay
(i.e., time of flight), and (iii) overshoots are bounded by
a constant, that is, ηk

m,i < θv, ∀k, m, i, and we set φv > θv.
With these assumptions, we ensure that the FC can mea-
sure the transmission delay χk

m,i and accordingly decode
the overshoot as ηk

m,i = φvχ
k
m,i. Then, upon receiving the

mth pulse bm,i regarding dimension i from sensor km at
time τm,i, the FC performs the following update:

ṽτm,i,i = ṽτm−1,i,i + bm,i
(
γ

km
i + ηm,i

)
, (20.86)

where
{

ṽn,i
}

i compose the approximation Ṽn =

[ṽn,1, . . . , ṽn,p]T. Recall that the FC employs Ṽn to
compute the estimator as in (20.75).

The level-triggered sampling procedure at each sensor
k for each dimension i is summarized in Algorithm 20.1.
Each sensor k runs p of these procedures in parallel.
The sequential estimation procedure at the FC is also
summarized in Algorithm 20.2. We assumed, for the
sake of clarity, that each sensor transmits pulses to the
FC for each dimension through a separate channel, that
is, parallel architecture. On the contrary, in practice the
number of parallel channels can be decreased to two
by using identical sampling thresholds Δ and γ for all
sensors and for all dimensions in (20.76) and (20.84),
respectively. Moreover, sensors can even employ a sin-
gle channel to convey information about local processes
{dk

n,i} and {v̄k
n,i} by sending ternary digits to the FC.

This is possible since pulses transmitted for {dk
n,i} are

unsigned.

20.3.3.3 Discussions

We introduced the decentralized estimator in Section
20.3.3.2 initially for a system with infinite time preci-
sion. In practice, due to bandwidth constraints, discrete-
time systems with finite precision are of interest.
For example, in such systems, the overshoot qk

m,i ∈[
j θd

N , (j + 1) θd
N

)
, j = 0, 1, . . . , N − 1, is quantized into

q̂k
m,i =

(
j + 1

2

)
θd
N , where N is the number of quantiza-

tion levels. More specifically, a pulse is transmitted at
time tk

m,i = sk
m,i +

j+1/2
N , where the transmission delay

j+1/2
N ∈ (0, 1) encodes q̂k

m,i. This transmission scheme is
called pulse position modulation (PPM).

In UWB and optical communication systems, PPM is
effectively employed. In such systems, N, which denotes

the precision, can be easily made large enough so that
the quantization error |q̂k

m,i− qk
m,i| becomes insignificant.

Compared with conventional transmission techniques
which convey information by varying the power level,
frequency, and/or phase of a sinusoidal wave, PPM
(with UWB) is extremely energy efficient at the expense
of high bandwidth usage since only a single pulse with
very short duration is transmitted per sample. Hence,
PPM suits well to energy-constrained sensor network
systems.

20.3.3.4 Simulations

We next provide simulation results to compare the per-
formances of the proposed scheme with linear complex-
ity, given in Algorithms 20.1 and 20.2, the nonsimplified
version of the proposed scheme with quadratic com-
plexity and the optimal centralized scheme. A wireless
sensor network with 10 identical sensors and an FC is
considered to estimate a five-dimensional determinis-
tic vector of parameters, that is, p = 5. We assume i.i.d.
Gaussian noise with unit variance at all sensors, that
is, wk[n] ∼ N (0, 1), ∀k, n. We set the correlation coeffi-
cients {rij} [cf. (20.73)] of the vector hk[n] to 0 and 0.5
in Figure 20.9 to test the performance of the proposed

Algorithm 20.1 The level-triggered sampling procedure at
the kth sensor for the ith dimension

1: Initialization: n ← 0, m← 0, �← 0, λ← 0, ψ← 0

2: while λ < Δk
i and ψ ∈ (−γk

i , γk
i ) do

3: n← n + 1

4: λ← λ+
hk,i[n]2

σ2
k

5: ψ← ψ+
hk,i[n]xk[n]

σ2
k

6: end while

7: if λ ≥ Δk
i {sample dk

n,i} then

8: m← m + 1

9: sk
m,i = n

10: Send a pulse to the fusion center at time instant

tk
m,i = sk

m,i +
λ−Δk

i
φd

11: λ← 0

12: end if

13: if ψ �∈ (−γk
i , γk

i ) {sample v̄k
n,i} then

14: �← �+ 1

15: ρk
�,i = n

16: Send bk
�,i = sign(ψ) to the fusion center at time instant

τk
�,i = ρk

�,i +
|ψ|−γk

i
φv

17: ψ← 0

18: end if

19: Stop if the fusion center instructs so; otherwise go to line 2.
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Algorithm 20.2 The sequential estimation procedure at the
fusion center

1: Initialization: Tr← ∑
p
i=1

κi
ε , m← 1, �← 1, d̃i ← ε ∀i,

ṽi ← 0 ∀i

2: while Tr < C̃ do

3: Wait to receive a pulse

4: if mth pulse about dn,i arrives from sensor k at time n

then

5: qm = φd(n− �n�)
6: Tr← Tr− κi(Δ

k
i +qm)

d̃i(d̃i+Δ
k
i +qm)

7: d̃i = d̃i +Δk
i + qm

8: m← m + 1

9: end if

10: if �th pulse b� about vn,j arrives from sensor k at time n

then

11: η� = φv(n− �n�)
12: ṽj = ṽj + b�(γk

j + η�)

13: �← �+ 1

14: end if

15: end while

16: Stop at time S̃ = n

17: D̃ = diag(d̃1, . . . , d̃p), Ũ
−1

= D̃
−1/2

R−1D̃
−1/2

,

Ṽ = [ṽ1, . . . , ṽp]T

18: θ̃ = Ũ
−1

Ṽ

19: Instruct sensors to stop.

scheme in the uncorrelated and correlated cases. We
compare the average stopping time performance of the
proposed scheme with linear complexity to those of
the other two schemes for different MSE values. In
Figure 20.9, the horizontal axis represents the signal-to-
error ratio in decibel, where nMSE � MSE

‖θ‖2
2
, that is, the

MSE normalized by the square of the Euclidean norm
of the vector to be estimated.

In the uncorrelated case, where rij = 0, ∀i, j, i �= j, the
proposed scheme with linear complexity nearly attains
the performance of the nonsimplified scheme with
quadratic complexity as seen in Figure 20.9. This result
is rather expected since in this case Ūn ≈ Dn for suffi-
ciently large n, where Ūn and Dn are used to compute
the stopping time and the estimator in the nonsimpli-
fied and simplified schemes, respectively. Strikingly, the
decentralized schemes (simplified and nonsimplified)
achieve very close performances to that of the optimal
centralized scheme, which is obviously unattainable in a
decentralized system, thanks to the efficient information
transmission through level-triggered sampling.

|log10 nMSE|
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FIGURE 20.9

Average stopping time performances of the optimal centralized
scheme and the decentralized schemes based on level-triggered sam-
pling with quadratic and linear complexity versus normalized MSE
values when scaling coefficients are uncorrelated, that is, rij = 0, ∀i, j,
and correlated with rij = 0.5, ∀i, j.

It is seen in Figure 20.9 that the proposed simplified
scheme exhibits an average stopping time performance
close to those of the nonsimplified scheme and the opti-
mal centralized scheme even when the scaling coeffi-
cients {hk,i[n]}i are correlated with rij = 0.5, ∀i, j, i �= j,
justifying the simplification proposed in Section 20.3.3.1
to obtain linear complexity.

20.4 Conclusion

Event-based sampling techniques, adapting the sam-
pling times to the signal to be sampled, provide
energy- and bandwidth-efficient information transmis-
sion in resource-constrained distributed (i.e., decentral-
ized) systems, such as wireless sensor networks. We
have first designed and analyzed event-based detec-
tion schemes under challenging environments, namely
noisy transmission channels between nodes and the
fusion center, and multimodal observations from dis-
parate information sources. Then, we have identified
an optimum sequential estimator which lends itself to
decentralized systems. For large number of unknown
parameters, we have further proposed a simplified
scheme with linear complexity.
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