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Sequential estimation of a vector of linear-regression coefficients
is considered under both centralized and decentralized setups. In
sequential estimation, the number of observations used for
estimation is determined by the observed samples and hence is
random, as opposed to fixed-sample-size estimation. Specifically,
after receiving a new sample, if a target accuracy level is reached, we
stop and estimate using the samples collected so far; otherwise we
continue to receive another sample. It is known that finding an
optimum sequential estimator, which minimizes the average
observation number for a given target accuracy level, is an
intractable problem with a general stopping rule that depends on the
complete observation history. By properly restricting the search
space to stopping rules that depend on a specific subset of the
complete observation history, we derive the optimum sequential
estimator in the centralized case via optimal stopping theory.
However, finding the optimum stopping rule in this case requires
numerical computations that quadratically scale with the number of
parameters to be estimated. For the decentralized setup with
stringent energy constraints, under an alternative problem
formulation that is conditional on the observed regressors, we first
derive a simple optimum scheme with a well-defined
one-dimensional stopping rule regardless of the number of
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parameters. Then, following this simple optimum scheme, we
propose a decentralized sequential estimator whose computational
complexity and energy consumption scale linearly with the number
of parameters. Specifically, in the proposed decentralized scheme a
close-to-optimum average stopping-time performance is achieved by
infrequently transmitting a single pulse with very short duration.

I. INTRODUCTION

In this paper, we are interested in sequentially
estimating a vector of parameters (i.e., regression
coefficients) X ∈ Rn at a random stopping time T in the
linear (regression) model

yt = H ′
t X + wt, t ∈ N, (1)

where yt ∈ R is the observed sample, Ht ∈ Rn is the
vector of regressors, wt ∈ R is the additive noise, and the
prime symbol denotes the transpose. We consider the
general case in which Ht is random and observed at time t,
which covers the deterministic Ht case as a special case.
This linear model is commonly used in many applications.
For example, in system identification, X is the unknown
system coefficients, Ht is the (random) input applied to the
system, and yt is the output at time t. Another example is
the estimation of wireless channel coefficients, in which X
is the unknown channel coefficients, Ht is the transmitted
(random) pilot signal, yt is the received signal, and wt is
the additive channel noise.

Energy constraints are inherent to wireless sensor
networks [1]. Since data transmission is the primary
source of energy consumption, it is essential to keep
transmission rates low in wireless sensor networks,
resulting in a decentralized setup. Decentralized parameter
estimation is a fundamental task performed in wireless
sensor networks [2–13]. In sequential estimation, the
objective is to minimize the (average) number of
observations for a given target accuracy level [14]. To that
end, a sequential estimator (T , X̂T )—as opposed to a
traditional fixed-sample-size estimator—is equipped with
a stopping rule which determines an appropriate time T to
stop taking new observations based on the observation
history. Hence the stopping time T (i.e., the number of
observations used in estimation) is a random variable.
Endowed with a stopping mechanism, a sequential
estimator saves not only time but also energy, both of
which are critical resources. In particular, it avoids
unnecessary data processing and transmission.

Decentralized parameter estimation has been mainly
studied under three different network topologies. In the
first one, sensors communicate to a fusion center (FC) that
performs estimation based on the received information,
e.g., [3–8]. Another commonly studied topology is called
an ad hoc network, in which there is no designated FC;
sensors first compute their local estimators (sensing phase)
and then communicate them through the network to reach
a consensus (communication phase), e.g., [2, 9–12].
Decentralized estimation under both network topologies is
reviewed in [13]. Recently, a new class of
consensus-based algorithms, in which sensing and
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communication phases occur at the same time step, has
been proposed for decentralized detection [15–17]. Many
existing works consider parameter estimation in linear
models—e.g., [2, 3, 5–7, 10]—whereas in [4, 8, 9, 11–13]
a general nonlinear signal model is assumed. The majority
of existing works on decentralized estimation—e.g.,
[2–10, 13]—study fixed-sample-size estimation. There are
a few works, such as [12, 18, 19], that consider sequential
decentralized parameter estimation, as opposed to the
significant volume of literature that considers sequential
decentralized detection, e.g., [15, 20–26]. Nevertheless,
[12] assumes that sensors transmit real numbers, and [18]
focuses on continuous-time observations, which can be
seen as practical limitations.

In decentralized detection [22, 23] and estimation [19],
level-triggered sampling—an adaptive sampling technique
which infrequently transmits a few bits, e.g., one bit, from
sensors to the FC—has been used to achieve low-rate
transmission. It has been also shown that the decentralized
schemes based on level-triggered sampling significantly
outperform their counterparts based on conventional
uniform sampling in terms of average stopping time. We
here propose a novel form of level-triggered sampling that
infrequently transmits a single pulse from sensors to the
FC and at the same time achieves close-to-optimum
average stopping-time performance.

The stopping capability of sequential estimators comes
at the cost of sophisticated analysis. In most cases, it is not
possible with discrete-time observations to find an optimum
sequential estimator that attains the sequential Cramér–Rao
lower bound (CRLB) if the stopping time T is adapted to
the complete observation history [27]. Alternatively, [28]
and more recently [18, 19] considered stopping times that
are adapted to a specific subset of the complete observation
history, namely the regressors {Ht } in (1). This idea
of using a restricted stopping time first appeared in [28]
with no optimality result. In [18], with continuous-time
observations, a sequential estimator with a restricted
stopping time that solely depends on {Ht } was shown
to achieve the sequential version of the CRLB for scalar
parameter estimation. In [19], for scalar parameter estima-
tion with discrete-time observations, a similar sequential
estimator was shown to achieve the conditional sequential
CRLB for the same restricted class of stopping times.

In this paper, with discrete-time observations and
considering the restricted class of stopping times that
solely depend on {Ht }, we find the optimum sequential
estimators that minimize the average observation number
for a given target accuracy level, under two different
formulations of the vector parameter-estimation problem.
Following the common practice in sequential analysis, we
first minimize the average stopping time subject to a
constraint on the estimation accuracy, which is a function
of the estimator covariance. The optimum solution to this
classical problem proves intractable for even a moderate
number of unknown parameters; hence, it is not a
convenient model for decentralized estimation. Therefore,
we next follow an alternative approach and formulate the

problem conditioned on the observed {Ht } values, which
yields a tractable optimum solution for any number of
parameters.

Moreover, from the optimum conditional sequential
estimator of the alternative approach, we develop a
computation- and energy-efficient decentralized scheme
based on level-triggered sampling for sequential
estimation of vector parameters. We should note here that
the proposed vector parameter estimator is by no means a
straightforward extension of the scalar parameter
estimators in [18, 19, 28]. Firstly, straightforward
application of level-triggered sampling to the vector case
yields a computational complexity and energy
consumption that scale quadratically with the number of
unknown parameters. We propose a linearly scaling
method, which is analytically justified and numerically
shown to perform close to the optimum average
stopping-time performance. Secondly, data transmission
and thus energy consumption increase with the number of
parameters, which may easily become prohibitive for a
sensor with limited battery [29]. We address this
energy-efficiency issue by infrequently transmitting a
single pulse with very short duration, which encodes, in
time, the overshoot in level-triggered sampling, thus
achieving close-to-optimum performance.

The remainder of the paper is organized as follows. In
Section II, we provide background information on linear
parameter estimation. Then in Section III, we derive the
optimum sequential estimators under the conventional
unconditional and alternative conditional problem
formulations. In Section IV, using the tractable solution of
the conditional formulation as a model, we propose a
computation- and energy-efficient decentralized sequential
estimator based on level-triggered sampling. Finally, the
paper is concluded in Section V. We represent scalars with
lowercase letters, vectors with uppercase letters, and
matrices with uppercase bold letters.

II. BACKGROUND

In (1), at each time t we observe the sample yt and the
vector Ht, and thus {(yp, Hp)}tp=1 are available. We assume
that {wt } are independent and identically distributed (i.i.d.)
with E[wt ] = 0 and Var(wt ) = σ 2. The least-squares (LS)
estimator minimizes the sum of squared errors, i.e.,

X̂t = arg min
X

t∑

p=1

(
yp − H ′

pX
)2

, (2)

and is given by

X̂t =

⎛

⎝
t∑

p=1

HpH ′
p

⎞

⎠
−1

t∑

p=1

Hpyp =
(
H ′

t H t

)−1 H ′
tYt , (3)

where H t = [ H1 · · · Ht ]′ and Yt = [ y1 · · · yt ]′. Note that
spatial diversity (i.e., a vector of observations and a
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regressor matrix at time t) can be easily incorporated in
(1) in the same way we deal with temporal diversity.
Specifically, in (2) and (3) we would also sum over the
spatial dimensions.

Under the Gaussian noise wt ∼ N (0, σ 2), the LS
estimator coincides with the minimum-variance
unbiased estimator and achieves the CRLB, i.e.,
Cov(X̂t |H t ) = CRLBt . To compute the CRLB, given X
and Ht, we first write the log-likelihood of the vector Yt as

Lt = log f (Yt |X, H t )

= −
t∑

p=1

(
yp − H ′

pX
)2

2σ 2
− t

2
log

(
2πσ 2) . (4)

Then, we have

CRLBt =
(

E
[
− ∂2

∂X2
Lt |H t

])−1

= σ 2U−1
t , (5)

where

E
[
− ∂2

∂X2
Lt |H t

]

is the Fisher information matrix and U t
$= H ′

t H t is a
nonsingular matrix. Since E[Yt |H t ] = H tX and
Cov(Yt |H t ) = σ 2 I , from (3) we have E[X̂t |H t ] = X
and Cov(X̂t |H t ) = σ 2U−1

t ; and thus, from (5),
Cov(X̂t |H t ) = CRLBt . Note that the maximum-likelihood
estimator, which maximizes (4), coincides with the LS
estimator in (3).

In general, the LS estimator is the best linear unbiased
estimator. In other words, any linear unbiased estimator of
the form AtYt with At ∈ Rn×t , where E[AtYt |H t ] = X,
has a covariance no smaller than that of the LS estimator
in (3)—i.e., Cov(AtYt |H t ) ≥ σ 2U−1

t in the
positive-semidefinite sense. To see this result we write
At = (H ′

t H t )−1 H ′
t + Bt for some Bt ∈ Rn×t , and then

Cov(AtYt |H t ) = σ 2U−1
t + σ 2 Bt B′

t , where Bt B′
t is a

positive-semidefinite matrix.
The recursive least-squares algorithm enables us to

compute X̂t in a recursive way as follows:

X̂t = X̂t−1 + Kt

(
yt − H ′

t X̂t−1
)
, (6)

where

Kt = P t−1Ht

1 + H ′
t P t−1Ht

∈ Rn

is a gain vector and P t = P t−1 − KtH
′
t P t−1 = U−1

t . In
applying the recursive least-squares algorithm we first
initialize X̂0 = 0 and P0 = δ−1 I—where 0 represents a
zero vector and δ is a small number—and then at each
time t we compute Kt, X̂t , and Pt as in (6).

III. OPTIMUM SEQUENTIAL ESTIMATION

In this section we aim to find the optimal pair (T, X̂T)
of stopping time and estimator corresponding to the
optimal sequential estimator. The stopping time for a
sequential estimator is determined according to a target

estimation accuracy. In general, the average stopping time
is minimized subject to a constraint on the estimation
accuracy, which is a function of the estimator
covariance—i.e.,

min
T ,X̂T

E [T ] subject tof
(
Cov

(
X̂T

))
≤ c, (7)

where f(·) is a function from Rn×n to R and c ∈ R is the
target accuracy level.

The accuracy function f should be a monotonic
function of the covariance matrix Cov(X̂T ), which is
positive semidefinite, in order to make consistent accuracy
assessments—e.g., f (Cov(X̂T )) > f (Cov(X̂S)) for
T < S, since Cov(X̂T ) ≻ Cov(X̂S ) in the positive-definite
sense. Two popular and easy-to-compute choices are the
trace Tr(·), which corresponds to the mean squared error
(MSE), and the Frobenius norm ∥ · ∥F . Before handling
the problem in (7), let us explain why we are interested in
restricted stopping times that are adapted to a subset of
observation history.

Define {Ft } as the filtration that corresponds to the
samples {y1, . . . , yt }, where Ft = σ {y1, . . . , yt } is the
σ -algebra generated by the samples observed up to time
t—i.e., the accumulated history related to the observed
samples—and F0 is the trivial σ -algebra. Similarly, define
the filtration {Ht } where Ht = σ {H1, . . . , Ht} and H0 is
again the trivial σ -algebra. Firstly, the optimal stopping
theory for multidimensional observations is intractable.
Secondly, it is known that in general, with discrete-time
observations, the sequential CRLB for an unrestricted
{Ft ∪ Ht }-adapted stopping time is not attainable under
any noise distribution except for the Bernoulli noise [27].
On the other hand, in the case of continuous-time
observations with continuous paths, the sequential CRLB
for an unrestricted stopping time is attained by the LS
estimator with an {Ht }-adapted stopping time, which
depends only on HT [18]. Furthermore, in Lemma 1 we
show that with discrete-time observations, the LS
estimator with an {Ht }-adapted stopping time attains the
conditional sequential CRLB for the {Ht }-adapted
stopping times. Note that the (conditional) sequential
CRLB for the {Ht }-adapted stopping times is not the same
as that for the {Ft ∪ Ht }-adapted stopping times. The
latter is tighter, since an {Ht }-adapted stopping time is
also {Ft ∪ Ht }-adapted.

LEMMA 1 With a monotonic accuracy function f and an
{Ht }-adapted stopping time T , we can write

f
(
Cov

(
X̂T |HT

))
≥ f

(
σ 2U−1

T
)

(8)

for all unbiased estimators under Gaussian noise and all
linear unbiased estimators under non-Gaussian noise, and
the LS estimator

X̂T = U−1
T VT , U t = H ′

t H t , VT
$= H ′

T YT (9)

satisfies the inequality in (8) with equality.

290 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 1 FEBRUARY 2016



PROOF Since the LS estimator, with
Cov(X̂t |H t ) = σ 2U−1

t , is the minimum-variance unbiased
estimator under Gaussian noise and the best linear
unbiased estimator under non-Gaussian noise, we write

f
(
Cov

(
X̂T |HT

))

= f

(

E

[ ∞∑

t=1

(
X̂t − X

) (
X̂t − X

)′
1{t=T }|H t

])

= f

( ∞∑

t=1

E
[(

X̂t − X
) (

X̂t − X
)′|H t

]
1{t=T }

)

(10)

≥ f

( ∞∑

t=1

σ 2U−1
t 1{t=T }

)

(11)

= f
(
σ 2U−1

T
)

(12)

for all unbiased estimators under Gaussian noise and all
linear unbiased estimators under non-Gaussian noise. The
indicator function 1{A} = 1 if A is true, and 0 otherwise.
We used the facts that the event {T = t} is Ht -measurable
and E[(X̂t − X)(X̂t − X)

′|H t ] = Cov(X̂t |H t ) ≥ σ 2U−1
t

to write (10) and (11), respectively.
Hence, we here consider {Ht }-adapted stopping times,

as in [18, 19, 28].

A. The Optimum Sequential Estimator

In this case we assume {Ht } are i.i.d. From the
constrained optimization problem in (7), using a Lagrange
multiplier λ we obtain the following unconstrained
optimization problem:

min
T ,X̂T

E [T ] + λf
(
Cov

(
X̂T

))
. (13)

For simplicity, we assume a linear accuracy function f so
that f (E[·]) = E[f (·)]—e.g., the trace function Tr(·). Then
our constraint function becomes the sum of the individual
variances—i.e., Tr(Cov(X̂T )) =

∑n
i=1 Var(x̂i

T ). Since
Tr(Cov(X̂T )) = Tr(E[Cov(X̂T |HT )]) =
E[Tr(Cov(X̂T |HT ))], we rewrite (13) as

min
T ,X̂T

E
[
T + λTr

(
Cov

(
X̂T |HT

))]
, (14)

where the expectation is with respect to HT . From Lemma
1, we see that Tr(Cov(X̂T |HT )) is minimized by the LS
estimator, and so is the objective value in (14). Hence, X̂T
given in (9)—see (6) for recursive computation—is the
optimum estimator for the problem in (7).

Since Tr(Cov(X̂T |HT )) = Tr(σ 2U−1
T ), to find the

optimal stopping time we need to solve the optimization
problem

min
T

E
[
T + λTr

(
σ 2U−1

T
)]

, (15)

which can be solved by using the optimal stopping theory.
Writing (15) in the alternative form

min
T

E

[T −1∑

t=0

1 + λTr
(
σ 2U−1

T
)
]

, (16)

we see that the term
∑T −1

t=0 1 accounts for the cost of
not stopping until time T and the term λTr(σ 2U−1

T )
represents the cost of stopping at time T . Note that
U t = U t−1 + HtH

′
t , and given Ut−1, the current state Ut is

(conditionally) independent of all previous states; hence
{U t } is a Markov process. That is, in (16), the optimal
stopping time for a Markov process is sought, which can
be found by solving the following Bellman equation:

V (U)

= min

⎧
⎪⎨

⎪⎩
λTr

(
σ 2U−1)

︸ ︷︷ ︸
F (U)

, 1 + E
[
V

(
U + H1H

′
1

)
|U

]
︸ ︷︷ ︸

G(U)

⎫
⎪⎬

⎪⎭
,

(17)

where the expectation is with respect to H1 and V is the
optimal cost function. The optimal cost function is
obtained by iterating a sequence of functions {Vm} where
V(U) = limm→∞Vm(U) and

Vm (U) = min
{
λTr

(
σ 2U−1) , 1

+ E
[
Vm−1

(
U + H1H

′
1

)
|U

]}
.

In the optimal stopping theory, dynamic programming
is used. Specifically, the original complex optimization
problem in (15) is divided into simpler subproblems given
by (17). At each time t we are faced with a subproblem
consisting of a stopping cost F (U t ) = λTr(σ 2U−1

t ) and an
expected sampling cost G(U t ) = 1 + E[V(U t+1)|U t ] to
proceed to time t + 1. Since {U t } is a Markov process
and {Ht } are i.i.d., (17) is a general equation holding for
all t, and thus we drop the time subscript for simplicity.
The optimal cost function V(U t ), selecting the action with
minimum cost (i.e., either continue or stop), determines
the optimal policy to follow at each time t. That is, we stop
the first time the stopping cost is smaller than the average
cost of sampling, i.e.,

T = min {t ∈ N : V (U t ) = F (U t )} .

We obviously need to analyze the structure of V(U t )—
i.e., the cost functions F (U t ) and G(U t )—to find the
optimal stopping time T. (Refer to [30] for more
information on optimal stopping theory.)

Note that V , being a function of the symmetric matrix
U = [uij ] ∈ Rn×n, is a function of (n2 + n)/2 variables
{uij : i ≤ j}. Analyzing a multidimensional optimal cost
function proves intractable, and thus we will first analyze
the special case of scalar-parameter estimation and then
provide some numerical results for the two-dimensional
vector case, demonstrating how intractable the higher
dimensional problems are.
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1) Scalar Case: For the scalar case, from (17) we
have the following one-dimensional optimal cost function:

V (u) = min
{

λσ 2

u
, 1 + E

[
V

(
u + h2

1

)
|u

]}
, (18)

where the expectation is with respect to the scalar
coefficient h1. Specifically, at time t the optimal cost
function is written as

V (ut ) = min
{

λσ 2

ut

, 1 + E [V (ut+1) |ut ]
}

,

where ut+1 = ut + h2
t+1. Writing V as a function of

zt
$=1/ut , we have V(zt ) = min{λσ 2zt , 1 + E[V(zt+1)|zt ]},

where zt+1 = zt/(1 + zth
2
t+1), and thus in general

V (z) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
λσ 2z︸︷︷︸
F (z)

, 1 + E
[
V

(
z

1 + zh2
1

)
|z

]

︸ ︷︷ ︸
G(z)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (19)

We need to analyze the cost functions F(z) = λσ 2z and

G (z) = 1 + E
[
V

(
z

1 + zh2
1

)
|z

]
.

The former is a line, whereas the latter is, in general, a
nonlinear function of z. We have Lemma 2 regarding the
structure of V(z) and G(z). Its proof is given in the
Appendix.

LEMMA 2 The optimal cost V and the expected sampling
cost G, given in (19), are nondecreasing, concave, and
bounded functions of z.

Following Lemma 2, Theorem 1 presents the stopping
time for the scalar case of the problem in (7).

THEOREM 1 The optimal stopping time for the scalar
case of the problem in (7) with Tr(·) as the accuracy
function is given by

T = min
{
t ∈ N : ut ≥ 1

ć

}
, (20)

where ć is selected so that

E
[
σ 2

uT

]
= c,

i.e., the variance of the estimator exactly hits the target
accuracy level c (see Algorithm 1).

PROOF The cost functions F(z) and G(z) are continuous
functions, as F is linear and G is concave. From (19) we
have V(0) = min{0, 1 + V(0)} = 0, hence
G(0) = 1 + V(0) = 1. Then, using Lemma 2, we illustrate
F(z) and G(z) in Fig. 1. The optimal cost function V(z),
being the minimum of F and G—see (19)—is also shown
in Fig. 1. Note that as t increases, z tends from infinity to
zero. Hence, we continue until the stopping cost F (zt ) is

Fig. 1. Structures of optimal cost function V(z) and cost functions F(z)
and G(z).

ALGORITHM 1 The procedure to compute the threshold ć for given c

1: Select ć

2: Estimate C = E
[

σ 2

uT

]
through simulations, where ut =

∑t
p=1 h2

p

and T = min{t ∈ N : ut ≥ 1
ć }

3: if C = c then
4: return ć
5: else
6: if C > c then
7: Decrease ć
8: else
9: Increase ć

10: end if
11: Go to line 2
12: end if

lower than the expected sampling cost G(zt )—i.e., until
zt ≤ ć. The threshold ć(λ) = {z : F (λ, z) = G(z)} is
determined by the Lagrange multiplier λ, which, from
(13), is selected to satisfy the constraint

Var (x̂T) = E
[
σ 2

uT

]
= c.

In Algorithm 1, we show how to determine the threshold ć.
We see from Theorem 1 that the optimum stopping

time in the scalar case is given by a threshold rule on the
Fisher information.

2) Two-Dimensional Case: We will next show that
the multidimensional cases are intractable by providing
some numerical results for the two-dimensional case. In
the two-dimensional case, we have

Tr
(
σ 2U−1) = σ 2 u11 + u22

u11u22 − u2
12

,

where

U =
[

u11 u12
u12 u22

]
, H1 =

[
h1,1
h1,2

]
.
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Hence, from (17) the optimal cost function is written as

V (u11, u12, u22) = min
{
λσ 2 u11 + u22

u11u22 − u2
12

, 1 + E
[
V

(
u11 + h2

1,1, u12 + h1,1h1,2, u22 + h2
1,2

)
|U

]}
, (21)

where the expectation is with respect to h1,1 and h1,2. Changing variables, we can write V as a function of z11
$= 1/u11,

z22
$= 1/u22, and ρ

$= u12/
√

u11u22:

V (z11, z22, ρ) = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λσ 2 z11 + z22

1 − ρ2
︸ ︷︷ ︸

F (z11,z22,ρ)

, 1 + E

⎡

⎣V

⎛

⎝ z11

1 + z11h
2
1,1

,
z22

1 + z22h
2
1,2

,
ρ + h1,1h1,2

√
z11z22√(

1 + z11h
2
1,1

) (
1 + z22h

2
1,2

)

⎞

⎠ |z11, z22, ρ

⎤

⎦

︸ ︷︷ ︸
G(z11,z22,ρ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(22)
which can be iteratively computed as

Vm (z11, z22, ρ) = min

⎧
⎨

⎩λσ 2 z11 + z22

1 − ρ2
, 1 + E

⎡

⎣Vm−1

⎛

⎝ z11

1 + z11h
2
1,1

,
z22

1 + z22h
2
1,2

,
ρ + h1,1h1,2

√
z11z22√(

1 + z11h
2
1,1

) (
1 + z22h

2
1,2

)

⎞

⎠ |z11, z22, ρ

⎤

⎦

⎫
⎬

⎭ ,

(23)
where limm→∞Vm = V .

Note that ρ is the correlation coefficient, hence we
have ρ ∈ [−1, 1]. Following the procedure in Algorithm
2, we numerically compute V from (23) and find the
boundary surface

S (λ) = {(z11, z22, ρ) : F (λ, z11, z22, ρ) = G (z11, z22, ρ)}

that defines the stopping rule. In Algorithm 2, first the
three-dimensional grid (n1dz, n2dz, n3dr) is constructed,
where n1, n2 = 0, . . . , Rz/dz and n3 = −1/dr, . . . , 1/dr.
Then in lines 4–6 the stopping cost F is computed—
see (22)—and in line 7 the first iteration of the optimal
cost function V1 with V0 = 0 is computed
over the grid. In lines 9–28, the optimal cost function
V is computed for each point in the grid by iterating
Vm—see (23)—until no significant change occurs between
Vm and Vm+1. In each iteration, in lines 13–21 the
expectation in (23) with respect to h1,1 and h1,2 is
computed through Monte Carlo calculations. While
computing the expectation, since the updated (future)
values of (z11, z22, ρ)—i.e, the arguments of Vm−1 in
(23)—in general may not correspond to a grid point, we
average the Vm−1 values of eight neighboring grid points
with appropriate weights in lines 17–20 to obtain the
desired Vm−1 value.

The results for λ ∈ {0.01, 1, 100}, σ 2 = 1, and
h1,1, h1,2 ∼ N (0, 1) are shown in Figs. 2 and 3. For λ = 1,
the dome-shaped surface in Fig. 2 separates the stopping
region from the continuing region.

Outside the “dome,” V = G, and hence we continue.
As time progresses, zt,11 and zt,22 decrease, so we move
towards the “dome.” Whenever we are inside the “dome”
(e.g., at the fifth sample in Fig. 2), we stop, i.e., V = F .
We obtain similar dome-shaped surfaces for different λ

values. However, the cross sections of the “domes” at
specific ρ t values differ significantly. In particular, we
investigate the case of ρ t = 0, where the scaling
coefficients ht,1 and ht,2 are uncorrelated. For small values
of λ—e.g., λ = 0.01—the boundary that separates the
stopping and the continuing regions is highly nonlinear, as
shown in Fig. 3a. In Figs. 3b, 3c, it is seen that the
boundary tends to become more and more linear as λ
increases.

Now let us explain the meaning of the λ value. Firstly,
note from (22) that F and G are functions of z11, z22 for
fixed ρ, and the boundary is the solution to
F (λ, z11, z22) = G(z11, z22). When λ is small, the region
where F < G—i.e., the stopping region—is large, and
hence we stop early, as shown in Fig. 3a.1 Conversely, for
large λ the stopping region is small, and hence the
stopping time is large (see Fig. 3c). In fact, the Lagrange
multiplier λ is selected through simulations following the
procedure in Algorithm 3 so that the constraint

Tr
(
E
[
σ 2U−1

T
])

= E
[
σ 2 zT,11 + zT,22

1 − ρ2
T

]
= c

is satisfied. Note that line 2 of Algorithm 3 uses Algorithm
2 to compute the boundary surface S.

REMARKS In general, we need to numerically compute
the stopping rule—i.e., the hypersurface that separates the
stopping and the continuing regions—off-line for a given
target accuracy level c. This becomes a quite intractable
task, as the dimension n of the vector to be estimated

1 Note that the axis scales in Fig. 3a are on the order of hundreds, and
zt ,11, zt ,22 decrease as t increases.
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ALGORITHM 2 The procedure to compute the boundary surface S for given λ

1: Set dz, Rz, dr, Nh, Nz = Rz
dz + 1, and Nr = 2

dr + 1
2: z1 = [0 : dz : Rz]; z2 = z1; ρ = [−1 : dr : 1] {all row vectors}
3: Z1 = 1Nzz1; Z2 = Z′

1 {1Nz: column vector of ones in RNz}
4: for i = 1 : Nr do
5: F (:, :, i) = λ Z1+Z2

1−ρ(i)2 {stopping cost over the 3-D grid}
6: end for
7: V = min(F, 1) {start with V0 = 0}
8: dif = ∞; Fr = ∥V∥F
9: while dif > δFr {δ: a small threshold} do

10: for i = 1 : Nz2 do
11: z11 = Z1(i); z22 = Z2(i) {linear indexing in matrices}
12: for j = 1 : Nr do
13: Generate hNh×1

1 and hNh×1
2 {e.g., according to N (0, 1)}

14: Z′
11 = z11./(1 + z11h1.

2); Z′
22 = z22./(1 + z22h2.

2) {dot denotes element-wise operation}
15: ρ′ = [ρ(j ) + h1. ∗ h2

√
z11z22]./

√
(1 + z11h1.2)(1 + z22h2.2) {vector}

16: I1 = Z′
11/dz + 1; I2 = Z′

22/dz + 1; I3 = (ρ′ + 1)/dr + 1 {fractional indices}
17: J8 × Nh = linear indices of eight neighbor points using ⌊In⌋, ⌈In⌉, n = 1, 2, 3
18: Dn = ⌈In⌉ − In; D̄n = 1 − Dn, n = 1, 2, 3 {distances to neighbor indices}
19: W8 × Nh = weights for neighbors as eight multiplicative combinations of Dn, D̄n, n = 1, 2, 3
20: V Nh×1 = diag(W ′V(J )) {average the neighbor V values}
21: G = sum(V)/Nh {continuing cost}
22: ℓ = i + (j − 1)Nz2 {linear index of the point on the 3-D grid}
23: V ′(ℓ) = min(F (ℓ), 1 + G) {new optimal cost function}
24: end for
25: end for
26: dif = ∥V ′ − V∥F; Fr = ∥V∥F
27: V = V ′ {update the optimal cost function}
28: end while
29: Find the points where transition occurs between regions V = F and V ̸= F , i.e., S.

Fig. 2. Surface that defines stopping rule for λ = 1, σ 2 = 1, and
h1,1, h1,2 ∼ N (0, 1) in two-dimensional case. Sample path which stops

at fifth sample is also shown.

increases because we find the separating hypersurface in
an (n2 + n)/2-dimensional space. Recall from (17) that the
optimal cost function V is a function of the matrix U,
which has (n2 + n)/2 distinct entries. On the other hand,
conditioning the problem formulation in (7) on the
observed regressors {Ht }, we next show that for any n, the
optimum stopping rule takes a simple one-dimensional
form. We can much more easily decentralize such a
tractable optimum solution offered by the conditional

formulation than the one given by the cumbersome
procedure in Algorithm 2.

B. The Optimum Conditional Sequential Estimator

In the presence of an ancillary statistic whose
distribution does not depend on the parameters to be
estimated, such as the regressor matrix Ht, the conditional
covariance Cov(X̂t |H t ) can be used to assess the accuracy
of the estimator more precisely than the (unconditional)
covariance, which is in fact the mean of the former [28,
31]—i.e., Cov(X̂T ) = E[Cov(X̂t |H t )]. This is known as
the conditionality principle. Motivated by this fact, we
propose to reformulate the problem in (7) conditioned on
Ht:

min
T ,X̂T

E [T ] such thatf
(
Cov

(
X̂T |HT

))
≤ c. (24)

Note that the constraint in (24) is stricter than the
one in (7), since it requires that X̂T satisfies the target
accuracy level for each realization of HT , whereas
in (7) it is sufficient that it satisfies the target accuracy
level on average. In other words, in (7), even if
f (Cov(X̂T |HT )) > c for some realizations of HT ,
we can still satisfy f (Cov(X̂T )) ≤ c. In fact, we can
always have f (Cov(X̂T )) = c by using a probabilistic
stopping rule such that we sometimes stop above c—i.e.,
f (Cov(X̂T |HT )) > c—and the rest of the time at or
below c—i.e., f (Cov(X̂T |HT )) ≤ c. On the other hand, in
(24) we always have f (Cov(X̂T |HT )) ≤ c, and moreover,
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Fig. 3. Stopping regions for ρt = 0, σ 2 = 1, and ht,1, ht,2 ∼ N (0, 1) ∀t with (a) λ = 0.01, (b) λ = 1, (c) λ = 100. Conditional problem (see
Section III-B) is also shown in (c).

ALGORITHM 3 The procedure to compute the boundary surface S

1: Select λ

2: Compute S(λ) as in Algorithm 2

3: Estimate C = E
[
σ 2 zT,11+zT,22

1−ρ2
T

]
through simulations, where

zt,11 = 1/ut,11, zt,22 = 1/ut,22, ρt = ut,12/
√

ut,11ut,22, and
T = min{t ∈ N : (zt,11, zt,22, ρt )} is between S and the origin

4: if C = c then
5: return S
6: else
7: if C > c then
8: Increase λ

9: else
10: Decrease λ

11: end if
12: Go to line 2
13: end if

since we observe discrete-time samples, in general we
have f (Cov(X̂T |HT )) < c for each realization of HT .
Hence, the optimal objective value E[T ] in (7) will, in
general, be smaller than that in (24). Note that on the
other hand, if we observed continuous-time processes
with continuous paths, we could always have
f (Cov(X̂T |HT )) = c for each realization of HT , and thus
the optimal objective values of (24) and (7) would be the
same.

Since minimizing T also minimizes E[T ], in (24) we
want to find the first time that a member of our class of
estimators (i.e., unbiased estimators under Gaussian noise
and linear unbiased estimators under non-Gaussian noise)
satisfies the constraint f (Cov(X̂T |HT )) ≤ c, as well as
the estimator that attains this earliest stopping time. From
Lemma 1, it is seen that the LS estimator, given by (9),
achieves the best accuracy level f (σ 2U−1

T ) among its
competitors at any {Ht }-adapted stopping time T . Hence,
for the conditional problem, the optimum sequential
estimator is composed of the stopping time

T = min
{
t ∈ N : f

(
σ 2U−1

t

)
≤ c

}
(25)

and the LS estimator

X̂T = U−1
T VT, (26)

which can be computed recursively as in (6). The
recursive computation of U−1

t = P t in the test statistic in
(25) is also given in (6). Note that for an accuracy function
f such that f (σ 2U−1

t ) = σ 2f (U−1
t )—e.g., Tr(·) and

∥ · ∥F—we can use the stopping time

T = min
{
t ∈ N : f

(
U−1

t

)
≤ c̄

}
, (27)

where c̄ = c/σ 2 is the relative target accuracy with respect
to the noise power. Hence, given c̄ we do not need to know
the noise variance σ 2 to run the test given by (27). Note
that U t = H ′

t H t is a nondecreasing positive-semidefinite
matrix—i.e., U t ! U t−1 ∀t in the positive-semidefinite
sense. Thus, from the monotonicity of f, the test statistic
f (σ 2U−1

t ) is a nonincreasing scalar function of time.
Specifically, for accuracy functions Tr(·) and ∥ · ∥F we can
show that if the minimum eigenvalue of Ut tends to infinity
as t → ∞, then the stopping time is finite, i.e., T < ∞.

In the conditional problem, for any n we have a simple
stopping rule given in (27), which uses the target accuracy
level c/σ 2 as its threshold and hence is known beforehand.
For the special case of scalar-parameter estimation, we do
not need a function f to assess the accuracy of the
estimator, since instead of a covariance matrix we now
have a variance σ 2/ut , where ut =

∑t
p=1 h2

p and ht is the
scaling coefficient in (1). Hence, from (27) the stopping
time in the scalar case is given by

T = min
{
t ∈ N : ut ≥ 1

c̄

}
, (28)

where ut/σ
2 is the Fisher information at time t. That is, we

stop the first time the gathered Fisher information exceeds
the threshold 1/c, which is known.

Note that the optimal stopping time in the scalar case
of the unconditional problem, given by (20), is of the same
form as (28). In both conditional and unconditional
problems, the LS estimator

x̂T = vT

uT

is the optimal estimator. The fundamental difference
between the optimal stopping times in (28) and (20) is that
the threshold c̄ = c/σ 2 in the conditional problem is
known beforehand, whereas the threshold ć in the
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unconditional problem needs to be determined through
off-line simulations following the procedure in Algorithm
1. We also observe that c̄ ≤ ć, and hence the optimal
objective value E[T] of the unconditional problem is in
general smaller than that of the conditional problem, as
noted earlier in this subsection. This is because the upper
bound σ 2ć on the conditional variance σ 2/uT —see
(20)—is also an upper bound for the variance
E[σ 2/uT] = c, and the threshold c̄ is given by c̄ = c/σ 2.

In the two-dimensional case of the conditional
problem with the accuracy function Tr(·), the optimal
stopping time is given by

T = min
{
t ∈ N :

zt,11 + zt,22

1 − ρ2
t

≤ c

σ 2

}
,

which is a function of zt,11 + zt,22 for fixed ρ t. In Fig. 3c,
where ρ t = 0 and σ 2 = 1, the stopping region
(respectively average stopping time) of the conditional
problem, which is characterized by a line, is shown to be
smaller (respectively larger) than that of the unconditional
problem due to the same reasoning in the scalar case.

IV. DECENTRALIZED SEQUENTIAL ESTIMATION

In this section, we propose a computation- and
energy-efficient decentralized estimator based on the
optimum conditional sequential estimator and
level-triggered sampling. Consider a network of K
distributed sensors and an FC which is responsible for
determining the stopping time and computing the
estimator. In practice, due to the stringent energy
constraints, sensors must infrequently convey low-rate
information to the FC, which is the main concern in the
design of a decentralized sequential estimator.

As in (1) each sensor k observes

yk
t =

(
Hk

t

)′
X + wk

t , (29)

where t ∈ N and k = 1, . . . , K, as well as the regressor
vector Hk

t = [ hk
t,1 · · · hk

t,n ]′ at time t, where {wk
t }k,t are

independent and zero mean—i.e., E[wk
t ] = 0 ∀k, t and

Var(wk
t ) = σ 2

k ∀t .2 Then, similar to (3), the weighted
least-squares (WLS) estimator

X̂t = arg min
X

K∑

k=1

t∑

p=1

(
yk

p −
(
Hk

p

)′
X

)2

σ 2
k

is given by

X̂t =

⎛

⎝
K∑

k=1

t∑

p=1

Hk
p

(
Hk

p

)′

σ 2
k

⎞

⎠
−1

K∑

k=1

t∑

p=1

Hk
pyk

p

σ 2
k

= Ū−1
t V̄t ,

(30)
where Ūk

t

$= (1/σ 2
k )

∑t
p=1 Hk

p (Hk
p)′,

V̄ k
t

$= (1/σ 2
k )

∑t
p=1 Hk

pyk
p, Ū t =

∑K
k=1 Ūk

t , and

V̄t =
∑K

k=1 V̄ k
t . As before, it can be shown that the WLS

2 The subscripts k and t in the set notation denote k = 1, . . . , K and t ∈ N.

estimator X̂t in (30) is the best linear unbiased estimator
under the general noise distributions. Moreover, in the
Gaussian-noise case, where wk

t ∼ N (0, σ 2
k ) ∀t for each

k, X̂t is also the minimum-variance unbiased estimator.
Following the steps in Section III-B, it is

straightforward to show that the optimum sequential
estimator for the conditional problem in (24) is given by
the stopping time

T = min
{
t ∈ N : f

(
Ū−1

t

)
≤ c

}
(31)

and the WLS estimator X̂t—see (30). Note that (T, X̂T) is
achievable only in the centralized case, where all local
observations until time t—i.e., {(yk

p, Hk
p )}k,p—are

available to the FC.3 Local processes {Ūk
t }k,t and {V̄ k

t }k,t

are used to compute the stopping time and estimator as in
(31) and (30), respectively. On the other hand, in a
decentralized system the FC can compute approximations
Ũk

t and Ṽ k
t and then use these approximations to compute

the stopping time and estimator as in (31) and (30),
respectively.

A. Key Approximations in the Decentralized Approach

If each sensor k reports Ūk
t ∈ Rn×n and V̄ k

t ∈ Rn to the
FC in a straightforward way, then O(n2) terms need to be
transmitted, which may not be practical, especially for
large n, in a decentralized setup. Similarly, in the literature
the distributed implementation of the Kalman filter—
which covers the recursive least-squares algorithm as a
special case—through its inverse covariance form, namely
the information filter, requires the transmission of an n × n
information matrix and an n × 1 information vector (see,
e.g., [32]).

To overcome this problem, considering Tr(·) as the
accuracy function f in (31), we propose to transmit only
the n diagonal entries of Ūk

t for each k, yielding linear
complexity O(n). Using the diagonal entries of Ū t we
define the diagonal matrix

Dt
$= diag

(
dt,1, . . . , dt,n

)
, (32)

where

dt,i =
K∑

k=1

t∑

p=1

(
hk

p,i

)2

σ 2
k

,

i = 1, . . . , n.
We further define the correlation matrix

R =

⎡

⎢⎢⎢⎣

1 r12 · · · r1n

r12 1 · · · r2n

...
...

. . .
...

r1n r2n · · · 1

⎤

⎥⎥⎥⎦
, (33)

3 The subscript p in the set notation denotes p = 1, . . . , t.
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where

rij =

∑K
k=1

E
[
hk

t,ih
k
t,j

]

σ 2
k√

∑K
k=1

E
[
(hk

t,i)
2
]

σ 2
k

∑K
k=1

E
[(

hk
t,j

)2
]

σ 2
k

,

i, j = 1, . . . , n.

PROPOSITION 1 For sufficiently large t, we can make the
following approximations:

Ū t
∼= D1/2

t R D1/2
t

(34)
Tr

(
Ū−1

t

) ∼= Tr
(

D−1
t R−1) .

PROOF The approximations are motivated from the
special case where E[hk

t,ih
k
t,j ] = 0 ∀k, i, j = 1, . . . , n, i ̸=

j. In this case, by the law of large numbers, the
off-diagonal elements of Ū t /t vanish for sufficiently large
t, and thus we have Ū t /t ∼= Dt /t and Tr(Ū−1

t ) ∼= Tr(D−1
t ).

For the general case, where we might have E[hk
t,ih

k
t,j ] ̸= 0

for some k and i ̸= j, using the diagonal matrix Dt we write

Tr
(
Ū−1

t

)
= Tr

⎛

⎜⎝

⎛

⎜⎝D1/2
t D−1/2

t Ū t D−1/2
t︸ ︷︷ ︸

Rt

D1/2
t

⎞

⎟⎠

−1⎞

⎟⎠ (35)

= Tr
(

D−1/2
t R−1

t D−1/2
t

)

= Tr
(

D−1
t R−1

t

)
. (36)

Note that each entry rt,ij of the newly defined matrix Rt is
a normalized version of the corresponding entry ūt,ij of
Ū t . Specifically,

rt,ij = ūt,ij√
dt,idt,j

= ūt,ij√
ūt,ii ūt,jj

,

i, j = 1, . . . , n, where the last equality follows from the
definition of dt,i in (32). Hence, Rt has the same structure
as in (33), with entries

rt,ij =

∑K
k=1

∑t
p=1

hk
p,ih

k
p,j

σ 2
k√

∑K
k=1

∑t
p=1

(
hk

p,i

)2

σ 2
k

∑K
k=1

∑t
p=1

(
hk

p,j

)2

σ 2
k

,

i, j = 1, . . . , n. For sufficiently large t, by the law of large
numbers

rt,ij
∼= rij =

∑K
k=1

E
[
hk

t,ih
k
t,j

]

σ 2
k√

∑K
k=1

E
[
(hk

t,i)
2
]

σ 2
k

∑K
k=1

E
[(

hk
t,j

)2
]

σ 2
k

(37)

and Rt
∼= R, where R is given in (33). Hence, for

sufficiently large t we can make the approximations in
(34) using (35) and (36).

Fig. 4 corroborates the accuracy approximation in (34).

Fig. 4. Accuracy term Tr(Ū−1
t ) and its approximation Tr(D−1

t R−1)
proposed in (34) across time. Both uncorrelated (rij = 0 ∀i, j ) and

correlated (rij = 0.5 ∀i, j ) parameters are investigated.

Then, assuming that the FC knows the correlation
matrix R—i.e., {E[hk

t,ih
k
t,j ]}i,j,k and {σ 2

k }, see (33)4—it can
compute the approximations in (34) if sensors report their
local processes {Dk

t }k,t to the FC, where Dt =
∑K

k=1 Dk
t .

Note that each local process {Dk
t }t is n-dimensional, and

its entries at time t are given by
⎧
⎪⎨

⎪⎩
dk

t,i =
∑t

p=1

(
hk

p,i

)2

σ 2
k

⎫
⎪⎬

⎪⎭
i

,

which can be compared to (32). Hence, we propose that
each sensor k sequentially report the local processes {Dk

t }t
and {V̄ k

t }t to the FC, achieving linear complexity O(n). On
the other side, the FC, using the information received from
sensors, computes the approximations { D̃t } and {Ṽt },
which are then used to compute the stopping time

T̃ = min
{
t ∈ N : Tr

(
Ũ−1

t

)
≤ c̃

}
(38)

and the estimator

X̃T̃ = Ũ−1
T̃ ṼT̃ (39)

similar to (31) and (30), respectively. The approximations
Tr(Ũ−1

t ) in (38) and U T̃ in (39) are computed using D̃t as
in (34). The threshold c̃ is selected through simulations to
satisfy the constraint in (24) with equality—i.e.,
Tr(Cov(X̃T̃|H T̃)) = c.

4 The subscripts i and j in the set notation denote i = 1, . . . , n and j = i,
. . . , n. In the special case where E[(hk

t,i )
2
] = E[(hm

t,i )
2], k, m, = 1, . . . , K,

i = 1, . . . , n, the correlation coefficients⎧
⎨

⎩ξ k
ij =

E[hk
t,i h

k
t,j ]

√
E[(hk

t,i )
2
]E[(hk

t,j )
2
]

: i = 1, . . . , n − 1, j = i + 1, . . . , n

⎫
⎬

⎭
k

together with {σ 2
k } are sufficient statistics, since, from (37),

rij =
∑K

k=1 ξk
ij /σ 2

k∑K
k=1 1/σ 2

k

.
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B. Decentralized Sequential Estimator Based on
Level-Triggered Sampling

Level-triggered sampling provides a very convenient
way of transmitting information in decentralized systems
[19, 22]. Specifically, decentralized methods based on
level-triggered sampling, transmitting low-rate
information, enable highly accurate approximations and
thus high-performance schemes at the FC. They
significantly outperform conventional decentralized
methods which sample local processes using traditional
uniform sampling and send the quantized versions of
samples to the FC [19, 23].

Existing methods employ level-triggered sampling to
report a scalar local process to the FC. Using a similar
procedure to report each distinct entry of Ūk

t and V̄ k
t , we

need O(n2) parallel procedures, which may be prohibitive
in a decentralized setup for large n. Hence, we propose to
use the approximations introduced in the previous
subsection, achieving linear complexity O(n). Moreover,
for highly accurate approximations, existing methods
transmit multiple bits of information per sample to
overcome the overshoot problem, which again can be
cumbersome even with O(n) parallel procedures. To that
end, we propose an alternative way to handle the
overshoot problem. Particularly, in the proposed
decentralized estimator, the overshoot in each sample is
encoded in time by transmitting a single pulse with very
short duration, which greatly helps comply with the
stringent energy constraints.

We will next describe the proposed decentralized
estimator based on level-triggered sampling in which each
sensor nonuniformly samples the local processes {Dk

t }t
and {V̄ k

t }t and transmits a single pulse for each sample to
the FC, and the FC computes { D̃t } and {Ṽt } using received
information.

1) Sampling and Recovery of Dk
t : Each sensor k

samples each entry dk
t,i of Dk

t at a sequence of random
times {sk

m,i}m given by

sk
m,i

$= min
{
t ∈ N : dk

t,i − dk
sk
m−1,i ,i

≥ $k
i

}
, sk

0,i = 0,

(40)
where

dk
t,i =

∑t

p=1

(
hk

p,i

)2

σ 2
k

,

dk
0,i = 0, and $k

i > 0 is a constant threshold that controls
the average sampling interval.5 Note that the sampling
times {sk

m,i}m in (40) are dynamically determined by the
signal to be sampled—i.e., realizations of dk

t,i . Hence, they
are random, whereas sampling times in the conventional
uniform sampling are deterministic with a certain period.
According to the sampling rule in (40), a sample is taken
whenever the signal level dk

t,i increases by at least $k
i

5 The subscript m in the set notation denotes m ∈ N.

Fig. 5. Illustration of sampling time sm, transmission time tm,
transmission delay δm, and overshoot qm. We encode

qm = (dsm − dsm−1 ) − $ < θd in δm = tm − sm < 1 using the slope
φd > θd.

since the last sampling time. Note that

dk
t,i =

∑t

p=1

(
hk

p,i

)2

σ 2
k

is nondecreasing in t.
After each sampling time sk

m,i , sensor k transmits a

single pulse to the FC at time tkm,i

$= sk
m,i + δk

m,i , indicating
that dk

t,i has increased by at least $k
i since the last

sampling time sk
m−1,i . The delay δk

m,i between the
transmission time and the sampling time is used to linearly
encode the overshoot

qk
m,i

$=
(
dk

sk
m,i ,i

− dk
sk
m−1,i ,i

)
− $k

i (41)

and is given by

δk
m,i =

qk
m,i

φd

∈ [0, 1) , (42)

where φ−1
d is the slope of the linear encoding function, as

shown in Fig. 5, known to sensors and the FC.
Assume a global clock—that is, the time index t ∈ N

is the same for all sensors and the FC, meaning that the FC
knows the potential sampling times. Assume further
ultrawideband channels between sensors and the FC, in
which the FC can determine the time of flight of pulses
transmitted from sensors. Then the FC can measure the
transmission delay δk

m,i if it is bounded by unit time—i.e.,
δk
m,i ∈ [0, 1). To ensure this, from (42) we need to have

φd > qk
m,i ∀k, m, i. Assuming a bound for

overshoots—i.e., qk
m,i < θd ∀k, m, i—we can achieve

this by setting φd > θd .
Consequently, the FC can uniquely decode the

overshoot by computing qk
m,i = φdδ

k
m,i (see Fig. 5), using

which it can also find the increment that
occurred in dk

t,i during the interval (sk
m−1,i , s

k
m,i] as

dk
sk
m,i ,i

− dk
sk
m−1,i ,i

= $k
i + qk

m,i from (41). It is then possible

to reach the signal level dk
sk
m,i ,i

by accumulating the
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increments until the mth sampling time, i.e.,

dk
sk
m,i ,i

=
m∑

ℓ=1

(
$k

i + qk
ℓ,i

)
= m$k

i +
m∑

ℓ=1

qk
ℓ,i . (43)

Using {dk
sk
m,i ,i

}m, the FC computes the staircase

approximation d̃k
t,i as

d̃k
t,i = dk

sk
m,i ,i

, t ∈
[
tkm,i , t

k
m+1,i

)
, (44)

which is updated when a new pulse is received from
sensor k and otherwise kept constant. Such approximate
local signals of different sensors are next combined to
obtain the approximate global signal

d̃t,i =
K∑

k=1

d̃k
t,i . (45)

In practice, when the mth pulse in the global order
regarding dimension i is received from sensor km at time
tm,i, instead of computing (43)–(45) the FC only updates
d̃t,i as

d̃tm,i ,i = d̃tm−1,i ,i + $
km

i + qm,i, (46)

d̃0,i = ϵ, and keeps it constant when no pulse arrives. We
initialize d̃t,i to a small constant ϵ to prevent dividing by 0
while computing the test statistic—see (47).

Note that in general d̃tm,i ,i ̸= dsm,i ,i , unlike (44), since
all sensors do not necessarily sample and transmit at the
same time. The approximations {d̃t,i}i form
D̃t = diag(d̃t,1, . . . , d̃t,n), which is used in (38) and (39) to
compute the stopping time and estimator, respectively.
Note that to determine the stopping time as in (38) we need
to compute Tr(Ũ−1

t ) using (34) at times {tm} when a pulse
is received from any sensor regarding any dimension.
Fortunately, when the mth pulse in the global order is
received from sensor km at time tm regarding dimension im,
we can compute Tr(Ũ−1

tm
) recursively as follows:

Tr
(
Ũ−1

tm

)
= Tr

(
Ũ−1

tm−1

)
−

κim

(
$

km

im
+ qm

)

d̃tm,im d̃tm−1,im

,

(47)

Tr(Ũ−1
0 ) =

n∑

i=1

(κi/ϵ),

where κ i is the ith diagonal element of the inverse
correlation matrix R−1, known to the FC. In (47), pulse
arrival times are assumed to be distinct for the sake of
simplicity. In case multiple pulses arrive at the same time,
the update rule will be similar to (47) except that it will
consider all new arrivals together.

2) Sampling and Recovery of V̄ k
t : Similar to (40),

each sensor k samples each entry v̄k
t,i of V̄ k

t at a sequence
of random times {αk

m,i}m written as

αk
m,i

$= min
{
t ∈ N :

∣∣∣v̄k
t,i − v̄k

αk
m−1,i ,i

∣∣∣ ≥ γ k
i

}
, αk

0,i = 0,

(48)
where v̄k

t,i =
∑t

p=1 (hk
p,iy

k
p/σ 2

k ) and γ k
i is a constant

threshold, available to both sensor k and the FC. It has

been shown in [23, section IV-B] that γ k
i = γi can be

determined by

γi tanh
(γi

2

)
= 1

R

K∑

k=1

∣∣E
[
v̄k

1,i

]∣∣ (49)

to ensure that the FC receives messages at an average rate
of R messages per unit time interval. Since v̄k

t,i is neither
increasing nor decreasing, we use two thresholds γ k

i and
−γ k

i in the sampling rule given in (48). Specifically, a
sample is taken whenever v̄k

t,i increases or decreases by at
least γ k

i since the last sampling time. Then, sensor k at

time pk
m,i

$= αk
m,i + βk

m,i transmits a single pulse bk
m,i to the

FC, indicating whether v̄k
t,i has changed by at least γ k

i or
−γ k

i since the last sampling time αk
m−1,i . We can simply

write bk
m,i as

bk
m,i = sign

(
v̄k

αk
m,i ,i

− v̄k
αk

m−1,i ,i

)
, (50)

where bk
m,i = 1 implies that v̄k

αk
m,i ,i

− v̄k
αk

m−1,i ,i
≥ γ k

i and

bk
m,i = −1 indicates that v̄k

αk
m,i ,i

− v̄k
αk

m−1,i ,i
≤ −γ k

i . The

overshoot ηk
m,i

$= |v̄k
αk

m,i ,i
− v̄k

αk
m−1,i ,i

| − γ k
i is linearly

encoded in the transmission delay as before. Similar to
(42), the transmission delay is written as βk

m,i = ηk
m,i/φv ,

where φ−1
v is the slope of the encoding function, available

to sensors and the FC.
Assume again that 1) there exists a global clock among

sensors and the FC, 2) the FC determines channel delay
(i.e., time of flight), and 3) overshoots are bounded by a
constant—i.e., ηk

m,i < θv ∀k, m, i and we set φv > θv .
With these assumptions we ensure that the FC can measure
the transmission delay βk

m,i and accordingly decode the
overshoot as ηk

m,i = φvβ
k
m,i . Then, upon receiving the mth

pulse bm,i regarding dimension i from sensor km at time
pm,i, the FC performs the following update:

ṽpm,i ,i = ṽpm−1,i ,i + bm,i

(
γ

km

i + ηm,i

)
, (51)

where {ṽt,i}i compose the approximation
Ṽt = [ ṽt,1 · · · ṽt,n ]′. Recall that the FC employs Ṽt to
compute the estimator as in (39).

The level-triggered sampling procedure at each sensor
k for each dimension i is summarized in Algorithm 4.
Each sensor k runs n of these procedures in parallel. The
sequential estimation procedure at the FC is summarized
in Algorithm 5. We assumed, for the sake of clarity, that
each sensor transmits pulses to the FC for each dimension
through a separate channel—i.e., parallel architecture. On
the other hand, in practice the number of parallel channels
can be decreased to two by using identical sampling
thresholds $ and γ for all sensors and for all dimensions
in (40) and (48), respectively. Moreover, sensors can even
employ a single channel to convey information about local
processes {dk

t,i} and {v̄k
t,i} by sending ternary digits to the

FC. This is possible since pulses transmitted for {dk
t,i} are

unsigned.
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ALGORITHM 4 The level-triggered sampling procedure at the kth sensor
for the ith dimension

1: Initialization: t ← 0, m ← 0, ℓ ← 0, χ ← 0, ψ ← 0
2: while χ < $k

i and ψ ∈ (−γ k
i , γ k

i ), do
3: t ← t + 1

4: χ ← χ + (hk
t,i )

2

σ 2
k

5: ψ ← ψ + hk
t,i y

k
t

σ 2
k

6: end while
7: if χ ≥ $k

i {sample dk
t,i} then

8: m ← m + 1
9: sk

m,i = t

10: Send a pulse to the fusion center at time instant

tkm,i = sk
m,i+

χ−$k
i

φd

11: χ ← 0
12: end if
13: if ψ ̸∈ (−γ k

i , γ k
i ) {sample v̄k

t,i} then
14: ℓ ← ℓ + 1
15: αk

ℓ,i = t

16: Send bk
ℓ,i = sign(ψ) to the fusion center at time instant

pk
ℓ,i = αk

ℓ,i+
|ψ |−γ k

i
φv

17: ψ ← 0
18: end if
19: Stop if the fusion center instructs so; otherwise go to line 2

ALGORITHM 5 The sequential estimation procedure at the fusion center

1: Initialization: Tr ←
∑n

i=1
κi
ϵ , m ← 1, ℓ ← 1, d̃i ← ϵ ∀i, ṽi ← 0 ∀i

2: while Tr < c̃ do
3: Wait to receive a pulse
4: if mth pulse about dt ,i arrives from sensor k at time t then
5: qm = φd (t − ⌊t⌋).

6: Tr ← Tr − κi ($k
i +qm)

d̃i (d̃i+$k
i +qm)

7: d̃i = d̃i + $k
i + qm

8: m ← m + 1
9: end if
10: if ℓth pulse bℓ about vt ,j arrives from sensor k at time t then
11: ηℓ = φv(t − ⌊t⌋)
12: ṽj = ṽj + bℓ(γ k

j + ηℓ)
13: ℓ ← ℓ + 1
14: end if
15: end while
16: Stop at time T̃ = t

17: D̃ = diag(d̃1, . . . , d̃n), Ũ−1 = D̃−1/2 R−1 D̃−1/2, Ṽ = [ ṽ1 · · · ṽn ]′

18: X̃ = Ũ−1Ṽ

19: Instruct sensors to stop

C. Discussions

We introduced the decentralized estimator in Section
IV-B initially for a continuous-time system with infinite
precision. In practice, due to bandwidth constraints,
discrete-time systems with finite precision are of interest.
For example, in such systems, the overshoot

qk
m,i ∈

[
j
θd

N
, (j + 1)

θd

N

)
,

j = 0, 1, . . . , N − 1, is quantized into

q̂k
m,i =

(
j + 1

2

)
θd

N
,

where N is the number of quantization levels. More
specifically, a pulse is transmitted at time

tkm,i = sk
m,i +

j + 1
/

2
N

,

where the transmission delay

j + 1
/

2
N

∈ (0, 1) ,

encodes q̂k
m,i . This transmission scheme is called pulse

position modulation (PPM).
In ultrawideband and optical communication systems,

PPM is effectively employed. In such systems, N, which
denotes the precision, can be easily made large enough so
that the quantization error |q̂k

m,i − qk
m,i | becomes

insignificant. Compared to conventional transmission
techniques which convey information by varying the
power level, frequency, and/or phase of a sinusoidal wave,
PPM (with ultrawideband) is extremely energy efficient at
the expense of high bandwidth usage, since only a single
pulse with very short duration is transmitted per sample.
Hence, PPM is well suited to energy-constrained sensor
network systems.

D. Simulation Results

We next provide simulation results to compare the
performances of the proposed scheme with linear
complexity (given in Algorithms 4 and 5), the
unsimplified version of the proposed scheme with
quadratic complexity, and the optimal centralized scheme.
A wireless sensor network with 10 identical sensors and
an FC is considered to estimate a five-dimensional
deterministic vector of parameters, i.e., n = 5. We assume
i.i.d. Gaussian noise with unit variance at all sensors, i.e.,
wk

t ∼ N (0, 1) ∀k, t . We set the correlation coefficients
{rij }—see (37)—of the vector Hk

t to 0 in Fig. 6 and 0.5 in
Fig. 7 to test the performance of the proposed scheme in
the uncorrelated and correlated cases, respectively. We
compare the average stopping-time performance of the
proposed scheme with linear complexity to those of the
other two schemes for different MSE values. In Figs. 6
and 7, the horizontal axis represents the signal-to-error
ratio in dB, where nMSE $= MSE/∥X∥2

2—i.e., the MSE
normalized by the square of the Euclidean norm of the
vector to be estimated.

In the uncorrelated case, where rij = 0 ∀i, j , i ̸= j,
the proposed scheme with linear complexity nearly attains
the performance of the unsimplified scheme with
quadratic complexity, as seen in Fig. 6. This result is
rather expected, since in this case Ū t

∼= Dt for sufficiently
large t, where Ū t and Dt are used to compute the stopping
time and the estimator in the unsimplified and simplified
schemes, respectively. Strikingly, the decentralized
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Fig. 6. Average stopping-time performances of optimal centralized
scheme and decentralized schemes based on level-triggered sampling
with quadratic and linear complexity versus normalized MSE values

when scaling coefficients are uncorrelated, i.e., rij = 0 ∀i, j .

Fig. 7. Average stopping-time performances of optimal centralized
scheme and decentralized schemes based on level-triggered sampling
with quadratic and linear complexity versus normalized MSE values

when scaling coefficients are correlated with rij = 0.5 ∀i, j .

schemes (simplified and unsimplified) achieve very close
performances to that of the optimal centralized
scheme—which is obviously unattainable in a
decentralized system—thanks to the efficient information
transmission through level-triggered sampling. It is seen in
Fig. 7 that the proposed simplified scheme exhibits an
average stopping-time performance close to those of the
unsimplified scheme and the optimal centralized scheme
even when the scaling coefficients {hk

t,i}i are correlated
with rij = 0.5 ∀i, j , i ̸= j, justifying the simplification
proposed in Section IV-A to obtain linear complexity.

In Fig. 8, we fix the normalized MSE value at 10−2

and plot average stopping time against the correlation
coefficient r, where rij = r ∀i, j , i ̸= j. We observe an
exponential growth in average stopping time of each
scheme as r increases. The average stopping time of each

Fig. 8. Average stopping-time performances of optimal centralized
scheme and decentralized schemes based on level-triggered sampling
with quadratic and linear complexity versus correlation coefficient for

normalized MSE fixed to 10−2.

scheme becomes infinite at r = 1, since in this case only
some multiples of a certain linear combination of the
parameters to be estimated—i.e., hk

t,1

∑n
i=1 cixi—are

observed under the noise wk
t at each sensor k at each time

t, and thus it is not possible to recover the individual
parameters. Specifically, it can be shown that

ci =

√√√√√
E
[(

hk
t,i

)2
]

E
[(

hk
t,1

)2
] ,

which is the same for all sensors, as we assume identical
sensors. To see the mechanism that causes the exponential
growth, consider the computation of Tr(Ū−1

t ), which is
used to determine the stopping time in the optimal
centralized scheme. From (34) we write

Tr
(
Ū−1

t

) ∼= Tr
(

D−1
t R−1) =

n∑

i=1

κi

dt,i

(52)

for sufficiently large t, where dt,i and κ i are the ith
diagonal elements of the matrices Dt and R−1,
respectively. For instance, we have κi = 1 ∀i,
κi = 8.0435 ∀i, and κi = ∞, respectively, when r = 0, r
= 0.9, and r = 1. Assuming that the scaling coefficients
have the same mean and variance when r = 0 and r = 0.9,
we have similar dt,i values—see (32)—in (52), and hence
the stopping time of r = 0.9 is approximately 8 times that
of r = 0 for the same accuracy level. Since
MSE = E[∥X̂T − X∥2

2] = Tr(Ū−1
t ) in the centralized

scheme, using κ i for different r values allows us to know
approximately how the average stopping time changes as r
increases for a given MSE value. As shown in Fig. 8 with
the label “Theory,” this theoretical curve is a good match
with the numerical result. The small discrepancy at high r
values is due to the high sensitivity of the WLS estimator
in (30) to numerical errors when the stopping time is large.
The high sensitivity is due to multiplying the matrix Ū−1

T
with very small entries by the vector V̄T with very large
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Fig. 9. Average stopping-time performances versus normalized MSE
values for different sensor diversity K. Unknown parameters are
correlated with rij = 0.5 ∀i, j . Similar results are obtained for

uncorrelated case.

entries while computing the estimator X̂T in (30) for a
large T . The decentralized schemes suffer from a similar
high-sensitivity problem—see (39)—much more than the
centralized scheme, since error is inherent in a
decentralized system. Moreover, in the decentralized
schemes the MSE is not given by the stopping-time
statistic Tr(Ũ−1

t ), and hence “Theory” does not match well
the curves for the decentralized schemes. Although it
cannot be used to estimate the rates of the exponential
growths of the decentralized schemes, it is still useful to
explain the mechanism behind them, as the decentralized
schemes are derived from the centralized scheme.

To summarize, with identical sensors any estimator
(centralized or decentralized) experiences an exponential
growth in its average stopping time as the correlation
between scaling coefficients increases, since in the
extreme case of full correlation—i.e., r = 1—each sensor
k at each time t observes a noisy sample of the linear
combination

∑n

i=1
xi

√√√√√
E
[(

hk
t,i

)2
]

E
[(

hk
t,1

)2
] ,

and thus the stopping time is infinite. As a result of
exponentially growing stopping time, the WLS estimator,
which is the optimum estimator in our case—i.e., the
minimum-variance unbiased estimator—and the
decentralized estimators derived from it become highly
sensitive to errors as r increases. In either uncorrelated or
mildly correlated cases, which are of practical importance,
the proposed decentralized scheme with linear complexity
performs very close to the optimal centralized scheme, as
shown in Figs. 6 and 7, respectively.

Finally, we analyze the effect of increasing number of
sensors K. In Fig. 9, it is seen that the average stopping

times of all schemes decay with the same rate of 1/K, as
expected for identical sensors. The small performance
gaps between the centralized and decentralized schemes
are preserved as K increases. Note that the decentralized
algorithm proposed in Section IV-B is scalable to very
large sensor networks if identical sampling thresholds are
used for all sensors, in which case the FC treats the
messages from all sensors in the same way.

V. CONCLUSIONS

We have considered the problem of sequential
vector-parameter estimation under both centralized and
decentralized settings. In the centralized setting, we have
first sought the optimum sequential estimator under the
classical formulation of the problem, in which expected
stopping time is minimized subject to a constraint on a
function of the estimator covariance. Treating the problem
with optimal stopping theory, we have shown that the
optimum solution is intractable for even a moderate
number of parameters to be estimated. We have
considered an alternative formulation that is conditional
on the observed regressors, and shown that it has a simple
optimum solution for any number of parameters. Using
the tractable optimum sequential estimator of the
conditional formulation, we have also developed a
computation- and energy-efficient decentralized estimator.
In the decentralized setup, to satisfy the stringent energy
constraints we have proposed two novelties in the
level-triggered sampling procedure, which is a
nonuniform sampling technique. Finally, numerical results
have demonstrated that the proposed decentralized
estimator has a similar average stopping-time performance
to that of the optimum centralized estimator.

APPENDIX. PROOF OF LEMMA 2

We will first prove that if V(z) is nondecreasing,
concave, and bounded, then so is

G (z) = 1 + E
[
V

(
z

1 + zh2
1

)]
.

That is, assume V(z) satisfies
1) d

dz
V(z) ≥ 0,

2) d2

dz2 V(z) < 0, and
3) V(z) < c < ∞ ∀z. Then by 3) we have

1 + V
(

z

1 + zh2
1

)
< 1 + c ∀z, (53)

and thus G(z) < 1 + c is bounded. Moreover,

d
dz

V
(

z

1 + zh2
1

)
=

d
dz V (z)

(
1 + zh2

1

)2 > 0 ∀z (54)
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Fig. 10. Function V1(z) is nondecreasing and concave.

by 1), and thus G(z) is nondecreasing. Furthermore,

d2

dz2
G (z) = E

[
d2

dz2
V

(
z

1 + zh2
1

)]

= E

⎡

⎢⎢⎢⎢⎢⎢⎣

d2

dz2 V (z)
(
1 + zh2

1

)4

︸ ︷︷ ︸
<0 by 2)

+
d
dz
V (z)

−
(
1 + zh2

1

)3
/

2h2
1

︸ ︷︷ ︸
<0 by 1) and z= 1

u
> 0

⎤

⎥⎥⎥⎥⎥⎥⎦
∀z,

(55)

and hence G(z) is concave, concluding the first part of the
proof.

Now it is sufficient to show that V(z) is nondecreasing,
concave, and bounded. Assume that the limit
limm→∞Vm(z) = V(z) exists. We will prove the existence
of the limit later. First, we will show that V(z) is
nondecreasing and concave by iterating the functions
{Vm(z)}. Start with V0(z) = 0. Then

V1 (z) = min
{
λσ 2z, 1 + E

[
V0

(
z

1 + zh2
1

)]}

= min
{
λσ 2z, 1

}
, (56)

which is nondecreasing and concave, as shown in Fig. 10.
Similarly, we write

V2 (z) = min
{
λσ 2z, 1 + E

[
V1

(
z

1 + zh2
1

)]}
, (57)

where

1 + E
[
V1

(
z

1 + zh2
1

)]

is nondecreasing and concave, since V1(z) is
nondecreasing and concave. Hence, V2(z) is
nondecreasing and concave, since the point-wise
minimum of a nondecreasing and concave function is
again nondecreasing and concave. We can show in the
same way that Vm(z) is nondecreasing and concave for
m > 2—i.e., V(z) = V∞(z) is nondecreasing and concave.

Next, we will show that V(z) is bounded. Assume that

V (z) < min
{
λσ 2z, c

}
= λσ 2z1{λσ 2z≤c} + c1{λσ 2z>c}.

(58)
Then from the definition of V(z) we have

1 + E
[
V

(
z

1 + zh2
1

)]
< c.

Since V(z) is nondecreasing,

E
[
V

(
z

1 + zh2
1

)]
≤ E

[
V

(
1
h2

1

)]
.

From (58) we can write

1 + E
[
V

(
z

1 + zh2
1

)]
≤ 1 + E

[
V

(
1
h2

1

)]

< 1 + E

[
λσ 2

h2
1

1{
λσ2

h2
1

≤c

}

]

+ cP

(
λσ 2

h2
1

> c

)
. (59)

Recalling

1 + E
[
V

(
z

1 + zh2
1

)]
< c,

we want to find a c such that

1 + E

[
λσ 2

h2
1

1{
λσ2

h2
1

≤c

}

]

+ cP

(
λσ 2

h2
1

> c

)
< c. (60)

For such a c we have

1 < cP

(
λσ 2

h2
1

≤ c

)
− E

[
λσ 2

h2
1

1{
λσ2

h2
1

≤c

}

]

= E

[(
c − λσ 2

h2
1

)
1{

λσ2

h2
1

≤c

}

]

= E

[(
c − λσ 2

h2
1

)+]

, (61)

where (·)+ is the positive part operator. We need to show
that there exists a c satisfying

E

[(
c − λσ 2

h2
1

)+]

> 1.

Note that we can write

E

[(
c − λσ 2

h2
1

)+]

≥ E

[(
c − λσ 2

h2
1

)+

1{h2
1>ϵ}

]

> E

[(
c − λσ 2

ϵ

)+

1{h2
1>ϵ}

]

=
(

c − λσ 2

ϵ

)+

P
(
h2

1 > ϵ
)
, (62)

where
(

c − λσ 2

ϵ

)+

→ ∞

as c → ∞, since λ and ϵ are constants. If P(h2
1 > ϵ) > 0,

which is always true except in the trivial case where h1 =
0 deterministically, then the desired c exists.
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Now what remains is to justify our initial assumption
V(z) < min{λσ 2z, c}. We will use induction to show that
the assumption holds with the c just found. From (56), we
have V1(z) = min{λσ 2z, 1} < min{λσ 2z, c}, since c > 1.
Then assume that

Vm−1 (z) < min
{
λσ 2z, c

}
= λσ 2z1{λσ 2z≤c} + c1{λσ 2z>c}.

(63)
We need to show that Vm(z) < min{λσ 2z, c}, where

Vm (z) = min
{
λσ 2z, 1 + E

[
Vm−1

(
z

1 + zh2
1

)]}
.

Note that

1 + E
[
Vm−1

(
z

1 + zh2
1

)]
≤ 1 + E

[
Vm−1

(
1
h2

1

)]
,

since Vm−1(z) is nondecreasing. Similar to (59), from (63)
we have

1 + E
[
Vm−1

(
1
h2

1

)]
< 1 + E

[
λσ 2

h2
1

1{
λσ2

h2
1

≤c

}

]

+ cP
(

λσ 2

h2
1

> c

)
< c, (64)

where the last inequality follows from (60). Hence,

Vm (z) < min
{
λσ 2z, c

}
∀m, (65)

showing that V(z) < min{λσ 2z, c}, which is the
assumption in (58).

We showed that V(z) is nondecreasing, concave, and
bounded if it exists—i.e., the limit limm→∞Vm(z) exists.
Note that we showed in (65) that the sequence {Vm} is
bounded. If we also show that {Vm} is monotonic—e.g.,
nondecreasing—then it converges to a finite limit V(z). We
will again use induction to show the monotonicity of {Vm}.
From (56) we write V1(z) = min{λσ 2z, 1} ≥ V0(z) = 0.
Assuming Vm−1(z) ≥ Vm−2(z), we need to show that
Vm(z) ≥ Vm−1(z). Using their definitions, we write

Vm (z) = min
{
λσ 2z, 1 + E

[
Vm−1

(
z

1 + zh2
1

)]}

and

Vm−1 (z) = min
{
λσ 2z, 1 + E

[
Vm−2

(
z

1 + zh2
1

)]}
.

We have

1 + E
[
Vm−1

(
z

1 + zh2
1

)]
≥ 1 + E

[
Vm−2

(
z

1 + zh2
1

)]

due to the assumption Vm−1(z) ≥ Vm−2(z), and hence
Vm(z) ≥ Vm−1(z).

To conclude, we proved that Vm(z) is nondecreasing
and bounded in m, and thus the limit V(z) exists, which
was also shown to be nondecreasing, concave, and
bounded. Hence, G(z) is nondecreasing, concave, and
bounded.

REFERENCES

[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E.
A survey on sensor networks.
IEEE Communications Magazine, 40, 8 (Aug. 2002),
102–114.

[2] Das, A. K., and Mesbahi, M.
Distributed linear parameter estimation over wireless sensor
networks.
IEEE Transactions on Aerospace and Electronic Systems, 45,
4 (Oct. 2009), 1293–1306.

[3] Fang, J., and Li, H.
Adaptive distributed estimation of signal power from one-bit
quantized data.
IEEE Transactions on Aerospace and Electronic Systems, 46,
4 (Oct. 2010), 1893–1905.

[4] Ribeiro, A., and Giannakis, G. B.
Bandwidth-constrained distributed estimation for wireless
sensor networks—Part II: Unknown probability density
function.
IEEE Transactions on Signal Processing, 54, 7 (July 2006),
2784–2796.

[5] Msechu, E. J., and Giannakis, G. B.
Sensor-centric data reduction for estimation with WSNs via
censoring and quantization.
IEEE Transactions on Signal Processing, 60, 1 (Jan. 2012),
400–414.

[6] Xiao, J.-J., Cui, S., Luo, Z.-Q., and Goldsmith, A. J.
Linear coherent decentralized estimation.
IEEE Transactions on Signal Processing, 56, 2 (Feb. 2008),
757–770.

[7] Luo, Z.-Q., Giannakis, G. B., and Zhang, S.
Optimal linear decentralized estimation in a bandwidth
constrained sensor network.
In International Symposium on Information Theory, Adelaide,
Australia, Sept. 2005, 1441–1445.

[8] Schizas, I. D., Giannakis, G. B., and Luo, Z.-Q.
Distributed estimation using reduced-dimensionality sensor
observations.
IEEE Transactions on Signal Processing, 55, 8 (Aug. 2007),
4284–4299.

[9] Schizas, I. D., Ribeiro, A., and Giannakis, G. B.
Consensus in ad hoc WSNs with noisy links—Part I:
Distributed estimation of deterministic signals.
IEEE Transactions on Signal Processing, 56, 1 (Jan. 2008),
350–364.

[10] Stankovic, S. S., Stankovic, M. S., and Stipanovic, D. M.
Decentralized parameter estimation by consensus based
stochastic approximation.
IEEE Transactions on Automatic Control, 56, 3 (Mar. 2011),
531–543.

[11] Zhao, T., and Nehorai, A.
Distributed sequential Bayesian estimation of a diffusive
source in wireless sensor networks.
IEEE Transactions on Signal Processing, 55, 4 (Apr. 2007),
1511–1524.

[12] Borkar, V., and Varaiya, P. P.
Asymptotic agreement in distributed estimation.
IEEE Transactions on Automatic Control, 27, 3 (June 1982),
650–655.

[13] Xiao, J.-J., Ribeiro, A., Luo, Z.-Q., and Giannakis, G. B.
Distributed compression-estimation using wireless sensor
networks.
IEEE Signal Processing Magazine, 23, 4 (July 2006),
27–41.

[14] Ghosh, M., Mukhopadhyay, N., and Sen, P. K.
Sequential Estimation. New York: Wiley,
1997.

[15] Braca, P., Marano, S., Matta, V., and Willett, P.

304 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 1 FEBRUARY 2016



Asymptotic optimality of running consensus in testing binary
hypotheses.
IEEE Transactions on Signal Processing, 58, 2 (Feb. 2010),
814–825.

[16] Bajovic, D., Jakovetic, D., Xavier, J., Sinopoli, B., and Moura, J.
M. F.
Distributed detection via Gaussian running consensus: Large
deviations asymptotic analysis.
IEEE Transactions on Signal Processing, 59, 9 (Sept. 2011),
4381–4396.

[17] Cattivelli, F. S., and Sayed, A. H.
Distributed detection over adaptive networks using diffusion
adaptation.
IEEE Transactions on Signal Processing, 59, 5 (May 2011),
1917–1932.

[18] Fellouris, G.
Asymptotically optimal parameter estimation under
communication constraints.
The Annals of Statistics, 40, 4 (2012), 2239–2265.

[19] Yılmaz, Y., and Wang, X.
Sequential decentralized parameter estimation under
randomly observed Fisher information.
IEEE Transactions on Information Theory, 60, 2 (Feb. 2014),
1281–1300.

[20] Veeravalli, V. V., Basar, T., and Poor, H. V.
Decentralized sequential detection with a fusion center
performing the sequential test.
IEEE Transactions on Information Theory, 39, 2 (Mar. 1993),
433–442.

[21] Hussain, A. M.
Multisensor distributed sequential detection.
IEEE Transactions on Aerospace and Electronic Systems, 30,
3 (July 1994), 698–708.

[22] Fellouris, G., and Moustakides, G. V.
Decentralized sequential hypothesis testing using
asynchronous communication.
IEEE Transactions on Information Theory, 57, 1 (Jan. 2011),
534–548.

[23] Yılmaz, Y., Moustakides, G. V., and Wang, X.
Cooperative sequential spectrum sensing based on
level-triggered sampling.

IEEE Transactions on Signal Processing, 60, 9 (Sept. 2012),
4509–4524.

[24] Yılmaz, Y., Moustakides, G. V., and Wang, X.
Channel-aware decentralized detection via level-triggered
sampling.
IEEE Transactions on Signal Processing, 61, 2 (Jan. 2013),
300–315.

[25] Yılmaz, Y., and Wang, X.
Sequential distributed detection in energy-constrained
wireless sensor networks.
IEEE Transactions on Signal Processing, 62, 12 (June 2014),
3180–3193.

[26] Braca, P., Marano, S., Matta, V., and Willett, P.
Consensus-based Page’s test in sensor networks.
Signal Processing, 91, 4 (2011), 919–930.

[27] Ghosh, B. K.
On the attainment of the Cramér–Rao bound in the sequential
case.
Sequential Analysis: Design Methods and Applications, 6, 3
(1987), 267–288.

[28] Grambsch, P.
Sequential sampling based on the observed Fisher information
to guarantee the accuracy of the maximum likelihood
estimator.
The Annals of Statistics, 11, 1 (1983), 68–77.

[29] Guerriero, M., Pozdnyakov, V., Glaz, J., and Willett, P.
A repeated significance test with applications to sequential
detection in sensor networks.
IEEE Transactions on Signal Processing, 58, 7 (July 2010),
3426–3435.

[30] Shiryaev, A. N.
Optimal Stopping Rules, Berlin: Springer, 2008.

[31] Efron, B., and Hinkley, D. V.
Assessing the accuracy of the maximum likelihood estimator:
Observed versus expected Fisher information.
Biometrika, 65, 3 (1978), 457–483.

[32] Vercauteren, T., and Wang, X.
Decentralized sigma-point information filters for target
tracking in collaborative sensor networks.
IEEE Transactions on Signal Processing, 53, 8 (Aug. 2005),
2997–3009.

Yasin Yılmaz (S’11—M’14) received B.Sc., M.Sc., and Ph.D. degrees in electrical
engineering from, respectively, Middle East Technical University, Ankara, Turkey, in
2008; Koc University, Istanbul, Turkey, in 2010; and Columbia University, New York,
in 2014. He is currently a postdoctoral research fellow at the University of Michigan,
Ann Arbor. His research interests include machine learning, big data analytics,
multimodal data fusion, statistical signal processing, cyber-physical systems,
event-triggered systems, and sequential analysis.

YILMAZ ET AL.: SEQUENTIAL AND DECENTRALIZED ESTIMATION OF LINEAR-REGRESSION PARAMETERS 305



George V. Moustakides (M’82—SM’97) was born in Drama, Greece, in 1955. He
received a diploma in electrical and mechanical engineering from the National
Technical University of Athens, Greece, in 1979; an M.Sc. degree in systems
engineering from the Moore School of Electrical Engineering, University of
Pennsylvania, Philadelphia, in 1980; and a Ph.D. degree in electrical engineering and
computer science from Princeton University, Princeton, New Jersey, in 1983. Since
2007 he has been a professor with the department of electrical and computer
engineering, University of Patras, Patras, Greece. Prof. Moustakides has also held
several appointments as visiting scholar, senior researcher, and adjunct professor at
Princeton University, the University of Pennsylvania, Columbia University, the
University of Maryland, the Georgia Institute of Technology, the University of Southern
California, and INRIA. His interests include sequential detection, statistical signal
processing, and signal processing for hearing aids.

Xiaodong Wang (S’98—M’98—SM’04—F’08) received a Ph.D. degree in electrical
engineering from Princeton University. He is a professor of electrical engineering at
Columbia University in New York. Dr. Wang’s research interests fall in the general
areas of computing, signal processing, and communications, and he has published
extensively in these areas. Among his publications is a book entitled Wireless
Communication Systems: Advanced Techniques for Signal Reception, published by
Prentice Hall in 2003. His current research interests include wireless communications,
statistical signal processing, and genomic signal processing. Dr. Wang received the
1999 NSF CAREER Award, the 2001 IEEE Communications Society and Information
Theory Society Joint Paper Award, and the 2011 IEEE Communication Society Award
for Outstanding Paper on New Communication Topics. He has served as an Associate
Editor for IEEE Transactions on Communications, IEEE Transactions on Wireless
Communications, IEEE Transactions on Signal Processing, and IEEE Transactions on
Information Theory. He is a Fellow of the IEEE and listed as an ISI highly-cited author.

306 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 1 FEBRUARY 2016


