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Design of Two-Dimensional Zero-Phase
FIR Filters via the Generalized
McClellan Transform

Emmanouil Z. Psarakis and George V. Moustakides

Abstract —In this paper we present a design method of two-
dimensional (2-D) centrosymmetric zero phase finite impulse
response filters, via the generalized McClellan transform. An in
depth study of the transform involved in the proposed design
method reveals a number of useful properties. These properties
are used in the design method for an optimal definition of the
generalized McClellan transform coefficients. The method can
be applied to the design of classical 2-D FIR filters, yielding
filters that are very close to the 2-D ideal specifications.

1. INTRODUCTION

HE design of two-dimensional (2-D) digital filters has
received growing interest over the last few years. This
is due to the variety of applications in fields such as image
processing, medical diagnosis, planetary physics, indus-
trial inspection, radar, sonar, seismic, geophysical data
processing, etc.
Design approaches for 2-D finite impulse response
(FIR) and infinite impulse response (IIR) digital filters
can be broadly classified into two categories.

i) Based on transformations of 1-D filters [8]-[19].
ii) Based on direct min-max and L, optimization tech-
niques [20]-[27].

The design approaches of the IR filters [1]-[5],
[16]-[24] are generally more complicated than the corre-
sponding approaches for FIR filters, since stability con-
straints must also be considered.

Category i) has the property that the design problem
can be divided into two decoupled design subproblems;
namely the selection of a high-order 1-D filter and the
selection of a low-order 2-D transform, thereby allowing
high-order 2-D designs to be obtained with small compu-
tational effort. Furthermore, these filters can be often
designed to be optimal in the Chebyshev sense and can be
efficiently implemented [6], [7].

One very well-known transform is the McClellan trans-
form. The original McClellan transform was introduced in
[8] and was i roved to be a very useful tool for the design
of circular filters with low cut-off radius and also for the
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45° 2-D quadrantal fan filter. Because of the simplicity of
the McClellan transform, after its introduction in [8],
important extensions were made in several directions. In
[9], the original McClellan transform was generalized, the
necessity of scaling of the transform was introduced, and
a design method for filters that possess quadrantal sym-
metry was presented. The disadvantages of this method
were the suboptimal definition of the McClellan trans-
form coefficients and the necessity of redesigning the 1-D
prototype filter because of the necessary scaling [10].
Later in [11], a computer-aided design optimization
method was proposed for the design of circularly symmet-
ric 2-D filters. In [12] and [13] the problem of scaling was
considered and a scaling-free McClellan transform was
given that is appropriate for the design of circular and
quadrantally elliptical filters. In [14], a fast design method
was proposed, which gives an approximate solution to the
design of 2-D elliptical filters. Finally in [15] a method for
designing quadrantal fan filters was proposed. The coeffi-
cients of the McClellan transform involved are obtained
by solving a well-defined optimization problem. The re-
sulting transform does not need any scaling.

The goal of this paper is to present a design for 2-D
zero-phase FIR digital filters based on the generalized
McClellan transform of [14). Specifically we will general-
ize the design method that was presented in [15]. The
proposed method derives filters that are very close to the
ideal specifications, for most classical 2-D zero-phase FIR
filters.

The paper is organized as follows. Section II contains a
brief presentation of the generalized McClellan transform
and certain properties it satisfies that are important for
the design procedure. In Section III we present our
design method. In Section IV we apply our method to the
design of 2-D quadrantal and centrosymmetric zero-phase
FIR filters. Finally, Section V contains the conclusion.

1I. Tae GENERALIZED MCCLELLAN TRANSFORM
Consider a 1-D zero phase FIR symmetric dAigital filter
of odd length that has frequency response G(e’?). We
know then that G(e’®)= G(cos{w)). The McClellan
transform method uses the relation

cos(w) = Foy(w, ;)

(2.1)
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where w is the 1-D frequency, (@, w,) is the 2-D fre-
quency pair, and Fg(w;, w,) (“GM” stands for general-
ized McClellan transform) following [14] is defined as
Fou(wp,0)= Y M t;;c08 (iw;)cos (jws)

i=0j=0

+ Y Y sysin(ko,)sin(lo,).

k=11=1

(2.2)

Notice from (2.1) that a necessary condition that
Fgp(oq, 0,) must satisfy is

—1< Foy(w;,m;) <1 (2.3)

Usually we like in (2.3) to have points (w,, w,) that satisfy
the equalities, in order to cover the whole 1-D frequency
band.

In this paper we will concentrate on the generalized
McClellan transform of the first order, given by

Vo,o,€[—7,7].

f@y,@,) =tog + tigcos(w) + tg cos(w;)

+1t,,cos(w;)cos{w,) + sy sin(w,)sin(w,). (2.4)

Substituting in G(cos(w)) the cos{w) from (2.4), the 1-D
frequency response G(cos(m)) is transformed into a 2-D
frequency response H(e/*1, e/2), which is centrosymmet-
ric. Notice that if the impulse response of the 1-D proto-
type filter is to extend (2M +1), then the impulse re-
sponse h(n, m) (which corresponds to the 2-D frequency
response H(ei®1 ei*2)) is to extend QM +1)XQ2M +1).

The basic property used in design methods via transfor-
mations is that the isopotentials of the transform (in the
2-D frequency plane) are also isopotentials for the fre-
quency response of the filter. This is clear since an
isopotential of the transform corresponds to a constant
cos(w) and thus to a constant G(cos(w)). Based on this
fact we can separate the design procedure into two parts:
namely the design of the 1-D prototype filter and the
design of the transform. In this paper we will concentrate
only on the second part since for the first there already
exist very powerful methods. The only quantity needed in
designing the 1-D prototype filter (usually low-pass) is the
definition of its cut-off frequency. This frequency will be
explicitly defined with respect to the optimum transform
coefficients.

Let us now concentrate on the transform defined in
(2.4). We would like f(w,, w,) to satisfy (2.3), that is,

~1<f(0,,0,)<l VYo, €[-7,7]. (25)

Notice that in order for f(w,, w,) to satisfy (2.5) and also
to have full coverage of the 1-D frequency band, it is
necessary and sufficient that the maximum and minimum
values of the transform equal 1 and —1, respectively.
Notice also that if we know the maximum and minimum
values of the transform (2.4) (say f,, and f.;,, respec-
tively), then we can define a scaled transform F(w,,,),
that has maximum and minimum values equal to 1 and
—1, as follows:

F(“’uwz) =

e f(w,w)—c (2.6a)
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where
2
1= T————""F"—
! fmax - fmin
max + min
¢, = Fos * Foin (2.6b)
fmax - fmin

This new scaled transform is again a generalized McClel-
lan transform of the form (2.4) having exactly the same
isopotentials with the original one (but corresponding of
course to different constants). To distinguish f from F,
we will call f the unscaled and F the scaled transform.
From the above we conclude that the determination of
the extrema of the unscaled transform (2.4) is vital for
proceeding in our design method. With the next theorem
we give the maximum and minimum values of flo,, w).

Theorem: The maximum and minimum values of the
unscaled generalized McClellan transform (2.4) are given
by

tont = (tiofoi!
00 sz_tz(moxn

n—n
+ |511|\/(t120 +sh—

when 5% >t}

)+ sh—th )

frnax(to0: 1) = +max {|t 9], 10, (max{lt“Lmin {11l 1201}
+ emin {|£)], 1210l 1£011})

+ el lmin {|£4], 12,1}

too + 1ol Ity + 21|

—(1—e)min{ltgl, 1£g],12,,[}, otherwise

2.7

1
5 (Liofort1y
— I

7 1 2 _ 2
- ‘511|\/ tm"'su — 1

when 52, >t}

Loo +

)(l§1+sf1—t‘21 )’

Fain(to0,t) = +max{|twl,ItOI\}(max{lt”l,min{|t1()|,|tm\}}
—emin {lt,l, 12,0l 17,1})
— ety Imin {|£4], 16,1}
tgo = 1ol = ltorl =1t 1yl
+(1+ e)min{lt,gl, 1£g,), 12,1}, otherwise
(2.8)
where
tT=[ty to tyy syl (2.92)
and
e =sign(t,ytg t;)- (2.9b)

Proof: For a proof of the theorem see the Appendix.
Let us define

Af(t)=fmax(’007t)_fmin(t()0’t) (210)
the difference that appears in the scaled transform (2.6).
Using the results of the above theorem Af(t) can take

o -
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TABLE 1
THE DIFFERENT FORMs oF A f(t)
# Af(1) Constraints
1 2t ol + gyl + Lty | = mindley | be ol g, D max{|t,ol, |, Hmax{l¢ |, min{ie ol I, 1}
—emin{ltylighltolD)
— eltyyImin{ltyo) lrr} + 1y > 5Ty
1
2 |t10|+“0]|+|f11|+ t"‘_z(tlﬁtmtll max(“]o‘,|101|Xmax{|t[1|,minﬂfm|,|[m|})
11— Sn
= lsyly (t120+ sh— '121)(%%1 +shi—ih)) —emin{l¢;l, [t} 1oy D
— eley Imin{le gl gy} + tf < sf <
(MR IUMER )]
2syl 2 2 2 2 2 2 2
3 2_n \/(’10"'511_‘11)(%1‘*’511_’1'1) eyl 1Dy 1+ T2 ) < 515
1=
three different forms, which are presented in Table 1. that has a constant value on C; namely,
Notice that, even though the two extrema are functions of P tant 3.1)
ty and ¢, Af(¢) is a function only of ¢. (©1,92) |0y w0 < ¢ = CONStant. (€2

Comments: Let us now make some comments related
to the contents of Table 1. The first form of A f(¢) is valid,
when the transform (2.4) attains its extrema on the border
of the first or second quadrant. Specifically for the case of
quadrantal symmetry, i.e., s;; =0, as it can be seen from
Table I, we can only have this form. The second form
corresponds to the case where the transform (2.4) attains
one of its extrema on the border of a quadrant and the
other in the interior of a quadrant. More precisely, if
e =1, then f,,, is located on the border of a quadrant
and f,;, in the interior of a quadrant and when € = —1,
fmax @and fi. are located in the opposite way. Finally, the
third form is valid when the transform attains both ex-
trema in the interior of some quadrant.

Equations (2.7) and (2.8) and Table I will play an
important role in defining our design procedure in the
next section. As we said, we will concentrate only in the
design of the transform, namely the definition of the
coefficients of F(w,,w,).

111. DefFINING THE OPTIMALITY CRITERION

In this section we will give a means for defining the
coefficients of the scaled generalized McClellan trans-
form (2.6), in order to meet the design requirements of a
2-D zero-phase FIR filter. As we know, in any 2-D filter
specification, there is a curve C that separates the pass-
band from the stopband region. Let us call this curve the
cut-off curve. One would like to select the coefficients of
the transform (2.6) and the 1-D cut-off frequency w, such
that the resulting isopotential corresponding to w, ap-
proximates the cut-off curve C. This problem tends to be
highly nonlinear. We will follow a somewhat different
approach introduced in [15]. This approach will yield an
optimization problem that is still nonlinear but we believe
much easier to solve. Let us assume that a cut-off curve C
is given as a collection of pairs (w,,w,). Instead of look-
ing for coefficients that yield an isopotential that approxi-
mates C, we look for coefficients that yield a transform

Unfortunately, it is not possible to satisfy (3.1) in general.
We will thus try to satisfy this requirement in some
approximate sense. To this end let us define the mean
value of F(w,,w,) on the cut-off curve C by

_ 1
F=Z¢CF(wl,w2)ds (3.2)
and the variance by
1 —12
VF=Z¢C[F(w1,w2)—F] ds (3.3)

where all integrals are line integrals and L = ¢, ds is the
length of the cut-off curve C. Notice that if ¥ =0 then
(3.1) is true. Thus the closer Vj is to zero, the better we
approximate (3.1). It is exactly in this sense that we will
try to optimize the selection of the coefficients. In other
words we will minimize the variance V. with respect to
the coefficients of the scaled McClellan transform (2.6).
Remember that F(w,, w,) is a scaled transform (F,,,, =
1, F,,=—1 and thus its coefficients are constrained
because of these two relations. We would like to express
F and Vp with respect to the unscaled transform 2.4)
coefficients. Substitution of (2.6) in (3.2) and (3.3) gives

F=%¢Cf(wl,w2)ds—c2 (3.4)

and

c? 1 2
V= Zﬁ{f(wlawz)' Z¢Cf(w1,w2) ds] ds (3.5)

where f(-) and ¢y, ¢, are given by (2.4) and (2.6b), respec-
tively. Notice that V. depends only on ¢, and thus on the
difference A f(¢) and not on c¢,.

Substituting (2.4) into (3.4) yields

F=c(ty+ Ayt + Agto+ Aty + Bysy) — ¢,
(3.6)

—
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where

1
A= I Ccos(wl) ds

1
Ay = zﬁcos(wz) ds
1
Ay = Zﬁcos(wl)cos(wz) ds

Bll=%¢csin(wl)sin(wz)ds. (3.7)

Notice that the Ajjs i,j=0,1and B,; are independent of
the transform coefficients and depend only on the cut-off
curve C. They can thus be precomputed. Now, using (3.6),
(3.5) can be written as follows:

cf
Vi= f¢ [Dio(@,@3) 10+ Doy @1, @3) g
C

+ D@1, 02) 0y + Eyy @y, @))% ds (3.8)
where
D (@, ;) =cos(w,) = Ay
Doy, @;) = cos(w,) = Ay
Dy(wy,w;) = cos(w;)cos(wy) — Ay
E (wy,w,) =sin(w,)sin(w,) — By;. (3.9)
Defining the vector
DT(“’::‘"2)=[D10(“’1a“’2) Doy(@y, ;)
Do, w,) En(‘”lv‘"z)] (3.10)

and substituting ¢, from (2.6b), V can be written as
follows:

4  tTOt
L [af()]*
where ¢ is defined in (2.9a); the denominator Af(¢) is

given in Table I, and Q is a positive definite matrix
defined as

V, = (3.11)

Q=¢D(wl,w2)DT(w,,w2) ds. (3.12)
fol
Notice that Q is a matrix independent of ¢ and thus can
be precomputed for any given cut-off curve C. We can see
that the minimization problem is expressed with respect
to the coefficients of the unscaled transform (2.4). Also,
the coefficient ¢y, does not enter in the definition of V
because it can only change the mean value F and not the
variance V.

There is a very important property satisfied by V; it is
a homogeneous function of order zero of the vector ¢.
That is, if we substitute ¢ with Af, then V; remains
unchanged. Based on this property we can prove the
following lemma.

Lemma: The minimization problem defined in (3.11) is
equivalent to

min¢TQt (3.13)
t
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subject to

Af(t) =2.

If +* is an optimum vector of this new minimization
problem, and we define

fmax(O’ t*) + fmin(o’ t*)
2

(3.14)

td=— (3.15)
then the vector {5 ¢*] constitmies a set of optimum
scaled transform coefficients.

Proof: The proof of the lemma is given in the Ap-
pendix.

The minimization problem defined by the lemma is
nonlinear basically because of the nonlinear forms of the
constraint (3.14) (see Table I). Even though Af(¢) can
take three different forms, in many design cases it is
possible to know a priori the regions where the maximum
and minimum occur and thus confine ourselves to some
of the possible forms. Typical examples are the quadran-
tal case where the extrema occur on the borders, and thus
Af(¢) is defined only by the first form of Table I and also
the low-pass case where the maximum occurs at the
origin, and thus A f(¢) can take the first and second forms
of Table 1.

In order to complete our proposed method we must
define the 1-D cut-off frequency w, of the prototype
zero-phase FIR filter. Since we like cos(w,) to corre-
spond to the cut-off curve C, we would like to have

F(“’l""z)l(wl.wz)ec=Cos(wo)~ (3.16)

Because this is not possible, the best we can do is to
equate cos(w,) to the mean value F, that is,

wy = arccos ( F) (3.17)

where from (3.6) the mean value F is given by
F =15+ Aypthy + At + At + Byysty (3.18)

and A,;, i,j=0,1 and B,, are defined in (3.7). Equation
(3.17) has always a solution because F as the mean of a
scaled transform is always absolutely bounded by unity.

In the next section we will summarize the basic steps of
our design method and we will give some examples of
classical 2-D zero-phase FIR filters.

IV. DEsiGN PROCEDURE—APPLICATIONS

In this section we will apply our method of Section III
to the design of some common 2-D zero-phase FIR
filters. Before going to the applications let us summarize
the steps we must follow in order to design a 2-D zero-
phase FIR filter with our method.

Step 1: Using (3.7), (3.9), and (3.12), we compute the
elements of the matrix Q. By minimizing (3.13) subject to
(3.14) and using (3.15) we obtain the optimum coefficient
vector [¢% +*] which is associated with the scaled
McClellan transform.
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Fig. 1. Isopotentials of a circular filter with cut-off radius 107 /11.
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Fig. 2. Isopotentials of a quadrantally elliptic filter with axes a = 7 /2,

B=2m/3.

Step 2: From (3.17) we compute the desired cut-off
frequency w, of the 1-D prototype filter. Using some 1-D
filter design method, we design a zero-phase FIR filter
with cut-off frequency w,.

Step 3: We express the frequency response of the 1-D
designed filter in the form G(e/*) = ¥, g,T,[cos(w)] where
T[x] is the nth-order Chebyshev polynomial. We then
replace the cos(w) in the frequency response with the
generalized McClellan transform (2.6) to produce the
desired 2-D zero-phase FIR filter.

We will now apply our method to the design of seven
filters, most of which are classical and widely used in 2-D
signal processing applications. In order to measure the
quality of our design, we will use as measure of perfor-
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mance the relative error E in the areas of the designed
and ideal passbands, that is,

ff do,dw,
(RpUR)-(RyNR))

ffR dw,dw,

where R;, and R, are the designed and the ideal pass-
band regions, respectively.

We have classified the designed filters into circular,
quadrantally elliptical, centrosymmetric elliptical, cen-
trosymmetric fan, and quadrant filters. In Figs. 1-7 we
have plotted the resulting isopotentials. Table II contains

E= X100

(4.1)

——-
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the values of the scaled transform coefficients, the corre-
sponding 1-D cut-off frequency w, and the relative error
E for each of the designed filters. Let us now comment on
each class separately.

i) Circular 2-D FIR Filters: In order to point out the
possibilities of our method for this class we have selected
a somehow worst case situation, that is, the case of a large
cut-off radius. Specifically, our choice was a cut-off radius
of 107 /11. From Table II we can see that the designed
filter has a very small relative error E. In Fig. 1 we have
plotted the resulting isopotentials. Notice that the cut-off
curve (indicated by the fat line in Fig. 1) is very close to a
circle. For the class of circular filters our method has an
excellent performance.
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Fig. 7. Isopotentials of a quadrant elliptical filter with a =7 /4, B=

7 /8, 0 = 45°, centered at (7 /2,1 /2).

i) Quadrantally Elliptical 2-D FIR Filters: This is an-
other useful class of 2-D FIR filters. For this case our
method yields again excellent results with small relative
errors E. As an example we have designed a filter with
minor axis a = 7 /2 and major axis B =2 /3. Fig. 2 has
the resulting isopotentials.

iii) Centrosymmetric Elliptical 2-D FIR Filters: Such fil-
ters are needed in many practical situations of 2-D signal
processing [14]. The performance of our method for this
class depends heavily on the magnitude of the major axis,
the ratio of the major to minor axes, and the orientation
of the ellipse. More specifically, for a given orientation
and major axis magnitude, there exists an upper limit for
the ratio for which the relative error E is acceptable. This
upper limit is a decreasing function of the magnitude of
the major axis. For the symmetric cases, i.e., orientation
angle 6 = 0°,45°,90°, there is practically no upper limit for
the ratio. If the angle # though takes an arbitrary value,
the upper limit exists and restricts the design of any type
of ellipse. In any case, if the major axis has values of the
order of 7 /2 we can practically design any ellipse. We
give two examples for this class of filters. The first exam-
ple has major axis « = 57 /6, minor axis 3= /2, and
6 = 45° (symmetric orientation). From Fig. 3 and Table II
we can sec that the performance is very good. The second
example has a =27 /3, B=m/3, and 6 =20° (nonsym-
metric orientation). From Fig. 4 and Table II we can see
that the performance is acceptable.

iv) Centrosymmetric 2-D Fan Filters: This is a class of
2-D filters that is useful for seismic and geophysical data
processing applications [19]-[22]. A fan filter is com-
pletely defined if we define the orientation angles 8,,6,
of its passband. For this class we will present two filters.
The first has a passband width of 30° with 6, =30°,
8, = 60°, symmetrically oriented with respect to the main
diagonal of the first quadrant. In Fig. 5 we have plotted

1
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TABLE 11

OPTIMUM SCALED PARAMETERS AND RELATIVE ERROR OF THE IDEAL AND DESIGNED PASSBANDS
# too o fol 28! Sut wo E(%)
1 —0.3955 0.5 0.5 0.3955 0 2.4325 0.49
2 —0.3124 0.6640 0.3360 0.3124 0 1.5456 022
3 —0.3420 0.4542 0.4542 0.4336 —0.4150 1.7546 1.05
4 —0.0720 0.0720 0.6431 0.3569 -0.2760 1.3697 2.55
5 0.1820 0.1822 0.1820 -0.8178 0.7031 1.8392 1.50
6 0.3346 —0.4449 0.4449 0.4449 —0.4449 0.6769 0
7 0 0 0 0.5765 —1.0000 0.4961 1.15

the isopotentials for this case. The resulting cut-off curve
approximates the ideal very closely in the first and third
quadrants. Notice though that there exists a small part of
the designed cut-off curve (and thus of the passband) that
appears in the second and fourth quadrants. These un-
wanted parts can be eliminated by cascading a quadrant
fan filter [19]. The relative error E that appears in Table
11 does not take into account these unwanted parts. The
second filter has a passband width of 45° with 6,=0°,
6, =45°. Here our method has zero error, which means
that our solution is exact. In Fig. 6 we can see the
resulting isopotentials. Notice that for the second filter
we do not have the problem that occurred in the first
example.

v) Quadrant 2-D FIR Filters: This class constitutes a
generalization of the quadrant fan filter. We present one
example for this class just to demonstrate the capabilities
of our method and not because we know some specific
application of this filter. We will design a quadrant ellipti-
cal filter with axes a =7 /4, B=m /8, 6 =45° and with
its center located at (m /2,7 /2). The resulting isopoten-
tials are shown in Fig. 7.

Comments: Our proposed method can be applied to
any design specifications and will yield the best possible
McClellan transform coefficients. Notice that it also de-
fines in some optimum way the required 1-D cut-off
frequency w,. This last characteristic is not present in
other existing methods [9], [12]-[14]. Comparing our
method to [12]-[14] for the design of elliptic filters, the
results are comparable for most design cases. There is,
though, an important difference when we design large
ellipses as in the case of our first example. For these cases
our method gives better results basically because of the
optimum definition of the 1-D cut-off frequency wq, which
in [12]-[14] is arbitrarily equated to the length of the
minor axis of the ellipse.

V. ConNcLUSION

In this paper a new design method for 2-D FIR filters
was presented. It uses the generalized McClellan trans-
form to map the 1-D frequency axis to the 2-D frequency
plane. The coefficients of the scaled generalized McClel-
lan transform are selected by solving a well-defined opti-
mization problem. This problem takes into account the

necessary scaling needed in order to cover the whole 1-D
frequency axis. The resulting optimization problem is
nonlinear but it has only four parameters. The proposed
method applied to conventional filters such as cyclic,
elliptic, and fan, gives excellent results.

APPENDIX A
Proof of the Theorem

Qur goal is to find the global maximum and global
minimum values of the generalized McClellan transform
(2.4). To this end let us consider the following two cases.

Consider first the case [t > |#y,]. Using the identity

acos(x)+ Bsin(x)=cos(x + $)y/a? + B> we can write

f(w,, ®,) as follows:

flw,,w,) =tgy + t1pcos(w;)+c0s (w, — d(w;))
: \/(7121 - 5121)(:OS2 (@) +2t 2 cos (@) + tgl + 5121 (A1)
where ¢(w,) is defined as the common solution of

sin(¢( o))

$138in (@)

‘/(tlzl - sfl)cosz(wl) +2t0,t,c08 (@) + t3 + s

cos (¢(w1))

top+tcos(w;)

‘/(tlz1 = st1)cos? (@) + 229ty cos (@) + 1, + 5T,
(A2)

Let us fix the value of w, in (A.1) and find the extrema of
f(w,, w,) with respect to w,. We can easily see that we
have maximum for w, = ¢(w,) and minimum for w, =m
— ¢(w)). Let us concentrate only on the computation of
the maximum since in a similar way we can compute the
minimum. We thus have that

(@, 0,) <tgy+ 11508 (@)

+ \/(tfl —s{)cos? (@) +2tyt;, cos(w,) + 13+ s

=f(w1)'
(A3)

—
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As we said, the right-hand side value is achieved by
selecting w, = ¢(w,). The function flw,) is a function
only of w, and we will try to find its maximum. Let us
define ©, = cos(w;) then (A.3) can be written as follows:

f(Ql) =ty +1108)y

(0 = sh) QT + 2000, Q + 4+ 5T (A)

where —1<Q, <1. Computing the first and the second
derivatives of (A.4), we obtain

(tlzl - 5121)91 +intn

f(Ql) fo® \/(Iii'slzl)ﬂi+2t01’1191+lgl+5121
(ASa)
and
£1(Q,) = _Sii(siiftizl*"(ii) -
((tlzl_slzl)Q%+2t01t1101+tgl+S121)>

(A-5B)

Since the denominator of (A.58) is positive for every
value of Q, in the interval [-1, 1], we conclude that the
sign of the f"(Q ) is constant and equal to the sign of the
numerator. In other words the function f(€2,) is either a
concave or a convex function of (; depending on the sign
of the term — s3,(s7, — 12 +12). Because of the concavity
or convexity of f(€2,), the function attains its maximum
either at the extremities of ), thatis Q;=+1 or fap
has a unique maximum inside the interval (—1,1). This
last case occurs if and only if the following inequalities
hold simultaneously:

f(=1=z0>f().

Let us now express these inequalities in terms of the
coefficients of the transform f(w,,w,). Considering the
cases |ty 1t and |t <lty), we easily obtain that
(A.6) holds if and only if

(A.6)

st > 15+ Iegl(max (It Loy}
+ emin {[t},],120,1}) + €lt 1 2q] (A7)
where
€ =sign (! oloit11)- (A8)

We are now in a position to compute the maximum.
If inequality (A.7) holds, then the maximum is achieved
for QF satisfying

flay=o. (A.9)
The solution of this equation gives
1 t2+ 52—t}
Q= —— | toty + sl 3—5—5 | (A.10)
2 2 ort11 1ifio .
St~ i th+sh—th

with corresponding maximum value

1
fmax tOO 2 42 (tl()toltll
ST

+ |511|\/ t120 + 5121 - tlzl)(tél + 5121 - t121) ) (A11)

If inequality (A 7 does not hold, the maximum is one

of the values f(—1),f(1). Equation (A.4) for Q,=+1

yields
f(l) =tot bttty + ol

f’\(*l)=too"t10+|tn"t01|~ (A.12)

By considering again the cases |t;;]> |to;| and [¢,] <ty

and using the identity x = [x|(1 +sign(x))— |x}, we obtain
Froax = too + Iyl 1oy + 1631 = (1= €) min {|z,,], 2, [}

(A.13)

Considering now the case |,y <|ro| and expressing

flo,w,) as
@y, ®;) = toy + Lo €08 (@;) +cos(w, —

4’(“’2))

‘\/(‘121 - sfl)cosz (@5) +21)5t,; c0s (@5) + 3+ sh
(A.14)
and following a similar approach as before we obtain that
when

sh> t“+|t01|(max{lt11| I’wl}
+emin {|¢,,],]1,0]}) + €lt 1l (A.15)
the maximum is achieved for

th+sh—th (A.16)

ST In ontstu—Iin

1
Q= 1.2 (t10511+|311|t01

with maximum value given again by (A.11).
When inequality (A.15) does not hold then the maxi-
mum value of the transform is given by

Fax = too + 110l + gy + 12| = (1— €) min Il 12361}
(A.17)
Combining inequalities (A.7) and (A.15) and equations
(A.13) and (A.17), we obtain (2.7).

Proof of the Lemma: Our goal is to prove that the
unconstrained minimization problem (3.11) is equivalent
to the constrained problem defined by the lemma. In
order to prove the lemma it is enough to show that if 7,
minimizes the objective function V;(t), then there exists a
vector ¢, satisfying the constraint (3.14) that also mini-
mizes the same function. Thus, if

Ve(t,) <Ve(t), Vi+0

define ¢, =A.t, with A,=2/Af(¢,). From the homo-
geneity of V(¢) we have

Vi(t)=Ve(t,) <Ve(t), Yir+0.
Since Af(¢) is a homogeneous function, of order one of
the vector ¢ (see Table I), we have

Af(t)=Af(Act,)=AAf(2,)=2
and thus we conclude that ¢, satisfies the constraint
(3.14). This means that in order to minimize Vy(t), it is
enough to look among vectors that satisfy Af(¢)=2. But

tALL SOAII
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for these vectors, minimizing V(t) is equivalent to mini-
mizing ¢7Qt.

If we call ¢* a vector solving the constrained minimiza-
tion of the lemma, notice from (2.6b) that it will satisfy
¢, =1. In order now to obtain an optimum scaled trans-
form we must also have ¢, = 0 or equivalently

fmax(tac(]’t*)+fmin(t3<07t*)=0' (AlS)
Substitution of (2.7) and (2.8) in (A.18) yields the equa-
tion that defines 1,

t&): _ fmax(O’t*);fmin(O’t*) ) (Al9)

This concludes the proof of the lemma.
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