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Design of N-Dimensional Hyperquadrantally Symmetric
FIR Filters Using the McClellan Transform

George V. Moustakides and Emmanuil Z. Psarakis

Abstract—A method for designing hyperquadrantally symmetric N-D
FIR filters is presented. Using the first order McClellan transform to
map the N-D frequency space onto the 1-D freq y line it is possibl
to design hyperquadrantally symmetric N-D filters very accurately. The
coefficients of the McClellan transform are selected by optimizing a
well defined optimization criterion. Although the proposed method is a
generalization to an existing method for the 2-D case, a very elegant and
easily computable solution to the optimization problem is presented for
the first time.

I. INTRODUCTION AND BACKGROUND MATERIAL

In many application areas the need of processing multidimensional
signals has been growing considerably over the last years. Two-
dimensional and multidimensional techniques have been developed to
meet this need. The design of multidimensional filters with prescribed
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frequency response characteristics is one such technique mainly used
to pre-process multidimensional signals.

A very important class of multidimensional filters is the FIR class.
Several methods exist in the literature for the design of this type of
filters. We will limit ourseives to design methods that are based on
transforms. That is, methods that use transforms to map 1-D filters
to multidimensional ones [1]-[12]. Among the most well known
transforms is the McClellan transform which has been primarily used
for the design of 2-D filters [11, [3], [5], (7]-[12].

In this paper, we present a design method for N-D hyperquad-
rantally symmetric FIR filters that is based on transforming 1-D
filters using the N-D first order symmetric McClellan transform. Our
method will follow the design idea of [11] and extend it to the
multidimensional case. This extension will be accompanied by a very
simple and elegant solution (not having a counterpart in [11]) of the
design optimization problem. The proposed method can be applied
with success to most important filter design problems.

Let us briefly define the N-D first order symmetric McClellan
transform. Let Ay = {0, 1}", denote the V times Cartesian product
of the set {0,1}. This set is composed of 2V different N-tuples of
the form [i1é2---in] where all ix can take the values O or 1. The
transform can now be defined as

Fn(wi,w2, -, wN) =

tiyig-iy cOS(f1wy) cos(faws) - - cos(inwn). (1)
[i1iz-iN]EAN

Any symmetric 1-D FIR filter can be written in the frequency domain
as H(cos(w)), where H(.) is a polynomial. The N-D to 1-D mapping
(and thus the generation of N-D filters from the 1-D prototype) can
be achieved by requiring

cos(w) = Fn(wi, w2, -, wN) )

where w is the 1-D frequency and [w; -+ wx] is a point in the N-D
frequency hypercube. To be possible to apply (2) the transform is
required to satisfy

-1 < Fn(wi,wg,--,wn) 1 Vwr,we, oo wn € [~m, 7.
(3)
In order to use the entire 1-D frequency band the transform must
actually attain the two bounds. Such a transform is known as
scaled. Relation (3) constitutes the main constraint on the transform

coefficients.

II. MAIN RESULTS

In the design methods via transforms the aim is to map the
N-D frequency space onto the 1-D frequency line. In order to have
a correct design, the N-D passband and stopband regions must
correspond through the transform to the 1-D passband and stopband,
respectively. In this paper we will be concerned only with N-D
design problems that can be mapped to a 1-D lowpass filter. In other
words the N-D space must be composed of a single passband and a
single stopband region. Notice that for a complete design we must
specify the transform coefficients and the 1-D filter. Regarding this
last problem (1-D filter) we will be concerned only in specifying the
passband and stopband cutoff frequencies wp, ws. It is then easy to
use any known method to find the coefficients of the 1-D filter.

Let us denote by Cp, Cs the (N — 1)-dimensional passband and
stopband cutoff manifolds that separate the regions of interest. We
would like to map these two manifolds, with the use of the transform,
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onto the corresponding 1-D passband and stopband cutoff frequencies
wp, we. This means A

Fn(wi,y -, wN)I[“’r““’N]GC,, = cos(wp),
Fn (w1, WNHw; - wyleo, = cos(ws). @

Clearly the above equalities cannot hold in general. We thus, fol-
lowing an approach similar to [11], require instead the values of the
transform to fluctuate, for each manifold, as little as possible around
a constant value. In order to make this statement more formal let
us define for a manifold C' the mean and variance of the transform
when [wi - -wn] € C

= 1
Fc=§—/FN(w1,~-~,wN)ds (5)
c Jc

Vo = gl— / (En(wr,- -y wn) — Fol? ds. ©)
c Jo

All integrals are surface integrals and ds denotes the surface differ-
ential while S¢ = [, o ds the surface “area.” Notice that using surface
integrals results in mean and variance values that are parametrization
invariant. Clearly the role of the constant will play the mean F and
the measure of fluctuation will be the variance V. Both quantities
are functions of the coefficients of the transform and next we will
make this dependence explicit.

Optimization Criterion and Optimal Solution: Expressing the
mean and the variance of (6) in terms of the coefficients yields the
following:

FC = to.,.o +tTac 7
Vo) = tTQct ™
where
t" = [tioo-0tor00 "+ t111...1] 8)
a& = [a100--0@010-0* * A111.1] ©)
Qiyoiy = ——1—/ cos(iwy) - - - cos(inwn) ds (10)
Sc Je
1
chs_/d(wl,---,ww)dT(w1,~--,wzv)ds an
c Jc
d (w1, wN) =
[d100-..0(w1,- -+, wn)dor0...0(w1,- -, wN) - -+
'd111-»-1(w1,“'7WN)] (12)
diyiy (Wi, ,wN) = cos(i1wr) - COS(INWN) — @ig.ovipy-

13)

Notice from (7) that the variance does not depend on the constant
coefficient #o...0 of the transform. Also, the matrix Q¢ depends
only on the selected manifold C' and not on the coefficients of the
transform and thus for given C it can be considered known.

Since we have two cutoff manifolds, one for the passband Cj, and
one for the stopband C,, we can define for each case a different mean
and variance. Our intention is, the final transform to have as small
as possible variances for both manifolds. Thus we can define as our
optimization criterion the following combination

V(t) =t Qt, with Q = 2,Qc, + a,Qoc, 14)

where ap, o, are nonnegative weights selected according to which
manifold we like to approximate better. After the above definitions
it is clear that the problem we like to solve is

mtintTQt 15)
subject to the constraints
max Fy(wy,---,wn)=1, min Fy(wi, -, wn)=—1.
w1, N W1 WN
(16)

With the next lemma we relate the constraints in (16) to the transform
coefficients.

Lemma: Any first order symmetric McClellan transform attains
its extrema at the corners of the positive hypercube. That is for
w; € {m,0}.

Proof: The lemma can be easily proved using the fact that the
transform is a linear function of cos(w;), we thus omit any further
details.

Using the lemma we limit ourselves in searching for the extrema
on the 2%V corners of the positive frequency hypercube. According to
the lemma each such corner is a possible candidate for an extremum.
Evaluating the transform at the kth corner yields

Fn(wik, s wnNk) = to...0 +tT sk, wik € {0,7} an

where s;, is a vector of length 2V — 1 with elements taking values
1 or —1. We will call these vectors corner vectors. Notice that there
exist 2V of them and that they depend only on the dimension N and
not on the transform coefficients. Thus they can be assumed known.
The constraints now in (16) can take the form

to...o + ml?x{sft} =1,t0..0+ Ingn{s{t} =-1. 18)
It is clear that if we knew before hand the corners where the extrema
occur then optimizing our criterion (the variance V'(¢)) would be easy
since it involves optimization of a quadratic function under linear
equality constraints. With the next theorem we show that by taking
all possible corner combinations, solving the corresponding quadratic
problems and finally selecting the one with the smallest variance is
the solution we are looking for.

Theorem: The solution to the constraint optimization problem
defined by (15) and (18) is given by:

Case of Singular Q): For this case

21[0

- (s? + 3?)Tﬂo
(87 ~ 89)Tuo

T (s — 82)Tug

t° 15,0 = 19)
where u is an eigenvector corresponding to the zero eigenvalue of
and s?, 82 are corner vectors maximizing the quantity |(s; — ;) Tuo|
over i, j.

Case of Nonsingular Q: For this case

27— s))

R R CET)

(824 8)TQT (s — 8
(37— 39)TQ (7 —37)

where 87, s7 are corner vectors that maximize the expression (s; —
$)TQ Y (si — s;) over i, j.

Proof: We will show only the second case. From the two
constraints in (18) we conclude that max; ;{|(s; — s;)7¢|} = 2.
Using the Schwarz inequality we have

°

(20

o
tg...() =

(s = 8)"tF <@ QD) (5~ 3)7Q (s —5))) @D
taking maximum over 7, j in both sides, yields
Q> : @

max(s: - 5,)' Q" (5~ 5,)

This lower bound is achieved by #° as one can verify by direct
substitution. Finally selecting ¢p...0 for the transform to assume a
value equal to 1 at corner s{ (and thus —1 at s7), yields the
corresponding expression for ¢5...o.

To complete the proof we need to show that at any other corner
the value of the obtained transform is smaller, in absolute value, than
unity. Let s, be any corner vector, then we will show that the value
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of the transform is smaller than 1 (similarly it can be shown that
it is larger than —1). Notice that the value of the transform at the
corresponding corner, using (20), can be written as —1+(sx —s;’»)Tt”.
It is thus enough to show that

(s — s;)Tt" < 2. 23)
This can be easily shown to be valid using Schwarz inequality and
the definition of the optimal corner vectors s?, 7.

Corollary: Consider the optimization problem defined in the The-
orem and let us also include a set of linear equality constraints
of the form BTt = 0, for some orthogonal matrix B. Then the
new optimization problem can be reduced to the one defined in the
Theorem.

Proof: Let P denote a matrix whose columns form a base
for the null space of B, then BTP = 0. It is known that any
t satisfying the new set of constraints can be put under the form
t = Px. Making this substitution in the problem we like to solve, we
obtain for the variance V(z) = zT PTQPz and for the constraints
to...o + maxi{z’ PTs:} = 1,t0...0 + ming {z” PTs;} = —1. Thus
the optimum z can be obtained from the Theorem if we replace Q
by PYQP and s by PTsy.

Comments: Using the Theorem or the Corollary we obtain the
optimum transform. In order for our design to be complete we also
need to specify the 1-D passband and stopband cutoff frequencies
wp, ws. Following [11], we define

cos(wp) = F'cp, cos(ws) = Fc, (24)
the two mean values of the transform on the two cutoff manifolds.

Using the definitions in (24) it is possible to force the actual cutoff
manifolds (the points from the N-D frequency space that satisfy (4))
to pass through predefined points. This can be achieved by requiring
the value of the transform at the prescribed points to be equal to the
corresponding F. It is easy to see that such a requirement generates
equality constraints of the same form as the ones introduced in the
Corollary. This will be used in the next section.

III. APPLICATION

We will apply our method for the design of a conic filter of angle
8 = 20° (passband cutoff manifold). The stopband cutoff manifold
will be parallel to the passband manifold at a horizontal distance of
0.27. We use ap = 1, o, = 0 meaning that we mainly concentrate in
approximating the passband. Fig. 1 depicts the result of our method
for the passband manifold. We can see that part of the stopband region
enters the passband. This happens because with the proposed design
method we are concerned only in approximating the manifolds in the
best possible way without paying any attention in the correspondence
of the regions. Fortunately for the class of filters under consideration,
whenever this problem occurs, it can be easily corrected. Notice
that the problem comes either from the fact that some passband
corner has transform value smaller than cos(w,) (thus entering the
stopband) or some corner in the stopband region has transform value
larger than cos(wp) (thus entering the passband). In the first case
we must require the transform value at the problematic corner to be
equal to cos(wp), while in the second case to be equal to cos(ws).
Both cases lead to equality constraints that are similar to the ones
introduced in the Corollary. We use this idea for our example. We
also require the origin to lie on the actual passband manifold. We thus
introduce two new equality constraints. Solving the corresponding
optimization problem yields the passband cutoff manifold of Fig. 2
with the problem corrected.

0+

Fig. 1. Passband cutoff manifold of a cone filter with § = 20° and no
additional constraints.

[N

-0.2-‘

-0.44

-0.64

-0.8+

Fig. 2. Passband cutoff manifold of a cone filter with § = 20° and equality
constraints on the origin and the corners.

IV. CONCLUSION

In this paper we extend an existing 2-D filter design method
to the N-D case. With the proposed method we can design N-D
hyperquadrantally symmetric FIR filters using the N-D first order
symmetric McClellan transform. The optimum transform coefficients
are obtained by solving a well defined constraint optimization prob-
lem. A closed form solution to the optimization problem is given (not
having a counterpart in the 2-D case) and it consists in searching
among a finite number of possibilities so as to obtain the optimum
transform.
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Numerical Computation of the Cross-Covariance
Sequences of Two-Dimensional Filters and Systeimns

Tong-Yi Guo and Chyi Hwang

Abstract—An effective numerical approach is presented for computing
the general two-dim plex integrals arising in the eval-
uation of cross-covariance of 2-D digital sy . It converts
the problem into the solution of a first-order differential equation with its
function evaluations being computations of 1-D complex integrals, which
can be efficiently accomplished by applying the complex version of the
Euclid algorithm. A accurate solution can be obtained if an ical
integration scheme capable of accuracy control is used. To demonstrate
the effectiveness of the presented approach, three numerical examples
are worked out.

1. INTRODUCTION

In the analysis and synthesis of causal 2-D linear discrete systems,
it is often required to compute the complex integrals of the form

(11-14]

1
Jmn = —f f Gz, z0)H(zTY, 257!
(271)2 Jioy1=1 Jjeg)=1 pa)in a0

m—1_n— dzid .
VA G it bz S Y )
Z122 .
= Zzg],khj—rn,k—n 2)
=0 k=0
where hjx and gj,j.k = 0,1,---, are the impulse response

sequences of the causal stable transfer functions G(z1,22) and
H(z,, z2), respectively. For general 2-D discrete systems, denom-
inator polynomials of G(z1,22) and H(z1,22) are not separable.
The lack of a factorization theorem for 2-D polynomials makes the
analytical computation of the complex integral J,., a very difficult
task. The closed-form solution for the integral J,.» is only available
[S] for simple and low-order systems. The method presented in
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[1] and [6] for parametrically evaluating the integral J,., is based
on regarding G(z1, 22) and H(z1,z2) as 1-D transfer functions in
22 (21, respectively) with coefficients being polynomials in z1 (z2,
respectively). This method inherently involves the solution of a set
of linear equations whose coefficients are polynomials in z1 (22,
respectively), which is tedious if the system orders are high. Recently,
Lu et al. [7] have proposed a different approach to reduce the problem
of computing 2-D complex integral Jo,, into that of computing 1-D
complex integral with respect to z1 (z2, respectively) by regarding
22 (21, respectively) as a parameter and then using the recursive A-
J-A algorithm [8] to compute the resultant 1-D complex integrals.
Although this approach avoids the solution of a parametric linear
system, the iterative operation of polynomials in the first stage of
performing A-J-A algorithm will result in high-order 1-D rational
transfer functions which may further cause numerical instability in
the last stage of parametrically evaluating the resultant 1-D complex
integrals.

Besides the above-mentioned parametric methods, numerical ap-
proaches are often used to compute the 2-D complex integral Jmn.
The most commonly used numerical approach is the direct evaluation
method [2], [3] which compute double sums in (2) with a finite
number of terms. Although this method works well for many cases,
the solution accuracy and the computational burden depends heavily
on the number of terms used. Recently, a numerical approach [4]
using 1-D rectangle-rule approximation and an algorithm [11] for
1-D complex integral has been presented to evaluate the 2-D complex
integral Jonn. Like the direct evaluation method [2], [3] it cannot
efficiently assure the solution accuracy.

The purpose of this brief is to present an effective numerical
approach to the evaluation of the 2-D complex integral Jmn. With
the same idea of Premaratne et al. [4], the problem of computing
a 2-D complex integral is converted into that of evaluating a 1-D
definite integral with its integrand being a 1-D parametric complex
integral. However, the evaluation of a definite integral in this paper
is accomplished through solving a first-order differential equation
with a numerical integration scheme capable of automatic step-size
adjustment to meet the specified accuracy requirement. Moreover,
the function evaluations, which are computations of 1-D complex
integrals, for the solution of differential equation are performed
with the complex version of the Euclid algorithm. It is noted
that the approach to accurate computation of a definite integral by
solving a differential equation was applied successfully to compute
1-D complex integrals whose integrand contains irrational transfer
functions [9].

II. NUMERICAL COMPUTATION OF GENERAL 2-D COMPLEX INTEGRALS

Let z3 = €*%2, the 2-D complex integral Jy,n in (1) can be written
as

L ) d
T = lf 51—f Gz, ™) H(zh e~ 02) 2y 220
T Jo Tt Jjz =1 “1
x e'"%2 49, 3)
1 [ ;
= 7/ T (82)e™ d6,. @
™ Jo

Hence, the 2-D complex integral J... can be regarded as a 1-D
definite integral whose integrand is the 1-D parametric complex
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