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An Lo-Based Method for the Design of 1-D
Zero Phase FIR Digital Filters

Emmanouil Z. Psarakis and George V. Moustakides

Abstract—Finite impulse response (FIR) filters obtained with optimization algorithms depends heavily on the value afs
the classicalL: method have performance that is very sensitive does the corresponding performance of the resulting filters.

to the form of the ideal response selected for the transition It is well known that all values of result in a nonlinear
region. It is known that design requirements do not constraint timizati bl t th >
in any way the ideal response inside this region. Most existing optimization problem except ihe cage= <.

techniques utilize this flexibility. By selecting various classes of ~The Lo, (or min-max) criterion is considered as the most
functions to describe the undefined part of the ideal response desirable criterion to use in the FIR filter design problem
they develop methods that improve the performance of thel.  hecause it exhibits equiripple behavior in the frequency bands

based filters. In this paper we propose a means for selecting ot jnarest. Its basic drawback is the need of sophisticated
the unknown part of the ideal response optimally. Specifically by ’

using a well-known property of the Fourier approximation theory  OPtimization tools as the Remez exchange algorithm [23], [25],
we introduce a suitable quality measure. The proposed measure [27], [29], iterative linear programming [14], [27] or iterated
is a functional of the ideal response and depends on its actual weighted least squares [1], [3], [7], [17], [30], that require a
form inside the transition region. Using variational techniques large computational effort. Other values of the powebut

we succeed in minimizing the introduced criterion with respect . . . .
to the ideal response and thus obtain its corresponding optimum different from 2) are also considered in [22] but not as widely

form. The complete solution to the problem can be obtained by @S the L. case.

solving a simple system of linear equations suggesting a reduced The L, (or mean square) criterion is the most tractable and
complexity for the proposed method. An extensive number of the simplest criterion from a mathematical and computational
design examples show the definite superiority of our method over point of view. It results in the well-known Fourier approxi-

most existing non min-max design techniques, while the method . . . .
compares very favorably with min-max optimum methods. Fi- matlon that can be easily qbtamed analytically. Unfor_tunately
nally we prove that the approximation error function of our filter ~ this method is known for its poor performance that is more
has the right number of alternating extrema, required by the pronounced at the discontinuity points of the ideal response
Lo criterion, in the passband and stopband. This results in a (Gibb’s phenomenon) [22], [24], [26].
significant convergence speed up, if our optimum solution is used -~ The yge of windowing techniques is a classical method for
as an initialization scheme, of the Remez exchange algorithm. . . . -
o _ o reducing the undesirable ripples due to the Gibb’s phenome-
Index Terms—1-D digital filters, Fourier approximation, zero  non. Standard windows found in the literature are the Adams,
phase FIR filters. Blackman, Bartlett, Dolph—Chebyshev, Hamming, Hanning
and Kaiser [2], [14], [22], [24], [26]. Although this method is
|. INTRODUCTION very simple the resulting filters do not satisfy any optimality
HE DESIGN of one-dimensional (1-D) digital filters,cr'te”on and their performance is significantly lower than the

. . T, Lo optimum filters.
although is an old problem with much existing Ilterature,_ The performance of thé, method can be improved if

it has been of a growing interest over the last decade. This is '~ . .
gramsmon regions are introduced between passbands and stop-

because digital filters are widely used for a variety of sign A ds. There are two categories of design techniques based
processing applications such as speech and image proces 8’his idea. The first includes methods that define the ideal

communications, seismology, radar, sonar and medical sigRQIt T " . . .
processing response inside the transition region using some arbitrary class

A very important class of 1-D filters is the class of finitepf functions such as splines or trigonometric polynomials [24]

impulse response (FIR) filters. This class is tractable becaﬁ’&éj use It tﬁ compute thed!:ourler ipzroxmat.lgn. Ir;}the sec.o-nd
of certain desirable characteristics, as stability, linear phag%t(_egory, the corresponding methods consider the transition

and simplicity of design. The most common techniques usEggion as a “don’t care” region and simply remove it from the
for the determination of FIR filters use as approximatio_ﬁrror measure [21], [24], [30]. All the above methods succeed

criterion the minimization of thé,, measure, where the power" feducing the Gibb’s phenomenon, but their performance is

p satisfiesl < p < co. The complexity of the correspondingSti” inferior as cpmpared td oo fi_Iters. Also, the .s.electior.l of
the form of the ideal response inside the transition region, as
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presented in [20]. In this approach certain parameters of t8pecifically let us define the following set af orthonormal

design process are optimally selected by minimizing the mafmctions

imum deviation. The minimization process is computationally 1 5

heavy, thus empirical formulas for the optimum values of thesgy(w) = —, ¢n(w) = \/icos(nw), n

parameters are given, but only for the low-pass filter case and VT 1

for a limited range of attenuation values. The performance (1)

of the resulting filters using the empirical formulas is verynd the vector function

good. Unfortunately generalization of the formulas to more .

complicated filters (as bandpass or multiband) seems very (w) = [po(w) - Ppn—1(W)]". 2

d'ﬁ'CU|t.‘ Let us also denote the usual inner product of two real functions
In this paper we present a method that belongs toithe (), g(w) as

optimum design techniques. The important difference, as corfn— 9

pared to existing methods, is the fact that the unknown part of _ / N d 3

the ideal response is obtained by minimizing an optimization (.9 0 J(w)glw) de. ®)

cr|ter|_o_n that is dlre_ctly related to the approximation proble_n?%y selecting a vector ofV coefficientsh = [ho - - hy_1]"

Specifically, by using a well-known property of the Fourier . . . .

I ) . o . ~we can form the trigonometric polynomidf (w) = ¢ (w)h
approximation theory we define a suitahlg criterion. This d . . Th defi h
measure, being a function of the ideal response, is minimizeg.. - o It to approximatd)(w). Thus we can define the

' ' mean square error (MSE) betweél{w) and H(w) as (D —

to define optimally the ideal response inside the transitiq? _ H). The optimum coefficients (also known as Fourier
region. Necessary continuity constraints guarantee the unic'g’efﬁcienté) that rr;inimize the MSE are aiven b
of the solution. The complexity of the resulting method is sma?l 9 y

since it can be reduced to the solution of a symmetric Toeplitz hp = (¢, D) 4)
system of linear equations. A large number of examples show _ i o
the definite superiority of the proposed method as compardgd the corresponding optimum approximation (also known as
to most well known non min-max design techniques. Fourier approximation) i p(w) = ¢ (w)hp. The resulting

A very important feature of the proposed method is tH&INIMUM mean square error (MMSE) can be considered as a
fact that the resulting filters have error functions with thguality measure for our optimum approximation. Namely we

required, by thel... criterion, number of alternating extremacan define the following criterion:
inside Fhe passband and stopband. Thi; statement is proved &(D)= (D - Hp,D — Hp) (5)
theoretically. Thus our Fourier approximation, if used as
an initialization scheme in the Ré&n exchange algorithm, which is a functional ofD(w).
improves its convergence speed considerably. A very remarkable property satisfied by the Fourier approx-
The paper is organized as follows, Section | contains tfi@ation can now be used to generalize the measure defined
Introduction. In Section Il we present the basic backgroun@d (5). This property is stated without proof (a proof can be
for the Fourier approximation and introduce our performandeund in [6, p. 172]) in the following lemma.
criterion. Section Il contains the complete optimization prob- Lemma 1: Let the functionD(w) be mean square optimally
lem along with the necessary constraints and also its genetaproximated byHp(w). Let also D(w) have a piecewise
solution in the form of a linear system of equations. I§ontinuouskth order derivative. Then thigth order deriva-
Section IV by exploiting the special Toeplitz plus Hankelive D®)(w) is mean square optimally approximated by the
form of the linear system we present a special symmetigorresponding:th-order derivativeHDk (w).
Levinson algorithm for its efficient solution. In Section V' Lemma 1 suggests that, under the indicated continuity prop-
we apply the proposed method to several 1-D filter desigmty, we can identify the Fourier coefficients not only through
problems and we make comparisons with existing techniquéise approximation ofD(w) but also by approximating the
In Section VI we investigate the problem of the initializatiorderivative D*)(w). Using this idea we can easily generalize
of the Remez exchange algorithm. We prove that our filtéihe quality measure for the Fourier approximatiip (w) as
has the necessary number of alternating extrema inside fbkows:
passband and stopband, required by fhg criterion and ! k ! k
we use it as an alternative initialization procedure for the &(D) = <D(k) _HI(D)’D(k) B Hf(3)>' (6)
Remez exchange algorithm. Comparisons are made with #igce derivatives amplify high frequencie& (D) can be
existing initialization technique. Finally Section VII has thgegarded as a measure that intends to amplify the difference
conclusion. between the two functions involved. The fact that the measure
Ex(D) depends oD(w) is very desirable. ID(w) is not some
II. PROPERTIES OF THEFOURIER EXPANSION specific function, but a member from a class of functions,
then we can further optimize the measure and identify an
optimum functionD(w). Notice that the filter design problem
has exactly this characteristic. This is so because, as we said,

1The results presented in Sections II-IV for the symmetric case can U@e'ldeal response Is not epr|C|t!y given 'nS|def the transmqn
easily extended to the antisymmetric case as well. region and thus can be the subject of an optimum selection

Let us consider a symmettiéunction D(w) that we like to
approximate using a trigonometric polynomial of ordér 1.
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method. Also notice that requiring in Lemma 1 the derivativealidity of Lemma 1. This in turn allows for the use (D)
D®(w) to be a well behaved function seems necessary foma a proper performance measure.

meaningful definition of the criteriod;, (D). If for example By taking into account the definition of the intervéls, 7,
D) (w) contains Dirac functions then, when attempting tae can now writeC2 more formally with the help of the
compute (6), we will be confronted with integrals of product®llowing conditions:

of Dirac functions that cannot be properly handled. (m) (m)

In the next section we are going to present the optimization D" (wi—1) = F"™(w2i—1—), m=0,--,k-1,
problem focused on the approximation of symmetric functions =1, N (8)
_by trigonometric polynoml_als. Thg complete solution ylel_d- D™ (wy) = F" N wyi4), m=0,--,k—1
ing the optimum symmetric function and the corresponding .

. L . ! . t=1,-, Ny 9)
Fourier approximation will be presented in detail.

where F(™) (q—), F(™) (a+) denote themth order left and
[ll. OPTIMIZATION CRITERION right derivatives of the functiod'(w) evaluated at the point
AND OPTIMUM APPROXIMATION «. Assumption.4 combined with constrain€1 and (8), (9)
— o~ pe are sufficient, as we are going to see, to uniquely identify the
be a OPtimum symmetric function.

Concluding, for a given functiod'(w) defined oveif and
satisfying.A, we like to minimize&; (D) over all symmetric
D(w) = {F(w) w € [wyiio1y w2i-1], i=1, Ny 7) functions D(w) given by (7) and satisfying1, (8) and (9). It

G(w) w € (w21 w), i=1-, N is clear that the symmetric functiai(w) needs to be defined

Letd =wop<wi <war <wz <+ <wpr—o <Wpr—1
any M distinct points on the intervdD 7] and letD(w)
symmetric function defined on this interval as follows:

only inside the regior/” since in the regiori/ it is alread
where N, = [M/2],N, = |M/2] and F(w) is assumed knoywn. g g Y

known while G(w) is unknown. Let us denote wit1;, 7; the
intervals [wy(;—1) w2i—1] and (w2;_1 wo;), respectively, and
U = U U, T = Uy, T;. Notice that the regiod/ is the ) _ _ _
union of the N, closed disjoint interval$f; where D(w) is ~ LetDo(w) denote the optimum symmetric function solving
assumed known, while the regidf is the union of then, the constrained minimization problem defined in the previous
open disjoint intervalg; where D(w) is assumed unknown. subsec_tion._ Let alsd{,(w) denote the corresponding Fogrier
Since the part of the symmetric functidi(w) inside the approximation ofD,(w). We can now prove the following

region 7 is not explicitly given this means that, by varyingtheorem forD(w), H,(w)

G(w), we can have a whole class of possible functidhe,). ~ Theorem 1:If we like to minimize £.(D) over D(w)
under the constraint€1, (8) and (9) then the following

differential equation is a necessary and sufficient condition

] ) o that must be satisfied by the optimum symmetric function and
It is clear that our intention is to use the meas@¢D) g corresponding Fourier approximation

defined in (6) and apply it toD(w) of (7). For this to

B. The Optimum Symmetric Functidd, (w)

A. Constrained Optimization Criterion

be possible we need to make certain assumptions on th}f}’“)(w) - H(SQ’“)(w) =0, forweT;, i=1,-,Np.
given function F'(w) and impose certain constraints on the (10)
symmetric functionD(w) for the validity of Lemma 1. The

basic requirement of Lemma 1 is the piecewise continuity of  Proof: The proof is given in Appendix A. ™

the kth derivative D*)(w). To ensure this property we make The differential equation defined by Theorem 1, as we can
the following assumption4 for F'(w): see, is valid inside every open interdl Since these intervals

A The function F'(w) describes the behavior of the sym-are disjoint we have a different solution for ea&h Solving
metric functionD(w) inside the regiori{. We assume the differential equation we obtain the following relation for
that this function is continuous and has continuouB,(w), H,(w):
derivatives of order up t& — 1 and a piecewise con- )
tinuous derivative of ordek inside each closed interval Do(w) =Ho(w) + Qi(w), forw €7, i=1 Ny
U;. (11)

We also impose the following constraints :
¢l Th P tric f tyv:Dg q Ith Sg)(w) . where@;(w) is a polynomial of degregk—1, being in general
- The symmetric functiorD(w) (and thusG(w)) is cOn-  gigerant for each intervall;. We realize from (11) that the

tinuous and has continuous derivatives of any order aBBtimum form of the symmetric function inside the regidn

9 fl?r: anyw |nst|c_zle fthe ?_pig mte_rva@,}:_ =L ]gt'h is a combination of a regular and a trigonometric polynomial.
’ et_symmednc_ utr_lc 10 f(w)d's conh;nU(l)ust alT ;S To this end, leth, denote the Fourier coefficients corre-
con ![nuou/s _e{wa 'V?\; ot order up ko— 1 at all en sponding to the optimum symmetric functiaB,(w), then
poinswy, e =4y, ML _ _ H,(w) = ¢'(w)h,. Define now the following vector function
It is easy to see that constraingd,C2 combined with ¢ length 2k
assumption.A ensure the piecewise continuity of thgh
derivative of the symmetric functionD(w) and thus the Ppw =1 w ¥ ... W* (12)
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and for each polynomiaf);(w) the corresponding vector of Since the matrices\ (w), L(w) and the end points of the

coefficients

g =G0 G G2 Gi2n—1]" (13)

intervals7; are known we can see that (20), (21) constitute
the remaining2k N, equations needed to solve our problem.
Concluding we obtain the complete solution to the constrained

we then haveQ;(w) = '(w)g,. Following our derivation optimization problem by solving the set of linear equations
up to this point, we conclude that the number of unknowrft€fined by (17), (20), and (21).

has increased froniV to N + 2kN, (N for the Fourier

One point that needs to be stressed is the fact that the

coefficients and2k for the coefficients of each polynomial@Ptimum solution depends on the integewe select to use.

Q);(w)). Specifically the vectork,, ¢;,i = 1,---, N, form the

In Section V we are going to propose a method for solving

complete set of unknowns needed to be specified to solve fHi parameter selection problem. Before we concentrate our-

optimization problem.
Since h, are the Fourier coefficients corresponding
D,(w) they must satisfy (4), this means

h, = <¢7 D0> = <¢7 11/1D0> + <¢7 1TD0>

wherely(w) denotes the index function of the s&t Using
(7), (11), and the parametrization of the polynomi@lgw),
we have that (14) can be written

(14)

Ny Ny
ho = (. 1uF) + <Z<¢, 1mf>> ho+ 3 _($ 17.9)a;.
=1 =1 (15)
Let us now call
N,
hy =($, 1uF), A=) ($,17.4"),
=1
B; = (¢, 17.9") (16)

selves on the computation of the optimum solution, let us
tgonsider the special case which arises foe= 0 and study
its correspondence to existing results.

C. Optimum Solution fok = 0

For this case there are no continuity constraints and the
relation corresponding to the differential equation defined in
(10) takes the form

Dy(w)— Hy(w)=0 forweT;, i=1,---,N. (24)

From (24) we conclude that, inside the regibnthe optimum
symmetric functionD,(w) coincides with its Fourier approxi-
mation. This means that, when we form the MSE, the re@ion
has no contribution to the corresponding integral. Equivalently,
the regionZ becomes a “don’t care” region. If we apply this
idea to the filter design problem then the resulting method (for
k = 0) coincides with the method proposed in [24, p. 70] and
presented in detail in [4] and [5].

thenhy, A, B; are quantities that depend only on known func-

tions integrated over known sets. Thus they can be considered

given. Notice thaty, is a vector of lengthV, A is a matrix of
dimensiongV x N and B; are matrices of dimensions x 2k.
Equation (15) can now be written as

N,

(= Ah, - Z Big; = hy

=1

17

IV. COMPUTATION OF THE OPTIMAL
SOLUTION, COMPLEXITY ISSUES

Let us now concentrate on the solution of the linear system
defined by (17), (20), and (25). Solving (17) fbs we obtain

which constitutes the first set a¥ equations involving the Substituting (25) into (20) and (21) we have

unknowns of our problem.

The remaining2k N, linear equations can be obtained by
requiring the optimum solution to satisfy relations (8) and (9).
Let us first define the following two matrix functions using

the vector functiongp(w), 9(w), and their derivatives:

M(w) =[p(w)pV (@) ---g* V(W)
L(w) = [ (w) -V w))

(18)
(19)

where M (w) has dimension x N and L{w) has dimensions

ho = (I—A)" hy +i(I—A)—1Biqi. (25)
=1
Ny
M(wai-1) Z(I — A)7'Bjg; + L(wai1)g;
Jj=1
= w21 — M(waim1)( — A)"thy (26)
Ny
M(wy) Y (I — A7 Bjg; + L{wa)g;
=1
= TJIQZ‘ bt M((UQZ)(I bt A)_lhz/t. (27)

kx2k. Conditions (8) and (9) can now be, respectively, writteNotice that (26) and (27) constitute a linear system2biV,

M(wai—1)ho + L{wgi—1)g; =21,
M (w2i)ho + L(wo;)g; =v2,

i=1,--,N; (20)
i:]-v"'th (21)
where the vectors,;_1,vs; are defined as follows:

vai1 = [F(wai—1 =) FD (wai_1 =) -+ FE YW -]
(22)

vy = [Fwai+) P (wait) -+ - FE D (wy )] (23)

equations witt2k N; unknowns (the vectorg,,i = 1,---, N;).

In order to specify the above system the main computational
cost is devoted in obtaining the matrices— A)~1B;,j =
1,---, N, and the vectoft! — A)~'hy. This is so becausd is

a matrix of sizeV x N and, as we will see in the examples, we
have N > 2kN,. It is clear that all desired quantities can be
computed by solving a number of linear systems of the form

(- Az—y (28)
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where the matrixC = I — A is common to all systems. where the(V — 1) x (N — 1) matrix J denotes the exchange
We are now going to investigate the special structure of tingatrix with unities on the antidiagonal, and zeros elsewhere. It

matrix C' and see how we can use it to efficiently solve & easy to verify that the coefficient matrix in (35) is Toeplitz

system of the form of (28). From the definition d@f in (16) and symmetric. Although we have increased the size of the

we have that the elements 6f satisfy problem by a factor of two, as we can see, the desired solution
N is symmetric. Thus instead of applying the normal Levinson

_ - 9 . algorithm [13] to obtain the solution, we can use a symmetric
1 z_; /Tid)"(w) v, forn =m version that is more efficient. Another possibility is to apply

CTL m

2

= N the symmetric Split Levinson algorithm [9] that uses only
_Z / (W) (w) dw, for n £ m. symmetric quantities which is more proper for our problem
i=1 YT and has lower complexity. Both algorithms are presented in
(29) Table I. It is well known [9], [13] that the Levinson and
After computing the integrals in (29§; can take the following the split Levinson algorithms have complexity of the order

form: of O(N?) as compared to th&(N?) required by a general
co V2¢t solution algorithm. There also exist other methods based on
C= L@c T+ H} (30) ' FFT that can reduce the complexity@g V log(N)) [12], [15]

but these methods are more complicated and more susceptible
whereT is a (N — 1) x (N — 1) Toeplitz symmetric matrix, to numerical errors. We must stress one more time that since
His a(N —1) x (N — 1) Hankel matrix anc: is a vector of the systems we like to solve have all the same mattithis
length (V — 1) defined as follows: means that the prediction part of both algorithms in Table |
(which is the most computationally expensive) needs to be

@ a trroov=2 computed only once for all problems of the form of (28).
r= 6:1 ' (31) V. DESIGN OF ZERO PHASE FIR DIGITAL FILTERS
cnly o e z; Ir! this section we are going to adapt our resylts to the
. s e en d¢5|gn of the odd lengthzero phase EIR_d|g|taI f||t_ers. To
s ci e onpt this end let us assume that the reg|21n|s_ the union (_)f
H = ) (32) the passbands and stopbands of the desired filter while the
: : : region 7 coincides with the union of the transition bands.
LN CN41 ttt C(N-1) Then, the functionF'(w) constitutes the ideal response of the
c=[c ¢ - enoal (33) desired filter inside the passbands and stopbands while the
function G(w) describes the behavior of the ideal response
where inside the transition regions of the filter and is not explicitly
N, given. Under these assumptions it is easy to see that the filter
1— Z(w% —wyi_1) n=0 design problem can be considered as a special case of the
o1 general approximation problem defined in Section IlI.
n =9 10 (34)  We have seen that the performance meagh() intro-
n Z(Sln(”w%—l) duced in the previous sections is tractable because it yields
=1

optimum ideal responses and corresponding Fourier approxi-
mations that are easily computable. Since in this section our
By properly applying Schur’s matrix inversion formula [16]ntention is to make comparigons, it seems unfair to use our
p. 658] we can reduce the linear system in (28) to one pgrformance measure for this purpose. The_ reason is that
size N — 1 involving the partl’ + H which is Toeplitz plus the proposed measure clearly favors our design method. The
Hankel. Using methods as in [19], the Toeplitz plus Hank&prrect thing to do is to select a measure that is consistent with
structure can be reduced into a block Toeplitz structure atte idea of optimality existing in practice. .
using a block Levinson algorithm we can efficiently obtain It is well known that min—-max filters are considered as the
the solution. In our case a simpler reduction, leading to naost desirable filters. Since they result from the minimization
more efficient solution, is possible. Specifically our syste®f the L, criterion it is reasonable to ask how any other filter
can be reduced to a pure symmetric Toeplitz system wi@@mpares with this criterion. Practically this means the need
the additional characteristic that the desired solution is altidentify the maximum approximation error ripple inside the
symmetric. Let us partition the lengtN vectorszy,y, as Passband and stopband. Thus when comparing any number
follows: zx = [zoxn_1],4n = [Yoyn_,] then, the system of filters, the filter with the smallest maximum ripple can
Czy = yy is equivalent to the following symmetric system:be characterized as the best. A consequence of this idea is
of course the fact that no filter is better than the min—max

— sin(nwsy;)) n=1,---,2(N -1).

J-'L'N—l JyN—l .. .
T Je JH NG 7 equiripple filter.
t t _
cJ ¢ ¢ xja\io LT yyro (35) 2The correspondence between the Fourier coefficients defined in (4) and
JH ¢ T '~ N-1 the filter coefficientsa;,i = 0,41,---, (N — 1) is ag = ho//7 and

V2 V2 a; =a_; = hi/(V27),i=1,-- (N —1).
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TABLE |
THE SYMMETRIC LEVINSON AND SPLIT LEVINSON ALGORITHMS FOR THE SOLUTION OF SYMMETRIC TOEPLITZ LINEAR SYSTEMS

We like to solve the systems of equations:

Rom_1Tom—1 = Ygpp—1, m=1,..., N, where

Rym—1 is a symmetric Toeplitz matrix with first column [rg -« ro;,_3]t
Tom—1 1s the symmetric vector [Zp,_1 -+~ g -+ zm_l]‘

Yam_1 1S the symmetric vector [gm—1 - Yo -+ Ym-1]*

Symmetric Levinson Algorithm

Prediction Part: From order 2m — 3 we have available

the predictor a@9,,—3 and the power ag,, 3

For n = 2m — 2, 2m — 1 apply the formulas

L — Tp—1 "' T1]@n-1
" Qp—1
2
@ = opy(1—k2)

1l

an

Ap_ _ kn 0
0 Jn—lan—l

Filtering Part: From order 2m — 3 we have available the solution z4,,_3

€m-1 = Ym-1—[r1 " T2m-3]Tam-3
0
€2m—1
Tom—y = Tym-3 | + (#_J <a2m—1 + sz—ltlzm—l)

0

Initial Conditions: a1 =1, aq = g, 1 = Yo/To

Symmetric Split Levinson Algorithm

Prediction Part: From order 2m — 3 we have available

the predictors @z, 3, @om—q and the powers agm—3, @2m—q, Som—3

For n = 2m — 2, 2m — 1 apply the formulas

B = [Tl co Tpoi@na
k _ On
T Qp-2
0 0
a, = [ G-t ] + |: jl - kn Apn_2
0 Qn—1

On = Opoy+ Py~ knﬂn—l
Filtering Part: From order 2m — 3 we have available the solution x93

€m—-1 ~ Ym-1— [Tl T T2m—3]w2m—3
0
€2m—1
Tom-1 = Tom-3 | + (QZm_l)QZm—1
0

Initial Conditions: a; = 1, as = [1 1]}, 0y = rg, s = ro + 71, B2 = 71, &1 = Yo/ 7o

Based on what we said above we can now propose a metmsplines or trigonometric polynomials used by othemhased
for selecting the parametérof our method. We can apply theexisting methods.
method for values ok ranging from 0 up to some prescribed Let us now apply our method to two different filter design
value k,,.. and select the solution that yields the smallegiroblems and compare it to other existing techniques. Specifi-
maximum ripple. The whole process seems to require a largaly we are going to compare our method against the min-max
number of operations. Fortunately in practice we only need éguiripple [23], the eigenvalue [30], the don’t care region [4],
consider a limited number df values. More precisely when[24, p. 70] and the first order spline [4], [24, p. 69] filters.
we are interested in filters with length larger than(30> 25)
it seems that = 1 has always the best performance. This wa&. Design of Low-Pass Filters
observed in all design examples We_considered, noting thaﬁ_et Dip(w) be the ideal response of a low-pass filter
casek = 0 never occurred as the optimum. defined as follows:

An additional property that must be pointed out is the form
of the optimum ideal response inside the transition region L, w € [0 wp]
Notice that it is a combination of a regular and a trigonometric Drp(w) =10, w € [w; ] (36)
polynomial (the frequency response of the filter) as compared Gw), we (wpws)
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TABLE I T T T
MAXxiIMuUM APPROXIMATION ERROR RESULTED FROM THE DESIGN OF A Low
Pass FILTER BY DIFFERENT METHODS AND FOR DIFFERENT VALUES OF NV

N H k‘ Proposed ‘ Eigen ‘ Splines lDon’t Care | Min-max 0.8

11 || 2 | 7.08x1072 | 1.23x 107! | 9.46x107% | 1.22x107! | 5.56%x107?

o
o

20 || 1| 1.68x107% | 3.02x107% | 4.86x1072 | 3.04x1072 | 1.05x107?

310 1| 2.77x107% | 5.54x107% | 3.22x1072 | 5.53x107% | 1.53x107°

o
'S

41 |1 | 5.61x10™* | 1.31x1073 | 2.50x 1072 | 1.31x107% | 3.29x 1074

Optimum Ideal Response
o
w

o
w

511 ]897x1075 | 2.41x107% | 1.96x1072 | 2.40x10™* | 5.35%x107°

o
[

6111 ]1.94%x107° | 5.62x107° | 1.67x 1072 | 5.63x107° | 1.19x107®°

e
=

7101 ] 3.22%107% | 1.04x107% | 1.41x107? | 1.04x107° | 1.94x107¢

-7 P —6 -2 © —6 -7 1 1 L
81| 117.07x10 2.39x10 1.26x10 2.75%x10 4.23%x10 095 o3 0as oz o4s

Normalized Frequency

91 || 1| 1.23%x1077 | 4.51%x1077 | 1.10x1072 | 4.46x10™7 | 7.74x107®

s . 72 . e Fig. 1. Optimum ideal response for the design of a low-pass filter Wits
101 [ 1| 2.66x107% 1 1.01x1077 | 1.01x107* | 1.03x10~7 | 1.69x10 21, w, = 0.3, andw, = 0.4.

wherew,,w, are the desired cutoff frequencies of the filter.
For this case we hav&/, = 2, NV, = 1. Notice also that the 0.04 _
function F'(w) of (7), is defined through the first two branches
of the ideal respons@®rp(w).

Constraints (8) and (9) take the following form:

Diplwy) =1,DYP(w,) =0, m=1,--.k=1 (37)
D{™(w,) =0, m=0,--+,k—1. (38)

Consider the special casg, = 0.3 andw, = 0.4 wherew
is normalized in [0 1]. In Table Il we present the maximum .,
ripple for all methods under comparison, for different values
of N. Notice that the second column contains the value for the
parameterk of our method that yields the smallest maximum 40 i
ripple. We can conclude from Table Il that our method has
at least 50% smaller maximum ripple as compared to any ¢ o1 o0z 03 04 05 06 07 08 08 1
other non min—max method. At the same time its performance Normatized Frequency
is close to the optimum equiripple method (last columnkig. 2. Approximation errors for the design of a low pass filter with=
We obtained similar results in all other design examples wé < = 0.3, andw, = 0.4. Proposed method (solid), min-max (half-tone),

. eigenfilter (dash), don’t care region (dash—dot), and first-order spline (dot).
considered with different values of the cutoff frequencies
wp,ws. We must also note that our results were very close
to the results obtained by using the modified window metha¥l: = 2. As in the previous example the functidf(w) of (7)
of [20] (whenever it was possible to apply this method). is defined through the first two branches of the ideal response

In Fig. 1 we plot the form of the optimum ideal responsé spr(w). Constraints (8) and (9) take the form

inside the transition region for the cade= 21. From Table I

T

Approximation Error

we have for this case that the optimutmequals unity. This Dpp(wp,) =1

means that we have continuity only B,(w). In Fig. 2 we D,(S"}))( ) =0, m=1,---, k=1, 1=1,2 (40)

plot the apprqximation errors for our method (S(_)Iid), min-max grlz))( =0, m=0,- k-1, i=1,2 (41)

(half-tone), eigenvalue (dash), don't care region (dash-dot),

and first-order spline (dot). Let us consider the special casg = 0.2,w,, = 0.25,w,, =
0.65, w,, = 0.7. Table Ill has, as in the case of the low

B. Design of Bandpass Filters pass filter, the performance of all methods under comparison

The ideal respons®p p(w) of such a filter, is given by for different values ofN. Again for this type of design our
method has at least 50% smaller maximum error than any

other non min—max method. As before this result is valid for
(39) other combinations of cutoff frequencies as well.
Fig. 3 depicts the optimum ideal response, for the two
wherew,, ,wp,, ws,,ws, are the desired cutoff frequencies ofntervals of the transition region and fé¥ = 21. From the
the filter. For this case we can easily see thgt = 3 and corresponding table we can see that the optimum value of

1, w € [wp, wp,]
Dpp(w)=1< 0, w € [0ws, |V [ws, 7]
G(w)7 w € (w51 wpl) U (wpz wSz)
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TABLE 111 0.15 T : ' T : : T
MaAxIMUM APPROXIMATION ERROR RESULTED FROM THE DESIGN OF A
BANDPASS FILTER BY DIFFERENT METHODS AND FORDIFFERENT VALUES OF N

0.1

N ” k 1 Proposed Eigen ’ Splines ’ Don’t Care | Min-max

1114 [ 2.88x107 | 4.28x107! | 2.91x107! | 2.99x1071 | 2.09x10™!

21|12 | 7.04x1072 | 1.37x 107" | 944x1072 | 1.20x107% | 5.56x1072

31 (| 1]3.25%107% | 6.87x107% | 5.36x1072 | 5.89x107% | 2.36x1072

41| 1] 1.62x107% | 3.66x107% | 4.85%x 1072 | 2.96x107% | 1.04x1072

Approximation Error

5001 7.98x1073 | 1.99% 1072 | 1.63x 1072 | 1.46x107% | 4.69x107°

61 1 | 2.72x1073 | 6.25x107% | 3.22x 1072 | 543x1073 | 1.54x1073 o

71T [ 1.19%107* | 3.02x107% | 2.60x 1072 | 2.59x 1072 | 7.02x107*

4
[}
§
i
\
I
I

i L

. .
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
Normalized Frequency

811 |544x107* | 1.57x107* | 2.50x107% | 1.29x10~* | 3.27x107* 0187 !

91 [| 1 ]2.48x107* | 8.59x107* | 2.43x1072 | 6.34x107* | 1.52x107*

Fig. 4. Approximation errors for the design of a bandpass filter With=

21, ws1 = 0.2,wp1 = 0.25,wp2 = 0.65, w2 = 0.7. Proposed method
(solid), min—-max (half-tone), eigenfilter (dash), don’t care region (dash—dot),
and first-order spline (dot).

101 |[ 1 |8.78x107% [ 2.70x107* | 1.96x107? | 2.35%10™* | 5.35x10~°

-

observed that when the symmetric Levinson is used and when
(2N — DA < 24 (with frequencies normalized in [0 1]), the
resulting solution is safely without numerical problems. On
the other hand this upper bound is for most design problems
pessimistic but, in any case, it is twice as large as the
corresponding bound in [4]. In practice this limitation is not a
serious problem because the filters we can design can achieve
very high attenuation which is satisfactory in most cases.

Optimum Ideal Response

e © © © o o o

w B 14 D ~ @ ©
:

©
)

VI. A NEW INITIALIZATION SCHEME FOR
THE REMEZ EXCHANGE ALGORITHM

o4
~

The Rengz exchange algorithm is the most well-known

(=]

02 o022 o024 025 064 o066 068 o7 method in the approximation theory for the minimization of the
Normalized Frequency L criterion. The Parks—McClellan algorithm [23] constitutes

Fig. 3. Optimum ideal response for the design of a bandpass filterWith ~an implementation of this iterative scheme dedicated to the
21, we1 = 0.2,wp1 = 0.25,wp2 = 0.65,ws2 = 0.7, design of min—-max optimum FIR equiripple filters. Although

this iterative scheme is very efficient in designing filters, it

is 2 meaning thatD,(w) is continuous and has continuoudS known to require an increased number of iterations to

derivatives. Finally, in Fig. 4 we plot the approximation errof®nverge. This need is more pronounced for large filters.
curves of the methods under comparison fr= 21. For most iterative algorithms, convergence speed depends
on the initial solution estimate. Usually the better the initial

) estimate, the faster the method converges to the final solution.

C. Numerical Issues The fact that the convergence speed of the Parks—McClellan

Numerical problems can arise when designing filters withigorithm is very sensitive to the initial guess of the locations
the proposed method. These problems mainly come from tlvbere the error function attains its extrema, was first pointed
solution of the Toeplitz systems of the form of (35). Regardingut in [10]. Specifically, a nonuniform distribution of the
the two algorithms in Table 1, that can be used for the solutiextrema, was suggested leading to an improvement in the
of such systems, we observed that the normal symmetdenvergence speed as compared to the uniform distribution
Levinson algorithm seemed to have a slightly better numericaiggested in the original Parks—McClellan algorithm. Our goal
stability. On the other hand, the symmetric Split Levinsoim this section is to prove that the optimum trigonometric
algorithm has the advantage of requiring less operations. polynomial obtained by our method fér= 1 can be regarded

Numerical problems were also observed in other desigs a very desirable initial estimate for the Reamexchange
methods as eigenfilters, “don’'t care” and Weighted Leaatgorithm.
Squares [4], [5]. These problems arise whenever we like tolf D(w) is the ideal symmetric function defined in (7)
design filters with largeV and largeA (where A denotes then, with the L., criterion we are interested in defining a
the length of the largest transition band). For our method viKggonometric polynomialH (w) that approximateD(w) in



PSARAKIS AND MOUSTAKIDES: AN L»-BASED METHOD 599

the region/ where D(w) is exactly known. From [8, p. 175], TABLE IV

[28, p. 54], we have that the optimumo approximation has NUMBER OF ITERATIONS REQUIRED BY THE REMEZ EXCHANGE ALGORITHM TO
. . CONVERGE UNDER THE PROPOSED AND THEEXISTING INITIALIZATION SCHEME

an error functionF(w) = D(w) — H(w) that satisfies the

alternation property. That is, there exist at ledst- 1 points N H Proposed

in the regionZ/ where the error function has local minima

with the same amplitude and alternating signs. We can thus

conclude that a trigonometric polynomial can be regarded as an 21 3 6

appropriate initial estimate for the Rémexchange algorithm

Existing

11 3 6

when its corresponding error function has at leist 1 local i : !
alternating extrema insidé. Notice that we do not require the 4 3 8
extrema to have the same amplitude, because this property is 5 4 13
satisfied only by thd.., optimum solution [8, p. 175]. With o . )

the next theorem we show that the optimum trigonometric
polynomial obtained by our method fér= 1 satisfies exactly 71 4 10
this requirement and thus can be used for initializing the

81 1 10
Renez exchange algorithm. We must also note that this is

the main property that distinguishes our solution from other 91 1 10
filter design techniques, namely, that with other methods we 101 4 14

cannot guarantee the right number of alternations inside the
passband and stopband.
Theorem 2:Let D,(w), H,(w) be the optimum ideal re- band required by thé&., criterion, an alternative initialization
sponse and its corresponding Fourier approximation resultisgheme for the well-known Reim exchange algorithm was
by the proposed method fat = 1. Then, there exist at presented. Under this new scheme the convergency speed of
leastV + 1 points in the regiori/ where the error function the algorithm was significantly improved.
E,(w) = D,(w) — H,(w) exhibits alternating extrema.
Proof: The proof of Theorem 2 is given in Appendix B.
[ | Proof of Theorem 1:In order to prove the theorem, we are
Based on Theorem 2 and the fact that our method yielgsing to follow a classical variational techniques [11]. Let
very good approximations under the,, criterion we expect us consider a variation of the symmetric function around the
that it will speed up the convergence of the Remexchange optimum functionD,(w). Specifically let us consideD(w)
algorithm considerably. We applied our idea to the MATLABf the form
program REMEZ.M by modifying its initialization part. In D(w) = Dy(w) + ¢V (w) (42)
Table IV we present the number of iterations needed by ) . ) o
the Reneéz exchange algorithm to converge under the myghereDo(w) is the o'pt|mum.sy_mmetr|c 'fUI’ICtIOIa.,IS a.scalar
initialization schemes and for different values/sf We again Parameter and’(w) is a variation function. Notice first that
considered the problem of approximating the low-pass filt@fy Symmetric functiorD(w) can be written under the form
of Section V-A. From the table we can easily conclude th&@f (42). This is true since we can always select 1 and

we have a significant gain in complexity and that this gain i& (<) = D{(w) — Do(w). From (42) we have that the Fourier

increasing with increasing order. approximationH p(w) of D(w) can be written as
Hp(w) = H(w) + eHy (w) (43)

where H,(w) and Hy (w) are the Fourier approximations for
- Dy(w) and V(w), respectively. Also we can conclude from
We have presented a nelyy based method for the design(42) that since bottD(w) and D, (w) are symmetric functions

of FIR digital filters. By minimizing a suitabld, measure satisfying (7) this means that the variation functiétw) must
we were able to optimally define the part of the ideal responsgtisfy the following constraints:

that was not explicitly specified in the design requirements. _

Since the proposed measure was also related to the Fourier (m) Vi{w) =0 (nflg)rw cu (44)
approximation this led to corresponding optimum approxima- V""" (w2i—1) = V"™ (w2) = 0,

tions that had improved performance. In a large number of m=0,--- k=1, ¢=1,--- Ny
design examples the method outperformed most existing non (45)
min—max methods while at the same time compared well with .

the optimum min—max equiripple approximation. The corrg‘pply'ng (42) and (43) to the measufk(D) and using well

plexity of the proposed method was low because it requir gown properties of the inner product we have

APPPENDIX A

VII. CONCLUSION

the solution of a symmetric Toeplitz linear system. Special E(D) =(DW — H® DR _ gk

symmetric versions of the Levinson algorithm were presented + 26<D(()k) _ H(gk)7 v _ Héf”)

for efficiently solving the corresponding linear systems. Finally 2 0 (k) ®) ) (k)

by proving that our optimum filter guarantees the necessary + (VI = Hy? VY — Hy). (46)

number of alternating extrema inside the passband and stdpis equation will be the base for proving our theorem.
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Let us first prove the necessity of (10) of Theoreml. APPENDIX B
Consider a fixed variation functio® (w) and lete be a
variable. The criterior€; (D) thus becomes a functiofy, (¢)
of e. We can see that this function has a minimum éce 0
(remember thab,(w) is assumed to minimizé&,(D)). This
means that the first derivative 6f,(¢) ate = 0 must be zero.

Before going to the proof of Theorem 2, let us first prove
the following lemma.

Lemma 2: Let D(w) be a continuous symmetric function
on the interval[0x], and let H(w) be its Nth order Fourier
approximation (optimum trigonometric polynomial of order

From this we have N —1). Then the error functioE(w) = D(w) — H(w) either
<D(k) _ H(k)7v(k) _ Héf”) —0. “ 1) vanishes identically or 2) changes sign at leAstimes
¢ ’ inside [Or].
Notice now that sinceHék)(w) is the Fourier approximation Proof: In order to prove Lemma 2, we are going to use

for DS (w), because of Lemma 1, we will have that the difSimilar steps as in Theorem 5 [8, p. 110]A{w) is identically
ferenceng)(w) _ Hék)(w) is orthogonal to any trigonometric 2670 there is nothing to prove (case i)). Let us now assume that
polynomial of orderV — 1 and consequently tH(f“)(w). Thus E(w)_ is not |de_nt|cally_ zero, we will then prove that |_t satisfies
(47) is equivalent to ii). Since D(w) is continuous by assumption ai#f{w) is con-
tinuous as being a trigonometric polynomial, the error function
(DR — g v *)y = o, (48) E(w) is continuous as well. Assume that the functiBiw)

. _ . o _ _ changes sigi times with K < N. This means that insid@r]
Since V(w) is an arbitrary variation function, (48) is truethere existK points 0 <7 <nz < -+ <nx < that define
for any variation funptlonV(w) satisfying (44), (45). Us.mg the K + 1 intervals [0, 7], [m,m2], - - - [nx—1, 0], [, 7,
the definition of the inner product and the fact thatw) is  jnside which the functiotz(w) has the following properties.
nonzero only inside the regiofi, we have that (48) can be 1y tpe function£(w) is not identically zero inside each

written as interval.
Ne o pus, 2) The nonzero values df(w) inside each interval have
| 0P - HP@V @ do=0. @9 constant sign
i=1 vzt 3) The nonzero values oF(w) alternate sign between
Integrating by parts and using (45) yields consecutive intervals.
N e Consider now the following symmetric functiof(w):
=0y / (D@ (w) — HEV(0))V () dw =0. K
=17 wai-1 Pw)y=«a H(cos(w) — cos(m;)). (54)
(50) i1

As we saidV(w) is an arbitrary variation function, thus wewe can see thaP(w) also satisfies the above three properties.
can selecV' (w) to be identically zero in all interval; except Actually regarding the first property it can be zero only at the

one. This means that K points n;. Selecting properly the constant £ 0 we can
wa ok (28) . completely match the signs d?(w) and E(w). This means
/‘ - (DI HT @)V (w) dw =0, =1, Ne  that E(w)P(w) > 0, for everyw € [0r]. By assumptionE(w)

is not identically zero, while?(w) can be zero only at a finite
number of points. Since both functions are continuous we
where agairV/ (w) is arbitrary insideZ; (provided it is zero at conclude
the end points). We can now conclude [11, p. 9] that in each

(51)

interval 7; we have (B(w), P(w))>0. (55)
D(Qk)(w) _ H(Qk)(w) -0 (52) Relation (55) is a contradiction becauBé&v) can be Writtep as
¢ ¢ a linear combination of the orthonormal functiofs, (w)} 2,
which is the desired relation. and is therefore orthogonal tB(w). Thus, the error function
To prove the sufficiency, leb,(w), H,(w) be a symmetric E(w) changes sign at leas¥ times inside the intervalor]
function and its corresponding Fourier approximation arehd this concludes the proof of the lemma. ]

assume that they satisfy (52). For any other symmetric functionProof of Theorem 2:First let us see how we can use the
D(w) [satisfying A4,C2, (8), (9)] defineV(w) = D(w) — results of Lemma 2 to identify the number of alternating
D,(w), thenV(w) satisfies (44) and (45). From this we havextrema. From the existence of thé + 1 intervals where
that (50) is true and consequently (49), (48), and (47) are trtree functionE(w) is of alternating sign and the continuity of
as well. Substituting (47) in (46) (with = 1) yields E(w) we conclude thakE(n;) = 0,¢ = 1,---,N. Thus in each
—n®) *) k) *) of the N 41 intervals,E(_w) has an extremum. In other words
E(D) = (D" = H", Dg* — H™) we have proved the existence &f + 1 alternating extrema.
(V@ gE y®e _ g Ry What is left to show is that all extrema can occur at points
> <D(()k) _ H(gk)7D(()k) _ H(gk)> = &(D,) (53) outside the transition regioff. From (11) we can conclude
- that if F,(w) = D,(w) — H,(w) is the error function of our
and this completes the proof. m optimum filter, then in every intervel; the functionE,(w)
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is a first-order polynomial of the forng; o + ¢ ;w. Let us [19] G. A. Merchant and T. Parks, * Efficient solution of a Toeplitz-Plus-
consider the foIIowing cases. Hankel coefficient matrix system of equation$ZEE Trans. Acoust.,

Speech, Signal Processingpl. 30, pp. 40-44, Feb. 1982.

Ca$eqi,l # 0: The error function fo_r this case is _monOtonQZO] R. M. Mersereatet al., “Selection of ideal filters for the window design
thus it cannot have an extremum in the open intergal method,” Signal Processing IV: Theory and Applicatioms. 927-930,

Extrema can at most occur at the edges/pbut the edges

EURASIP, 1988.
[21] T. Q. Nguyen, “The design of arbitrary FIR digital filters using the eigen-

are points inl{. value method”JEEE Trans. Signal Processingol. 41, pp. 1128-1139,
Caseg; 1 = 0: For this case the error function, insidg is Mar. 1993.

a constant equal tg, o. If ¢; o = 0 then, because of property 1022

A. V. Oppenheim and R. W. Schafdbjgital Signal Processing En-
glewood Cliffs, NJ: Prentice Hall, 1975.

of Lemma 2, this value cannot be an extremal value; §f# 0  [23] T. W. Parks and J. H. McClellan, “Chebyshev approximation for
then the whole interval; must be a subset of some interval nonrecursive digital filters with linear phaselEEE Trans. Circuit

Theory vol. CT-19, pp. 189-194, Mar. 1972.

(say) [n;n;+1]. If the valueg; o is extremal for the interval I[24] T. W. Parks and C. S. BurruBjgital Filter Design  New York: Wiley,

[7;m;+1] then, because of continuity, the error function wil

1987.

also assume this extremal value at both edge@*oWe can [25] S. Pei and J. Shyu, “Design of real FIR filters with arbitrary complex
(3

frequency responses by two real Chebyshev approximatidigyial

thus select either edge @Gf as a candidate for the occurrence  processingvol. 26, pp. 119-129, May 1992.
of the extremum, thus avoiding;. [26] L. R. Rabiner,Theory and Applications of Digital Signal Processing

Concluding, there always exi8f+1 points outside the tran-

Englewood Cliffs, NJ: Prentice Hall, 1975.
1 L.R. Rabineret al, “FIR digital filter design techniques using weighted

sition region7 where the error function assumes alternating ~ chebyshev approximation,Proc. IEEE vol. 63, pp. 595-609, Apr.
extremal values. This concludes the proof. [ | 1975.
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