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A Robust Initialization Scheme for the Remez
Exchange Algorithm

Emmanouil Z. Psarakis and George V. Moustakides, Senior Member, IEEE

Abstract—A well-known least squares optimum approximation
method is proposed as an efficient initialization scheme for the
Remez exchange algorithm. More specifically, we theoretically
demonstrate that the “don’t care” least squares optimum solution
guarantees, inside the bands of interest, the correct number of
alternating in-sign extrema of the error function, thus satisfying
one of the two basic conditions that are sufficient for obtaining the

optimum solution. Although convergence of Remez is theoret-
ically assured, its practical implementations may fail to converge
in “difficult” design problems when classical initialization is used.
In particular, Matlab’s realization of Remez, when initialized
with the proposed scheme, exhibits a significantly better overall
performance that translates into faster convergence and more
robust behavior, especially in difficult designs problems.

Index Terms—Alternation theorem, don’t care filter design
method, FIR filter design theory, min–max approximations,
Remez exchange algorithm.

I. INTRODUCTION

I N FINITE-IMPULSE response (FIR) filter design theory,
is considered as the most popular approximation mea-

sure. Approximations obtained with this criterion, also known as
Chebyshev or min–max, exhibit equiripple behavior in the fre-
quency bands of interest (passband and stopband) resulting in
the complete elimination of the annoying Gibb’s phenomenon,
observed in window- and certain -based techniques.

Unfortunately, optimum solutions are obtained through
iterative schemes that tend to be computationally demanding.
Most well-known techniques are the Remez exchange al-
gorithm (REA), the iterative weighted least squares, and
algorithms based on constrained linear optimization. In this
letter, we will focus on REA [7], [10], which tends to be the
most popular method for designing classical filters as well as
digital differentiators and Hilbert transformers.

In most iterative techniques, convergence speed and therefore
convergence time strongly depend on the initial “guess” of the
solution. The first initialization method for REA was presented
in [7] and additional methods aiming in speeding up the algo-
rithm in [1], [2], [6], [11], and [12].
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In this letter, we propose the use of the simple “don’t care”
least squares optimum filter [9, p. 70] as an alternative initializa-
tion scheme for REA. This recommendation, however, is sup-
ported by an important theoretical result stating that the don’t
care optimum solution has the correct number of alternating
in-sign local extrema, required by the alternation theorem, in-
side the bands of interest. This suggests that one of the two con-
ditions (in fact, the most difficult one) that define the optimum

solution is readily satisfied. Furthermore, since the don’t
care method is known to produce efficient filters that, in the
sense, are close to the optimum solution, the second condi-
tion of the alternation theorem is also well approximated. These
two properties clearly suggest that the don’t care optimum filter
can be an appropriate initializer for REA.

It should be noted that similar results were impossible to
demonstrate for any other filter design method as window- and
spline-based [9] or eigenfilters [13]. In other words, filters ob-
tained by these alternative methods cannot be considered as safe
starting points for REA.

II. APPROXIMATIONS AND THEALTERNATION THEOREM

Let us first introduce the approximation problem of interest.
Consider a collection of a finite number of closed nonover-
lapping intervals , that are subsets of .
Consider also a real function , continuous and known on
each interval , which we like to approximate in the sense.
Let , or ,

be two sets of base functions we like to use to ap-
proximate the function . Finally, let be a weighting
function that is known, continuous, and nonnegative on each in-
terval .

The correspondence with the filter design problem is ap-
parent. The intervals are either passbands or stopbands;

is the desired response; and is the weight
in each band. The first set of base functions can be used to
approximate even symmetric responses (defined on ),
while the second odd symmetric. It is also clear that the open
intervals between consecutive constitute the transition
regions between the bands of interest.

Let be a vector of coefficients, and
denote by a linear combination of
the base functions. We are interested in obtaining the optimum
vector , in the sense, that satisfies

(1)
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We have now the following theorem that provides necessary and
sufficient conditions for .

Theorem 1: The vector is optimum in the sense if and
only if the following two conditions are satisfied.

1) The weighted error function
has at least local extrema with alternating sign at
points thatbelong to the bands
of interest (i.e., ).

2) The local extrema of condition 1) are all equal, in abso-
lute value, to the maximum weighted absolute deviation

.

Proof: The proof can be found in [5].
The above theorem, known as thealternation theorem, com-

pletely characterizes the optimum solution. Conditions 1)
and 2) also suggest that a vectorcan be regarded as a suitable
initial guess if it satisfies condition 1) exactly and condition 2)
approximately. In fact, the main difficulty in all existing initial-
ization schemes is to ensure existence of at least local
extrema, with alternating sign,insidethe set .

III. D ON’T CARE OPTIMUM LEAST SQUARESAPPROXIMATIONS

Let be as in Section II. Recall that
was defined only on the set . If we extend
to the whole interval , by setting for

, we can then define a vector of optimum
coefficients by solving the following least squares problem

(2)

Since the weighting function is zero outside the set of
interest , the values of outside play abso-
lutely no role (this is why the term “don’t care” is applied). The
optimum vector is the solution to the linear system defined
by the equations

(3)

It is easy to show that the linear system in (3) has a Toeplitz plus
Hankel structure. This allows for the employment of specialized
algorithms with reduced complexity [8], as compared
to the complexity required for the solution of a general
linear system.

In Theorem 2, we will show that generates the correct
number of local extrema with alternating sign inside the bands
of interest. In other words, it satisfies exactly condition 1) of
Theorem 1.

Theorem 2: The don’t care least squares optimum solution
has a weighted error with at least local extrema with
alternating sign inside the set .

Proof: Extending the proof presented in [5] for vectors to
the case of functions of, let us consider the weighted optimum
error function . This func-
tion is piecewise, continuous, and well defined on the whole in-
terval . If is not identically zero, then we can divide

into intervals , with
, satisfying the following conditions.

• In each , there exists a subinterval where is
nonzero.

• In each , the nonzero values of have constant sign.
• The constant sign of each alternates between consecu-

tive intervals .
As a consequence of the above conditions, we have the fol-
lowing properties.

• In each interval , the function has a local ex-
tremum different than zero.

• All such local extrema are of alternating sign.
• Each extremum can appear only inside the set ,

since outside this set was defined to be zero, and
consequently is also zero.

What is now left to show, to complete the proof, is that .
We will first prove the statement for the case .
Assume ; then we can define the following function

(4)

where is a constant. Since is monotone, we can select
so as the sign of matches exactly the sign of .

Since is not identically zero, and is zero for a finite
number of points, this means that

(5)

Notice now that any polynomial in of degree at most
(as is the case of ) can be written as a linear combination

of the base functions . This means that, because of (3),
the integral in (5) is zero, thus contradicting (5). So we must
have . In exactly similar way, we can prove the theorem
for the base functions , except that only
now must be defined as

(6)

This concludes the proof.
Another important property, also stated in the Introduction, is

the fact that the don’t care method is known to provide solutions
that, in the sense, are only a few decibels inferior to the
optimum solution [3], [4]. This, of course, suggests that
condition 2) is approximately satisfied.

Summarizing the desirable features of the don’t care least
squares optimum solution.

1) There exist computationally efficient schemes that take
advantage of the special Toeplitz plus Hankel structure.

2) It satisfies exactly the first (and most difficult) condition
of the alternation theorem.

3) From practice it is known that it efficiently approximates
the second condition of the alternation theorem.

We conclude, therefore, that this filter constitutes a powerful
candidate for the initialization of REA.
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IV. DISCUSSION ANDSIMULATIONS

The conventional initialization scheme of REA simply con-
sists in selecting the initial local extrema with a uniform distri-
bution inside each band, with the number of points inside each
band being proportional to the length of the band [7]. It is clear
that the computational cost of this initialization is insignificant.
We should also mention that this is the scheme employed in
Matlab’s functionremez.m .

For our initialization, we used Matlab’s functionfirls.m ,
which computes don’t care optimum filters. It should be noted,
however, that this function does not employ any efficient solu-
tion of the linear system defined in (3). We also had to modify
the functionremez.m to accept the don’t care solution from
firls.m as a starting point. We designed several types of fil-
ters as lowpass, bandpass, bandstop, and multiband with varying
lengths and weights. In particular, we considered filter lengths
ranging from 51 up to 201, and in all cases we observed a sig-
nificant speed up in REA as compared to the conventional ini-
tialization scheme. Unfortunately, this significant reduction in
number of iterations did not translate into an equivalent reduc-
tion in the total computational complexity due to the overhead
required by the solution of the linear system (3). Nevertheless, in
all cases, the computational gain was nonnegligible and ranged
from 20% to 50%.

To our opinion, the strong point of our scheme does not lie so
much in its computational gain as in its robustness. In particular,
when we applied Matlab’s implementation of REA to “difficult”
design problems, in numerous cases it failed to converge with
conventional initialization, while convergence was attained with
a few iterations with the proposed one. Although convergence of
REA is assured theoretically, we should stress that its practical
implementations may fail. As reported in [2], the source of this
undesirable behavior is not necessarily the usage of a coarse-fre-
quency grid as one might initially believe but also the uniform
initialization itself. Indeed, it is possible for the classical initial-
ization to give rise to error functions that are not unimodal be-
tween adjacent zeros violating the sign alternation requirement
of the alternation theorem. Of course, we do not claim that our
scheme can assure convergence; however, since our initializa-
tion is close to the optimum solution and satisfies the sign al-
ternation requirement, one can expect that it will have a more
robust behavior, especially in difficult design problems. This is,
in fact, what we observed when we used it in practice.

Let us now present two indicative design examples. Consider
first a lowpass filter with . If denotes
the filter length, then REA performed as follows:

• , iterations: 8(3), flops: 336 882(256 023),
• , iterations: 13(4), flops: 1 575 160(879 396),
• , iterations: 15(4), flops: 6 855 927(3 697 605),

where normal letters correspond to the conventional scheme and
italic to the proposed initialization. The number of operations
was counted using Matlab’s functionflops.m .

As a second example consider a bandstop filter with specifi-
cations , , , and .
The corresponding performance of REA was

, iterations: 19(3), flops: 647 531(449 675),
, iterations: 15(4), flops: 1 500 139(898 002),
, iterations: NC(5), flops: NC(5 264 586),

where “NC” denotes no convergence. Regarding the last case
, we must say that Matlab’s algorithm did not converge

even when we applied a much denser frequency grid, which is
in accordance with the observation reported in [2].

V. CONCLUSION

We have theoretically demonstrated that the don’t care op-
timum solution constitutes a suitable initialization scheme for
the Remez exchange algorithm. In numerous simulations, we
observed a significant reduction in the number of iterations re-
quired by the algorithm to converge. Furthermore, REA ex-
hibited an increased robustness, especially in difficult design
cases, where practical implementations of the algorithm failed
convergence under classical initialization. Taking into account
that the proposed initialization induces a significant speedup in
REA, accompanied by a nonnegligible computational gain and
an overall increased robustness, we conclude that our scheme
can be clearly considered as a possible alternative to the uni-
form initialization.
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