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Abstract—The task of objective perimetry is to scan the visual
field and find an answer about the function of the visual system.
Flicker-burst stimulation—a physiological sensible combination
of transient and steady-state stimulation—is used to generate
deterministic sinusoidal responses or visually evoked potentials
(VEP’s) at the visual cortex, which are derived from the elec-
troencephalogram by a suitable electrode array. In this paper we
develop a new method for the detection of VEP’s. Based on the
periodogram of a time-series, we test the data for the presence
of hidden periodic components, which correspond to steady-state
VEP’s. The method is applied successfully to real data.

Index Terms— Hidden periodicities, periodogram, visually-
evoked potentials.

I. INTRODUCTION

T HE part of the visual world which can be seen by an
eye is called monocular visual field. A defect of this

field can be caused either by deterioration of the retina, the
visual pathway, or the visual cortex. Perimetry is a method to
discover these defects. The examination of the visual field is
currently carried out by subjective methods. Such techniques
require the assistance of patients, thus, they are not feasible in
cases of infants, simulants, and critically ill patients.

The objective perimetry is based on the analysis of visual
evoked responses [1]. In the ophthalmologic diagnostics, well-
defined light stimuli are used for stimulating the visual system.
These stimuli elicit responses in the visual cortex, which are
acquired as visually evoked potentials (VEP’s) by means of a
suitable system of electrodes. After a proper signal processing
and the quantification of the VEP parameters, these can be
utilized for objectifying diagnostics. In case of well-defined
diagnostic questions (determination of the visual field) it is
necessary to find out, with sufficient reliability, whether a VEP
is present or not. From the point of view of signal processing,
the task is to detect a signal (VEP) in the biological noise
[spontaneous electroencephalogram (EEG)].

Depending on the stimulation frequency a distinction is
made between transient VEP (tVEP) and steady-state VEP

Manuscript received April 15, 1996; revised July 2, 1997.Asterisk indicates
corresponding author.

*A. P. Liavas is with the D́epartment SIM, Institut National des
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(ssVEP). Transient VEP’s arise if the electrical excitations of
the visual system are able to abate before new stimuli are
presented. If the repetition rate of stimuli is faster than 6/s,
responses begin to merge and the shape of the resulting ssVEP
becomes periodic. The detection problem then is reduced to
find this periodic component in the spontaneous EEG.

In our experiment, we combine both steady-state and tran-
sient stimulation methods to a flicker-burst stimulation. A
tracing of 4 s (prestimulus data) is followed by a 4-s burst
of flicker stimuli (post-stimulus data) in which the basic
stimulation frequency is selected to be 8 Hz. Thus, the first and
second harmonics have a sufficient distance from the-band.

A wide range of approaches to the detection of ssVEP’s
have been proposed with the most recent ones including,
among many others, classical frequency-domain approaches
[2], adaptive matched filtering [3], and time-frequency analysis
[4].

In this paper, we develop a new method for the detection of
ssVEP’s based on the periodogram. We test the post-stimulus
data for the presence of hidden periodic components, which
correspond to the ssVEP’s. In Section II, we develop the statis-
tical test for the presence of hidden periodicities; in Section III,
we apply this test for the detection of ssVEP’s; in Section IV,
we compute the power of the statistical test; in Section V, we
present results of the application of this statistical test on real
data. Conclusions are drawn is Section VI.

II. TEST FOR THEPRESENCE OFHIDDEN PERIODICITIES

In this section, we develop a statistical test for testing the
data for the presence of hidden periodic components; the test
is based on the periodogram of a time-series.

In the sequel, we provide the definition of the periodogram,
as well as its properties related to the construction of the
statistical test. We represent stochastic quantities with bold
letters.

A. Periodogram

The periodogram of a time-series , is
defined as in [5, p. 331]

(1)

with 2 , . Periodogram ordinates
are symmetric around , assuming even, i.e.,
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. The value is a measure of the energy
contribution of the frequency to the “signal effect” [6,
p. 24].

If , are samples of a stationary
time-series with autocorrelation sequence

, then periodogram ordinates, , are asymptotically
independent exponentialrandom variables, with mean
[5, p. 330]. The function is the power spectral density
(psd) of and is given by the Fourier transform of
the autocorrelation sequence . Notice that the psd is
a deterministic function of .

In the sequel, we assume that is large enough so that we
may regard periodogram ordinates as independent exponential
random variables [5, p. 342]. Thus, the probability density
function (pdf) of the random variable ( ) can be expressed
as

,

otherwise.
(2)

Equivalently, we can say that the random variable
is distributed according to the 2(2)/2

distribution, where 2(2) is the chi-square distribution with
two degrees of freedom, i.e.,

(3)

If , , and , independent, then [7, pp.
219–223]

(4)

(5)

where is the -distribution with and degrees of
freedom.

Properties (3)–(5) and the (asymptotic) independence of the
periodogram ordinates will be the main tools for the construc-
tion of the statistical test presented in the next subsection.

B. Test for the Presence of Periodic Components
of Specified Basic Frequency

Let us assume that we are given a set of data
. In this subsection, we develop a

statistical test based on the periodogram, which can be
used to test the null hypothesis, that the data are samples of
a stationary time-series, against the alternative hypothesis,
that the data are samples of a stationary time-series with a
superimposed periodic component of known basic frequency.
More specifically, let us assume that is a periodic
signal of the form

(6)

where 0 is the specified basic frequency, and, ,
, are nonrandom, but unknownconstants. An addi-

tional assumption is that0 2 , for some integer

between 1 and , where denotes the integer part of
. In this way, we avoid aliasing and we simplify the analysis

since the periodogram at 0 is directly computed via (1), i.e.,
0, , belong to the set of the so-called Fourier

frequencies, , [5, p. 331]. Our
data model is

(7)

where is a stationary time-series with psd .
The null and the alternative hypotheses are

for all

is false.

Let us assume that ( ) is known to within a scaling factor,
i.e.,

(8)

where ( ) is known and is considered unknown.
We observe that under , , ,

which means that , . Using (3)
and (8), we obtain that under

(9)

On the other hand, under , will differ from ,
for some , depending on which , differ from zero.
At the frequencies 0, where there is a difference between

and , we expect that will be larger
than , due to the power of the superimposed sinusoids.
Thus, we expect that

(10)

with “ ” meaning that the random variable at the left-hand
side takes, with high enough probability, larger values than
the values usually obtained by a random variable distributed
as a .

Based on these observations, we rejectin favor of , if
is sufficiently large. In order to put this

statement under a statistical test, let us recall the (asymptotic)
independence of the periodogram ordinates and (3), (4), and
(8). Then, under , we have

(11)

(12)

where is a frequency window containing the frequency
bins which we select to use in our test.can be constructed in
various ways, depending ona priori knowledge concerning the
properties of the signals over different frequency bands. (We
have to say more about the construction ofin Section III,
where we apply the test to real data.)
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Since and refer to nonoverlapping Fourier frequen-
cies, they are independent random variables. Thus, using (5)
we have that under

(13)

Consequently, we reject in favor of at level if

(14)

III. D ETECTION OF SSVEPS

In this section, we use the statistical test presented in the
previous subsection for the detection of ssVEP’s.

The ssVEP’s are generated by a sequence of green bright
LED flashes with frequency 8 Hz ( 104 cd/m2;

560 nm). The stimulus size of the local stimulation
is about 1 of the visual angle. To elicit visually evoked
responses, the EEG is recorded using 16 electrodes placed
over the visual cortex. The distance between the electrodes
is set to be 10% of the distance nasion-inion. The arithmetic
mean of the left and right ear potential is used as reference
level. After amplification and filtering (bandpass 0.3–40 Hz
Bessel-characteristic second order), the EEG data are sampled
at 250 Hz and A/D converted (12 bit). The amplitudes of
ssVEP’s (10 V) are normally below the amplitudes of an
EEG signal (100 V).

A. Data Models

For each stimulated eye position, we derive one time-series
by time averaging over 32 realizations of the data derived from
the channel Oz-AVO. Each resulting time-series is composed
of two parts:

• 1000 samples of pure EEG data recorded just before the
stimulation begun (prestimulus signal);

• 1000 samples of EEG plus stimulation response data
recorded just after stimulation begun (post-stimulus sig-
nal).

As we have already mentioned, if the repetition rate of the
stimuli is larger than 6/s, responses begin to merge and the
shape of the resulting ssVEP becomes periodic. Thus, the
data models for the pre- and post-stimulus signals can be
respectively expressed, for , as

(15)

(16)

where is the number of harmonics we are trying to detect,
, , and , are nonrandom but unknown

numbers, and 0 2 (8/250) is the basic frequency, because
the basic stimulation frequency is 8 Hz and the sampling
frequency is 250 Hz. The time-series and

represent the pure EEG signal in the pre- and post-stimulus
data, respectively.

If the EEG is assumed to be a stationary signal, then the
time-series can be considered as parts of the
same stationary process, implying that their psd’s, denoted by

( ) and ( ), respectively, coincide. In the sequel,
we make a slightly less restrictive assumption, which gives
us the ability to handle a special type of nonstationarity.
More specifically, we assume that ( ) and ( ) are
connected via a scaling factor, i.e.,

(17)

This means that the psd’s of and have the
same shape, but not necessarily the same amplitude. It is well
known that the EEG signal is nonstationary, especially over
certain frequency ranges, for example, over the so-called-
band. However, at frequencies higher than the-band we do
not expect wild nonstationarities. Thus, the assumption of the
aforementioned special type of nonstationarity, which includes
stationarity, over this frequency range, appears to be reason-
able. At this point, the similarity between our hypothetical
data model of (7) and our post-stimulus data model of (16)
is obvious.

B. Detection of ssVEP’s Using the Test for the
Presence of Hidden Periodicities

In the sequel, we will use the statistical test derived in
the Section II in order to test the post-stimulus data for the
presence of hidden periodicities, which correspond to ssVEP’s.

In this case in (11) and (12), must be replaced by
, which can be computed via (1).

The next step is to estimate , which takes the place
of ( ). Notice that the presence of ( ) in (11) and (12)
is implicitly expressed through ( ).

The most natural way to estimate ( ) is through the
post-stimulus data, . However, since contain
both EEG and stimulation response, its spectrum around the
harmonics of the basic stimulation frequency differs from

( ), due to the contribution of the stimulation response.
This indicates the need of using interpolation techniques to
estimate ( ) at these frequencies. An alternative way is
to estimate ( ) through the prestimulus data. In this way
we compute ( ), which, as we have already assumed in
(17), is connected to ( ) via the scaling factor . Thus,

takes the place of in (11) and (12).
There are several methods available for computing ( ).

We select the smoothed periodogram as a robust and reli-
able method for the construction of a consistent estimate of

( ). We use the prestimulus data, , which are
identical to , and we compute ( ). Following [6,
pp. 153–154] we have

(18)
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where

(19)

is an estimate of the autocorrelation sequence of the pre-
stimulus EEG signal (values outside the range 1,, 1000,
are derived by periodic continuation of ), is the
Hamming lag window

for (20)

and (typically /10).
After the computation of and , we may

construct , , and apply the
statistical test (14). Of course, it is implied that the number
of data samples, i.e., 1000, is large enough, so that we can
regard the periodogram ordinates, , as independent
exponential random variables.

At this point, some comments on the construction ofare in
order. Our basic assumption is that the EEG signal is stationary
or it exhibits the special type of nonstationarity given in (17).
Thus, it is obvious that our test will give more reliable results if
we process the frequency intervals in which the EEG possesses
these properties. For example, we maya priori exclude from

the frequency bins over the range 10–14 Hz, where it is
possible to encounter wild-band nonstationarities. However,
we must say that even if we encounter wild nonstationarities
over certain frequency ranges, their influence onwill be
reduced by the averaging , which takes place in (13).
We may also say, that if we are looking for the first harmonics
of the basic stimulation frequency, it is not necessary to include
in all the frequency bins from 0 to /2, where is the
sampling frequency. For example, if we are looking for the
first 4 harmonics of 8 Hz, we may use the frequency bins
from 0 to 40 Hz.

Remark 1: From a signal processing point of view,
is the periodogram of the prewhitened

post-stimulus data, using for prewhitening the prestimulus
data.

Remark 2: From a Statistics point of view, division of
by , /2, is an effort for

transforming the random sequence into a sequence
of -distributed random variables. If we observe
large peaks in the sequence , then we
suspect that something “abnormal” happens, i.e., sinusoidal
components are hidden in the stationary time-series at the
peak locations.

Remark 3: In order to be able to detect stimulation re-
sponses we must detect peaks, at the frequencies0, in
the sequence . This sequence expresses
in a way the “change” of the frequency contents of the
signal between the post- and prestimulus parts. Test (14)
is the statistical rule for detecting a stimulation response,
while Remarks 1 and 2 give the physical insight to our
detection mechanism. Specifically, for detection we require
“a larger mean increase (smaller mean decrease) of the post-

Fig. 1. Power of the periodogram-based detector;m = 4, N = 1000,
false-alarm probability� = 0.01, 0.05.

stimulus over the prestimulus psd’s at specified frequencies,
compared to the corresponding mean increase (decrease) at
the neighboring frequencies.” The quantity 1 expresses the
mean change, increase or decrease, of the frequency content
of the signal, between the pre- and post-stimulus parts, at0

. On the other hand, 2 expresses the respective
mean change over the neighboring frequencies. Sinceis
considered unknown, we cannot make any inference for the
presence of periodic components using as a test statistic the
value of 1. However, we may decide via since is
eliminated in (14).

Remark 4: We use the independence and the special type
of EEG signal nonstationarity assumptions, in order to be
able to derive closed form expressions for the pdf’s of the
various quantities of interest. However, if we compute the
pdf of under 0, experimentally, we can observe a striking
similarity between the experimental estimates, computed using
normal EEG data, and the theoretical quantities derived from
the aforementioned assumptions.

IV. EXPERIMENTAL COMPUTATION OF

THE POWER OF THE STATISTICAL TEST

In the previous sections, we developed a statistical test for
the detection of ssVEP’s. Theprobability of detectionor power
of the statistical test is the probability that the detection statistic

is greater than the threshold , which corresponds to the
false-alarmprobability, .

In this section, we experimentally compute the power of the
statistical test (13), as a function of the signal-to-noise ratio
(SNR). With SNR we mean

SNR
Power (VEP)

Power (Post-stimulus EEG)
(21)

Analytical computation of the power of the test, for the finite
sample case seems very complicated.

Experimental computation of the power of the test for given
, and SNR, can be done as follows. We fix the false-alarm
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Fig. 2. Power of the periodogram-based (thick) and energy (thin) detectors
with white Gaussian background noise;m = 4, N = 1000, false-alarm
probability � = 0.01.

probability . This means that we can determine the threshold

Pr (22)

from tables for the -distribution. Then, for a given SNR we
compute the probability that exceeds , by performing 500
realizations of the following experiment:

We generate samples of pure EEG data (prestimulus
and post-stimulus samples). This can be done in various
ways; for example, we may use recorded EEG data, or we
may generate artificial EEG’s using AR models (using the
MATLAB System Identification Toolbox [8] we observed that
EEG data can be well modeled by AR models, with orders
varying from 10 to 50).

Then, we generate samples artificial VEP, as a sum of
harmonically related sinusoids. In order to obtain the desired
SNR, we scale the VEP signal.

We form our test signal by adding the VEP to the post-
stimulus EEG. Then we construct the test statisticand
we compare it with . In this way we may compute the
probability that for given , and SNR, is greater than

, which is the power of the test.
In Fig. 1, we plot the power of the test as a function of

the SNR, for , , and false-alarm probability
We observe that our test has significant power

for SNR higher than 18 dB.
If we wish to detect the presence of the signal without

using anya priori knowledge about its properties, a reasonable
choice appears to be the energy detector. Energy detection
relies on the signal power only, and does not attempt to make
use of any possible properties of the signal. Thus, comparing
the performance of the periodogram-based and the energy
detectors, will serve to illustrate the effect of utilizing the
property (6) on the performance of the detection.

If we assume that the background noise in stationary white
Gaussian with unknown variance, then the statistical test for

(a)

(b)

(c)

Fig. 3. Central Stimulation: (a) Power spectral densities for prestimulus
(thin) and post-stimulus (thick) data, (b) periodograms for prestimulus (thin)
and post-stimulus (thick) data, and (c) normalized post-stimulus periodogram
IIIxpost(!k)=Sypre(!k).

the energy detector is

(23)

which, under 0, is distributed according to the
distribution. In Fig. 2, we plot the power of the statistical tests
(13) and (23) for 4, 1000; the false-alarm probability

was set to 0.01. We observe that the periodogram-based
detector takes advantage ofa priori knowledge of the shape
of the signal and performs much better than the simple energy
detector.

V. EXPERIMENTAL RESULTS

In this section, we will apply the statistical test for the
detection of ssVEP’s to real data.

We begin by presenting the results derived from central
stimulation. We test for the presence of a periodic component
composed of sinusoidal terms with frequencies 8, 16, 24,
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(a)

(b)

(c)

Fig. 4. Peripheral Stimulation: (a) Power spectral densities for prestimulus
(thin) and post-stimulus (thick) data, (b) periodograms for prestimulus (thin)
and post-stimulus (thick) data, and (c) normalized post-stimulus periodogram
IIIxpost(!k)=Sypre(!k).

and 32 Hz; we construct using the frequency bins in the
frequency range 0–40 Hz. In Fig. 3(a), we plot the psd’s
of the pre- and post-stimulus data with thin and thick lines,
respectively, computed by means of the smoothed periodogram
described in Section III. In Fig. 3(b), we plot the respec-
tive periodograms, while in Fig. 3(c), we plot the sequence

. We may form a first impression for
the existence of the superimposed periodic component in the
post-stimulus data, by just observing the psd’s of the pre- and
post-stimulus data. The existence of spectral peaks in the psd
of the post-stimulus data at the harmonics of 8 Hz is obvious.
Observing the “normalized” or “prewhitened” post-stimulus
periodogram in Fig. 3(c), we can see very large peaks at the
harmonics of 8 Hz, which take values of the order of 100. The
test statistic for this example is 58.35, which means that
with probability (essentially) 1 it is not (8, 320)-distributed.
Consequently, we reject 0 in favor of 1.

When we move to the periphery of the eye the SNR becomes
lower. In other words, we do not have strong sinusoidal
components at all harmonics. We present such a case in Fig. 4.
The main observation in Fig. 4(c) is that the peaks at the
harmonics are not as strong as the corresponding peaks derived
from central stimulation. In fact, there exist strong peaks due
to EEG nonstationarities at the frequency ranges 2–4 Hz and

around 30 Hz. However, since 2.5136, we reject 0 in
favor of 1 at level 0.0123.

We conclude this section by summarizing the results ob-
tained from the application of our test on 20 data sets, derived
from the inner area of the eye of healthy persons; in all these
cases we detected stimulation response at level 0.015.

VI. CONCLUSION

In this paper, we developed a new ssVEP detection method.
The method is based on the periodogram of a time-series. We
test the post-stimulus data for the presence of hidden periodic
components, which correspond to ssVEP’s. We actually try
to prewhiten the post-stimulus data, using the pre-stimulus
data. In this way we obtain an expression of the change of
the frequency contents of the signal between the pre- and
post-stimulus parts.

Detection of periodic components actually means that there
exists larger mean increase (smaller mean decrease) of the
post-stimulus over the prestimulus psd’s, at the harmonics of
the basic stimulation frequency, compared to the correspond-
ing mean increase (decrease) at the neighboring frequencies.

We experimentally computed the power of the statistical
test. The periodogram-based detector takes advantage of the
a priori knowledge of the signal shape and performs much
better than the simple energy detector.

From the application of the method to real data we deduced
that averaging over 32 realizations gives an SNR which is suf-
ficient for detection with a very small false-alarm probability.
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