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Abstract

This paper presents a recently developed Image Acquisition–Geometric Modelling system for the construction of geometric models of
natural or artificial objects. This construction is achieved in a two-step procedure. First, the object of interest is digitised, i.e. points on the
surface of the object are computed. Then, based on the cloud of digitised 3D points, an approximating surface, a geometric model of the
object of interest, is constructed. Coupled with a mesh generation package, the system presented allows for further processing and analysis of
the resulting model instead of the real object itself.q 2000 Civil-Comp Ltd. and Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent developments in the fields of Computer Aided
Design (CAD) and Finite Element (FE) technology and
the emergence of modern, more powerful computers, have
made possible the substitution of real models of products
with computer models. This evolution has many advantages
in cutting down the cost and the time for a complete design–
analysis–creation cycle of a variety of products in a wide
range of fields and applications.

The construction of finite element models for the purpose
of analysis is in itself a laborious task especially for biolo-
gical objects (e.g. fruits, human body parts etc.) which often
have a more complicated geometry than mechanical compo-
nents. From this point of view the major bottleneck in the
complete modelling–analysis cycle is the definition of the
geometry of the object under consideration (i.e. modelling
part of the cycle). However, emerging technology in image
processing techniques allows for the reconstruction of
scanned objects (in the form of 3D points on the surface
of the object) from image data (photographs, video record-
ings, CT, NMR etc.). These points could be automatically
processed and fitted so that a geometric model of the
scanned object is produced. This model could then be
supplied to a finite element analysis system for further
processing and analysis or be otherwise utilised.

The aim of this paper is to present an integrated computer

image-acquisition/modellingsystem which allows for the
automatic creation of accurate geometric models from
scanned images of objects. Such a system coupled with a
finite element mesh generator and analysis package can be
used in applications in many fields of science and huma-
nities such as agricultural, civil and structural engineering,
archaeology, and bioengineering.

The advantages in terms of cost efficiency and reduction
of the duration of the design/analysis cycle of products are
enormous. This is especially true in cases where the objects
do exist but any attempt of modelling them accurately by
conventional means would be inefficient or even impossible
(e.g. biological objects etc.).

An image acquisition system has been developed for the
creation of 3D geometric data. The corresponding “3D
object reconstruction problem” has been met with the devel-
opment of a technique for the generation of normal images.
The principal idea is to replace the images in two planes by
images in one plane, by using the fact that any perspective
projection is a projective projection. Then, as the key to a
stereo system is a method for determining which point in
one image corresponds to a given point in the other image,
the problem of image matching had to be solved. Using the
image matching model, the parameters of the mapping func-
tions of the model had to be determined. The differential
matching method was used assuming that approximate
values of the parameters are known and replacing the non-
linear problem by a linear one. Then, the values of the
desired parameters result from the minimisation of energy
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of the observation noises with respect to the parameters of
the problem.

The output of the image acquisition stage is a cloud of 3D
points on the surface of the object of interest. These points
are then converted to a mathematically expressed geometric
model (i.e. an equation) of the object suitable for further
processing and analysis. The underlying mathematical
representation of curves and surfaces implemented by the
geometric modelling software is the well-known Non-
Uniform Rational B-Splines (NURBS) representation.
NURBS curves and surfaces theory and applications have
been thoroughly investigated and reported in the literature
[13–16]. They have become a de facto industry standard
mainly because they can represent both free-form shapes
and commonly used analytical shapes such as conic curves.
Currently, there are two techniques implemented for the
construction of NURBS surfaces. The first builds a surface
taking into account all the data points that can be approxi-
mated within a given tolerance or interpolated if there are
sufficient degrees of freedom available. This method is
somewhat slow (but sufficiently accurate) because of the
usually large amount of data. The second technique orga-
nises the data points into cross-sectional data which are then
interpolated or approximated within a given tolerance (thus
creating cross-section curves). The cross-section curves are
then “skinned” so as to produce a surface model. The latter
technique is faster than the former because of the reduced
amount of points that are fitted, but this can sometimes lead
to less accurate models. However, it is well suited for cross-
sectional data, for example tomography data.

In Section 2 of this paper the image acquisition technique
developed is described. In Section 3 the NURBS fitting
techniques developed are described and problems identified
during the experimental stage of the system are presented.
Illustrative examples are presented in Section 4.

2. Image acquisition

A stereoscopic approach, like the one described herein, is
characterised by the following two steps:

Step 1.Image acquisition.
Step 2.Stereo matching.

These two steps play an important role in the design of a
stereo system, but the success of the approach greatly
depends on its ability to solve the stereo matching or corre-
spondence problem. Most of the existing stereoscopic
systems consist of either one optical sensor, which can be
moved so that its relative positions at different times are
known, or two optical sensors always maintaining the
same known position with respect to each other.

A top view of the image acquisition system that we are
proposing is illustrated in Fig. 1. As we can see the system is
based on a single camera combined with a turning disk
whose centreRc is placed at a distanced from the optical
centre of the cameraS.

In a typical experiment the object is placed on the disk
and turned at various angles to obtain different sideviews.
For each sideview two snapshots differing by a small angle
w are taken. Each pair is used to compute the 3D coordinates
of the corresponding sideview.

Notice now that the acquisition system shown in Fig. 1 is
equivalent to a stereo model composed by two optical
sensors, denoted bySL and SR in Fig. 1, whosebaseline
(distance between the optical centres of sensors) isb.

2.1. Generating normal images

It is well known that the stereo matching (also known as
correspondence problem) heavily depends on the stereo
camera modelling and it can be significantly simplified if
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we use the lateral model [13] which is one of the simplest
imaging models. The stereo camera arrangement of such a
model is presented in Fig. 2. Notice that the optical centres
CL andCR of the two cameras are separated only by a trans-
lation b in the x-direction and that their optical axes are
parallel. A consequence of this last property is thatepipolar
lines are parallel to thebaselineand therefore any scene
point is projected onto the two image planes at points having
the samey-coordinate.

Let us denote the image planes ofCL andCR by kiLl and
kiRl; respectively, and byIL, IR the centres of the two images.
Let us also assume thatIL is the origin of the (x,y,z) world
coordinate system. Then, ifPL(xL, yL) andPR(xR, yR) are the
projections of the scene pointP(xo,yo,zo) onto the image

planeskiLl andkiRl; respectively, by using simple geometry
we can easily relate the world coordinates to the image
coordinates as follows:

xo � 2d sin�w=2�xL

xL 2 xR
�1�

yo � 2d sin�w=2�yL

xL 2 xR
�2�

z0 � 2d sin�w=2�f
xL 2 xR

�3�

whered andf can be obtained through a camera calibration
process.

The most difficult task in applying Eqs. (1–3) is in fact
the determination of points in the two images that corre-
spond to the same scene point (matching or correspondence
problem). As it was also stated above, this problem can be
significantly simplified if the two images are normal corre-
sponding to parallel optical axes. Consequently next we are
going to present the necessary equations that can transform
the two images taken by the proposed system to two normal
images. In other words we will assume that we have a pair of
images (left and right) taken by rotating the disk by a small
anglew and we are going to see how this pair can be trans-
formed into a normal pair. As the common projection plane
for the two normal images we are going to consider the
plane that passes through the optical centres of the left
and right sensors.

Let us consider the transformation of the left image (simi-
larly we can find the corresponding transformation for the
right image). LetxOLzandx0O0Lz0 be the coordinate systems
of the original and the normal image. Also letOLA andO0LA0

be thex-coordinates of the projections of the scene pointP
onto these two image planes as shown in Fig. 3. Then, from
the orthogonal trianglesOLCLA and O0LCLA0 by using
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Fig. 2. The lateral stereo camera model.

Fig. 3. Geometry for the computation of the normal image.



simple geometry we obtain the following relation for thex0L ;
coordinate for the left normal image:

x0L � f
xL cos�f=2�2 f sin�f=2�
f cos�f=2�1 xL sin�f=2� �4�

where we recall thatf is thefocal lengthof the camera and
(xL,yL) are the coordinates (in pixels) of the projection of the
scene pointP.

Following similar steps, we can prove that they0L coordi-
nate of the left normal image as well as�x0R; y0R� coordinates
of the right normal image will be given by the following
relations:

y0L � yL f
f cos�f=2�1 xL sin�f=2� �5�

x0R � f
f sin�f=2�1 xR cos�f=2�
f cos�f=2�2 xR sin�f=2� �6�

y0R � yR f
f cos�f=2�2 xR sin�f=2� �7�

Notice that in general the coordinates of the original
images are taken from a uniform sampling. Unfortunately
the correspondingx0, y0 coordinates of the normal images do
not enjoy this property. Therefore some type of interpola-
tion is needed in order to compensate for this drawback.

2.2. The Image matching problem

The image matching problem, between a pair of images,
is characterised by the following steps:

Step 1.A feature of interest is selected in one image.
Step 2.The same feature is identified (usually through
processing) in the second image.
Step 3.The disparity between the two image features is
recorded and can be used for the computation of 3D
information.

Stereo systems can be broadly classified into two cate-
gories [14]. The first includes techniques that match sparse
and irregularly distributed features, as edges and contours,
whereas the second includes matching of dense features,
such as grey levels. As far as the second category is
concerned, which is the one that is of interest to us, corre-
spondence is typically established using a cross-correlation
like measure. The most well-known technique in this cate-
gory, is the Differential Matching Technique (DMT) [15].

With the DMT we attempt to compensate intensity differ-
ences, appearing in the image pair, using combinations of
geometric and radiometric transformations. More precisely
a geometric transformation is used to describe the geometric
relation between corresponding points in the two images,
whereas intensity changes, due to the different viewing
directions, are compensated with a radiometric transforma-
tion. Although both transformations are linear their combi-
nation produces a non-linear transformation. This in turn

requires the solution of a non-linear optimisation problem
for the estimation of the necessary transformation para-
meters. If the variation of the radiometric parameters is
small and we have an a priori knowledge of their nominal
values then the non-linear problem can be easily reduced to
a linear one. For such a case the resulting optimisation is
well defined and easily solved through least squares. Under
the above assumptions the performance of the DMT is
known to be satisfactory [16]. However for cases where
the variation of the radiometric parameters is significant
or the a priori knowledge of their nominal values is not
available the method behaves poorly [14].

In our system we have alleviated this drawback by a
proper modification of the classical DMT. Key characteris-
tic of the proposed implementation is the fact that we were
able to reduce the original non-linear optimisation problem
to a linear one without the need of any form of linearisation
or any a priory knowledge of the nominal parameters. The
estimates of the desired geometric and radiometric para-
meters are, as in the classical method, obtained though the
solution of a well-defined least squares minimisation
problem and turn out to be reliable even for large variations
of the radiometric parameters. A detailed description of the
implemented matching algorithm can be found in Ref. [17].

3. Geometric model construction

The 3D points on the surface of the object of interest are
the input to a geometric modelling system. The underlying
mathematical representation for curves and surfaces of this
system is the well-known NURBS representation. Para-
metric representations and especially NURBS curves and
surfaces theory and applications have been thoroughly
investigated and reported in the literature [1–4,8,9,18].
They have become a de facto industry standard mainly
because they can represent both free-form shapes and
commonly used analytical shapes such as conic curves
and they offer a common mathematical form for the widely
used parametric curves and surfaces such as Be´zier and
rational Bézier curves and surfaces. Therefore, the
NURBS mathematical representation was chosen to be
implemented in the current system.

Two fitting techniques are employed in the geometric
modelling part of the system presented herein:

• A 3D point surface approximation/interpolation techni-
que which creates a surface fitted to 3D data points
(described in Section 3.2).

• Cross-sectional design technique (“skinning”) which
creates a surface from cross-sectional curves given in
NURBS form (described in Section 3.3). Alternatively,
NURBS cross-sectional curves can be created from 3D
point data by a 3D point curve approximation/interpola-
tion technique similar to the surface fitting technique
mentioned above and be subsequently skinned in order
to produce a NURBS surface.
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3.1. NURBS curve/surface definition

A NURBS curveC(s) of degreep is a parametric piece-
wise polynomial curve of degreep, defined by a set of
control pointsPi � �xi ; yi ; zi�T; i � 1;…;n; a set ofweights
wi ; i � 1;…;n; a non-decreasing sequence of real numbers
ui i � 0;…;n 1 p which is calledknot vector(and is in
effect a partition of the parameter domain) and a set of B-
Spline basis functionsNp

i �s� defined recursively by:

Np
i �s� �

s2 ui

ui1p 2 ui
Np21

i �s�1
ui1p11 2 s

ui1p11 2 ui11
Np21

i11 �s� �8a�

N0
i �s� �

1; if ui # s # ui11

0; otherwise

(
�8b�

The curve itself is defined by the following formula:

C�s� �

Xn
i�0

wiPiN
p
i �s�Xn

i�0

wiN
p
i �s�

�9�

wherewi are the weights,Pi � �xi ; yi ; zi�T the control points
andNp

i �s� are the B-Spline basis functions defined over the
knot vector {u0; u1;…; un1p} : The parameter domain is
�up11; un�: The curve can also be written in a matrix form

C�s� � bT�s�·P
bT�s�·w �

bT�s�·�Px Py Pz �
bT�s�·w �10�

where bT�s� � �bi�s�� � �Np
0�s�;Np

1�s�;…;Np
n�s��; w �

�w0;w1;…;wn�T andP is a matrix defined as

P� �Px Py Pz � �

w0x0 w0y0 w0z0

w1x1 w1y1 w1z1

..

. ..
. ..

.

wnxn wnyn wnzn

266666664

377777775 �11�

Similarly, a NURBS surface is defined by

S�s; t� �

Xk
i�0

Xn
j�0

wij Pij N
p
i �s�Nq

j �t�

Xk
i�0

Xn
j�0

wij N
p
i �s�Nq

j �t�
�12�

over a grid of control points, weights and a knot vector for
each parametric direction. In a matrix form

S�s; t� � bT�s; t�·P
bT�s; t�·w �

bT�s; t�·�Px Py Pz �
bT�s; t�·w �13�

where

bT�s; t� � �bi�s; t��
� �Np

0�s�Np
0�t�;…;Np

0�s�Np
n�t�;Np

1�s�Np
0�t�;…;

Np
1�s�Np

n�t�;…;Np
n�s�Np

0�t�;…;Np
n�s�Np

n�t��

w � �w00;w01;…;w0n;w10;…;w1n;…;wk0;…;wkn�T

andP is a matrix defined by

P� �Px Py Pz � �

w00x00 w00y00 w00z00

..

. ..
. ..

.

w0nx0n w0ny0n w0nz0n

w10x10 w10y10 w10z10

..

. ..
. ..

.

w1nx1n w1ny1n w1nz1n

..

. ..
. ..

.

wk0xk0 wk0yk0 wk0zk0

..

. ..
. ..

.

wknxkn wknykn wknzkn

266666666666666666666666666666664

377777777777777777777777777777775

�14�

wherexij ; yij ; zij are the coordinates of the control points.

3.2. Curve/surface fitting to 3D points

The first method employed in the current system for
solving the fitting problem is a technique which fits a
curve/surface to a cloud of 3D data points. The curve/
surface fitting problem to be solved here can be stated as
follows: Given a set of data pointsQi ; i � 1;2;…;m
(obtained from the image acquisition system described
earlier), find a NURBS curve or surface that fits the data
according to some specified criterion. In general, computing
the desired curve amounts to computing:

• the degreep of the basis functions, the number of control
points and weightsn;

• the location parameter valuessi corresponding to data
pointsQi ; i � 1;…;m;

• the knot vectorU;
• the control pointsPi, and weightswi ; i � 1;…;n:

For surface fitting the following have to be computed:

• The degreesp,qof the basis functions and the number of
control points and weightsn and k in the s and t para-
metric directions, respectively. These are usually user
specified.

• The location parameters�si ; ti� i � 1;…;mcorresponding
to the given data points.
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• Suitable knot vectorsU, V in parametric directions, t
taking into account the parameter distribution.

• The control pointsPij, and weightswij ; i � 1;…; k; j �
1;…;n:

Solving for all the above-mentioned unknowns at once is a
highly complicated problem. In practice, the degree of the
basis functions and the number of control points and weights
is fixed beforehand (refer to Section 3.2.1). The location
parameters and the knot vector are also determined before-
hand according to the distribution of the data points (this
procedure is called data parameterisation, see Sections 3.2.1
and 3.3.1). Therefore, the fitting procedure results to the
minimisation of an appropriate distance criterion with
respect to the unknown weights and control points.

3.2.1. Data parameterisation for curve/surface fitting
In the fitting algorithm it is required that the degree of the

curve, the number of control points and weights, the loca-
tion parameter and the knot vectors are specified or are
algorithmically inferred from the data points beforehand.
The procedure of computing these parameters is usually
called data parametrisation. Data parametrisation is usually
a three-step procedure:

1. The degreep of the basis functions in thesdirection (and
degreeq in thet direction for surfaces) and the number of
control points and weightsn (and k in the other para-
metric direction for surfaces) are determined. These are
usually user specified. The user is allowed to specify any
degree of the basis functions and number of control
points as long as the number of knots is made compatible
afterwards. Ideally, there is an optimum degree for a
specified number of control points or an optimum
number of control points for a specified degree.
However, what one means optimum in this case is not
easy to define and most of the time depends on the parti-
cular application; for example, if speed is more important
than accuracy choosing low degree basis functions with a
low number of weights and control points is more appro-
priate. Furthermore, there is always a trade off between
the degree and number of control points and computa-
tional cost: the higher the degree or the number of control
points the more costly the method. However, keeping the
balance between speed and accuracy by choosing the
degree of the basis functions and the number of control
points is a rather intuitive process. In most of the applica-
tions run on the current system a good balance between
accuracy and speed is achieved by using cubic basis
functions.

2. The location parameterssi ; i � 1;…;m corresponding to
data points��si;ti� for surfaces) are computed.

3. A suitable knot vectorU, (U, V for surface fitting)
in parametric directions, (and t for surface fitting)
is determined taking into account the parameter
distribution.

3.2.1.1. Computation of location parameters.There are
several methods used in the current system in order to
compute location parameters from the data points.

• Uniform:

si � i 2 1
m2 1

i � 1;…;m �15�

for curve fitting ofm data points, and

si � i 2 1
ms 2 1

i � 1;…;ms

tj � j 2 1
mt 2 1

j � 1;…;mt

�16�

for surface fitting of a grid ofmsmt data points. This
method assigns equidistant parameter values to the data
points, hence it is used only in ideal situations where the
data points are nearly equally distributed in space.

• Cumulative chord length:

si � si21 1
iQi 2 Qi21iXm

j�2

iQj 2 Qj21i
i � 2;…;m; s1 � 0:

�17�
in the case of curve fitting or

sij �

Xi

k�2

iQkj 2 Qk21;ji

Xms

k�2

iQkj 2 Qk21;ji

i � 2;…;ms; j � 1;…;mt s1j � 0

tij �

Xj

k�2

iQik 2 Qi;k21i

Xmt

k�2

iQik 2 Qi;k21i

i � 1;…;ms; j � 2;…;mt ti1 � 0

�18�

for surface fitting of anmsmt grid of data points. This
method assigns a parameter value to a data point accord-
ing to the length of all the line segments formed between
successive points, starting from the first and ending to the
current point. It is obvious from the definition of the
method that some sort of ordering of the data points
already exists and predefines the curve topology. This
means that as the parameter value of the curve sweeps
the parameter interval, say [0,1], a point on the curve is
“traveling” along the data points in the order they are
specified, i.e. from the first to the last. (However, the
points computed during the image acquisition phase are
not necessarily ordered so as to produce the correct object
topology.
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• Centripetal method for curve fitting:

si � si21 1
iQi 2 Qi21i1=2Xm

j�2

iQj 2 Qj21i1=2
i � 2;…;m; s1 � 0:

�19�
This method observes the changing curvature of the
underlying curve.

• Base curve/surface parametrisation: this method is due to
Ma [5]. Each data point is associated with a point on a
simple known underlying curve or surface (for example
by minimising the distance of the data point from the
selected primitive curve or surface with respect to the
parameter values). The parameter values of the asso-
ciated point on the underlying curve or surface (base
curve/surface) are the location parameter values for the
data point. This method can be applied recursively start-
ing with a simple curve/surface, improving its shape and
repeating the parameter computation until a satisfactory
result is obtained. For more on the curve/surface parame-
trisation method refer to Ref. [5].

All of the above-mentioned methods are available in the
current system and, theoretically, they could all be used as
alternatives (with different results in terms of accuracy).
However, in all of the above methods except the base
curve/surface parametrisation method the data points are
assumed to be chain or grid distributed. In the last method
(i.e. base/surface parametrisation), however, this is not
required and therefore it can be used to order the data points
in case they are randomly distributed which is often the case
for measured points obtained by a scanning device.

At this point, the problems encountered in the location
parameter computation stage of the algorithm should be
mentioned. Owing to the fact that the data points come
from multiple views of the object, there are very often
cases where there is an overlap between points coming
from different views. Therefore, there is no ordering in the
data points. Ordering the data points is, in fact, a procedure
directly connected to the topology of the object under
construction. It is better to be tackled in the image acquisi-
tion stage of the algorithm, as it is not really a geometric
procedure. It is also essential for computing the knot
vectors. However, in the current system, the lack of ordering
in the data points is overcome by adopting and using the
base surface parametrisation method described above. The
points can be ordered by ordering thes location parameters
first and thet location parameters afterwards. Experience
shows that in the case of relatively simple objects such as
fruits, a simple starting base surface such as a sphere gives
sufficiently accurate results. However, for more complicated
objects, for example objects which include holes or
branches, topological information (i.e. connectivity of the
data points) of the object of interest should be included in
the set of input data to the geometric modelling software.

3.2.1.2. Knot distribution.A suitable knot vectorU (or
suitable knot vectorsU, V for surface fitting) in
parametric directions, (and t for surface fitting) is
determined by taking into account the parameter
distribution. Commonly used methods for knot values
allocation are [5,12,18].

• Simple knots setting:

ui �

0 i � 0;…; p

i 2 p
n 2 p 1 1

i � p 1 1;…;n

1

i � n 1 1; n 1 p

8>>>>>><>>>>>>:
�20�

for curve fitting and

ui �

0 i � 0;…; p

i 2 p
n 2 p 1 1

i � p 1 1;…;n

1

i � n 1 1; n 1 p

8>>>>>><>>>>>>:
�21a�

vj �
0 j � 0;…;q

j 2 q
k 2 q 1 1

j � q 1 1;…; k

1 j � k 1 1;…; k 1 q

8>>><>>>: �21b�

for surface fitting.
• Averaging methods: in averaging methods the knot

distribution is varying according to the distribution of
the data points by taking into account the distribution
of the parameter values in the parameter domain. For
more on averaging methods see Ref. [5].

In the system presented here two averaging methods are
used because, although they are more expensive compu-
tationally, they lead to more accurate models. The first
one is a simple averaging method used for curve fitting
[12] and the other one is applicable both in curve and
surface fitting [5]. They both produce a curve or surface
which is, in general, more accurate than a curve or
surface with knots computed by a conventional method
because more basis functions (and therefore more
control points) are assigned to areas were the distribu-
tion of the data points is denser.

3.2.2. Formulation of the curve fitting problem
In the approach adopted by the system developed and

presented here, the fitting criterion is the minimisation of
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a distance function based on thel 2 norm:

Xm
l�1

iC�sl�2 Qli
2
2 �

Xm
l�1

Xn
i�0

wiPiN
p
i �sl�

Xn
i�0

wiN
p
i �sl�

2 Ql





2

2

�
Xm
l�1

bT�sl�·�Px Py Pz �
bT�sl�·w

2 Ql




2

2

�22�

with respect to the unknown control points and weights,
where sl ; l � 1;…;m are location parameters of the data
points.

3.2.3. Formulation of the surface fitting problem
Similarly to the curve fitting problem the surface fitting

problem can be stated as follows: Given a set of data points
Ql l � 1;…;m find the control points Pij and weightswij of
the NURBS surface so that some approximation criterion is
minimised. Again, the quantity to be minimised is based on
the l 2 norm

Xm
l�1

iS�sl ; tl�2 Qli
2
2 �

Xm
l�1

Xn
i�0

Xk
j�0

wij Pij N
p
i �sl�Nq

j �tl�
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j�0

wij N
p
i �sl�Nq

j �tl�
2 Ql





2

2

�
Xm
l�1

bT�sl ; tl�·�Px Py Pz �
bT�sl ; tl�·w

2 Ql




2

2

(23)

with respect to the unknown control points and weights,
where �sl ; tl� l � 1;…;m are location parameters of the
data points. Again, it is assumed that the degrees of the
surface and the location parameters and knot vectors have
been determined beforehand.

3.2.4. Fitting algorithm
A typical outline of the fitting algorithm adopted is

(described in Ref. [5]).

• Input: 2D or 3D data points.
• Assign initial parameter values to the data points.
• Assume an initial knots distribution.
• Go through an interpolation or approximation procedure

to obtain the weights and control points of the NURBS
curve or surface, i.e. obtain the fitting curve or surface.

• Optimise the parameter distribution if necessary to obtain
a better fit [7].

• Output: NURBS surface.

The first two steps of the algorithm were described in
Section 3.2.1. Parameter optimisation schemes are not
implemented in the current system. This is because in
most of the modelling applications the model constructed
by the fitting technique described in this paper is sufficiently

accurate. Therefore, it is not necessary to further load the
modelling procedure with time consuming processes with-
out a significant gain. In the rest of this section the mini-
misation of Eq. (22) or (23) with respect to the unknown
control points and weights is briefly described.

The minimisation of the distance problem defined by Eq.
(22) or (23) for curve or surface fitting, respectively, is
equivalent to solving, in a least square sense, the linear
systems

Nm×r ·Px 2 Qx·Nm×r ·w � 0 Nm×r ·Py 2 Qy·Nm×r ·w � 0

Nm×r ·Pz 2 Qz·Nm×r ·w � 0 (24)

wherer � n 1 1 for curve fitting orr � �k 1 1��n 1 1� for
surface fitting, N � �bi�sj�� i � 1;…; r ; j � 1;…;m for
curve fitting or N � �nji � � �bi�sj ; tj�� i � 0;…; r ; j �
1;…;m for surface fitting, and

Qx � diag�X1
… Xm �; Qy � diag�Y1

… Ym �;
Qz � diag�Z1

… Zm �
are diagonal matrices which contain the coordinates of the
data points (computed in the image acquisition stage). Eq.
(24) can be rearranged in matrix form

N 0 0 2Qx·N

0 N 0 2Qy·N

0 0 N 2Qz·N

2664
3775

3m×4�k11��n11�

Px

Py

Pz

w

26666664

37777775 �
0

0

0

0

26666664

37777775 �25�

In solving the homogeneous linear system (25) in a least
square sense, special care is needed for the computation of
weights because they need to be positive. In Ref. [5] Ma
shows how to compute the weights and control points in a
two step linear fashion by separating the weights and control
points in a linear system of the form

Mm×�k11��n11�·w � 0 �26�
whereM is a symmetric non-negative matrix of dimension
�k 1 1��n 1 1�: The unknown weights can be found by mini-
mising the Rayleigh quotient of matrixM under suitable
constraints for the weights. Interpolating solutions are
found if rank�M � , �k 1 1��n 1 1�:

3.3. Cross-sectional design

The second method employed in the current system for
solving the fitting problem is based on a cross-sectional
design technique which fits a NURBS surface to a sequence
of NURBS curves. For more on cross-sectional design see
Refs. [10,11]. In the case where the cross-sections are not
given, but only the 3D data points are available, this tech-
nique can still be used by filtering the data points in such a
way as to create cross-section data. This means that those
points which are within a given tolerance from user
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specified planes are classified as belonging to the same
cross-section curve. The rest of the points are discarded.
Each set of cross-section data points is then fitted with
a NURBS curve by the algorithm described in the
previous section. The NURBS curves are then “skinned”
using the algorithm presented in Section 3.3.3.
However, before the “skinning” of the curves certain
parameters have to be computed before hand (data para-
metrisation). The data parametrisation procedure is
described in the next section.

3.3.1. Data parametrisation for cross-sectional design
In the case of cross-sectional design the following have to

be determined before the “skinning” procedure:

1. Degree of the cross-sectional curves (it must be the same
for every curve; it is the same as the degree of the surface
under construction in the direction of the cross-sections)
and the degree of the surface in the other parametric
direction, as well as the number of weights and control
points in each parametric direction, i.e:
◦ Degreep of the surface in the direction of the cross-

sectional curves (say in thes-direction).
◦ Degreeq of the surface in the other (“longitudinal”)

parametric direction.
◦ Number of weights and control points for each cross-

sectional curve.
◦ Number of weights and control points in the “long-

itudinal” direction.
The degree and number of control points for the cross-
section curves are given when the input are the curves
themselves. If the input is data points they are user
specified along with the degree and number of control
points and weights of the longitudinal direction. The
same rules and restrictions mentioned in Section 3.2.1
for point fitting apply here as well.

2. Parameter values corresponding to data points for each
cross-sectional curve. These values can be computed by
any of the methods described for curve fitting. This step
is applicable if the cross-section curves are given in terms
of data points on the curves instead of the curves
themselves.

3. Knot vectors for each cross-sectional curve. These can
also be computed by any of the methods described for
curve or surface fitting. This step is applicable if the
cross-section curves are given in terms of data points
on the curves instead of the curves themselves.

4. Location parameters for the control points of the cross-
section curves in the longitudinal direction. These can be
computed by parametrising (by any of the methods for
curve fitting) the control points of the given cross-section
curves in the longitudinal direction.

5. Knot vector for the control points of the cross-section
curves in the longitudinal direction. These can be
computed by any of the methods described for

curve fitting once the parameter values have been
determined.

3.3.2. Formulation of the fitting problem
In the cross-sectional design a surface has to be

constructed from a collection of given curves. The cross-
sectional design problem can be stated as follows: A collec-
tion of NURBS curves

Cl�s� �

Xk
i�0

wl
iP

l
iN

p
i �s�

Xk
i�0

wl
iN

p
i �s�

l � 1;…; n �27�

is given. From this collection of curves a NURBS surface
(defined by Eq. (13)) that interpolates them has to be
constructed. Therefore, the surface under construction
needs to interpolate the given curves at certain parameter
values, i.e. it should have the following interpolation
property

S�s; tl� � Cl�s� l � 1;…;n �28�
It should be emphasised that the cross-section curves
defined by Eq. (27) are compatible. This means that they
have the same degree, the same number of weights and
control points and are defined over the same knot vector.
In case the input cross-section curves are not compatible,
degree raising and knot insertion algorithms like the Boehm
or the Oslo algorithm [6] can be employed to force compat-
ibility, without changing the curves’ geometry.

3.3.3. Fitting algorithm
The fitting algorithm adopted in the system presented

here is as follows.

• Input: cross-sectional curves or 3D data points. In the
case that the data is in point form, organise them in
sets of cross-sectional data and fit a NURBS curve to
each set by the algorithm presented for curve fitting.

• Make all curves compatible (if they are not already).
• Go through a skinning technique like the one presented

below.
• Output: NURBS surface.

The problem of curve fitting from 2D or 3D data points was
investigated in the previous section. Therefore, in the
following it is assumed that the cross-section curves are
known or they have been already computed. Thus the skin-
ning algorithm used in the geometric modeller is presented
in the following section.

3.3.4. Skinning method
It is known that a NURBS surfaceS�s; t� of degreesp, q at

a fixed parameter valuet � a and s ranging in [0,1], is a
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NURBS curve of degreep with weights [18]

wi �
Xn
j�0

wij N
q
j �a� �29�

and control points

Pi �
Xn
j�0

wij N
q
j �a�

wi
Pij �30�

The cross-section curve defined by Eq. (27) should be iden-
tical to the curve defined by the control points and weights
defined by Eqs. (29) and (30) at parameter valuet � tl :
Therefore,

wi � wl
i and Pi � Pl

i ; i � 0;…; k �31�
This leads to the following system of linear equations with
respect to the unknown weightswij and control pointsPij of
the desired surfaceXn
j�0

Nq
j �tl�wij � wl

i ; i � 0;…; k; l � 0;…;n �32�

Xn
j�0

wij N
q
j �tl�Pij � wl

iP
l
i ; i � 0;…; k; l � 0;…;n �33�

Solving Eqs. (32) and (33) guarantees interpolation of the
section curves by the NURBS surface. The solution is
computed in a two-step fashion; first solving Eq. (32) for
the unknown weights and then solving Eq. (33) for the
unknown control points.

4. Error computation

In this section error computation techniques are
presented.

The simplest way to compute the deviation of the
measured points from the computed surface is to compute
the distancedi of each measured pointQi (which is asso-
ciated with a parameter pair (si,ti)) from the point Si �
S�si ; ti�� on the computed surface (orSi � S�si� for curves).
The total error can then be computed as

Et �
Xn
i�1

di �
Xn
i�1

iQi 2 Sii2 �34�

and the mean error, forn data points, can then be expressed
as

Em � 1
n

Et � 1
n

Xn
i�1

di � 1
n

Xn
i�1

iQi 2 Sii2 �35�

However, as Fig. 4 illustrates, the computed distance which
determines the error measurement does not necessarily
correspond to the actual distance of the measured pointQi

from the computed curve or surface.
A more accurate approach would be to compute the

perpendicular distance of the measured pointQi to the
curve or surface, i.e the distance ofQi to the pointGi on
the curveS(s). For this purpose, the parameter value s corre-
sponding to the pointGi has to be computed. Since the
vectorsQi 2 Si is orthogonal to the derivative vectorS0(s)
of the curve, the inner product of the two vectors is 0, hence
the following condition for the pointGi � S�s� is obtained:

�Qi 2 S�s��·S0�s� � 0 �36�

Hence, solving Eq. (36) fors gives the location of the point
Gi. The total and mean errors can then be computed by Eqs.
(34) and (35) substitutingGi for Si.

Note that solving Eq. (36) is equivalent to the following
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Fig. 4. Error computation techniques.

Fig. 5. Data points on the surface of the left ventricle of the heart.

Fig. 6. Crossectional data of the left ventricle of the heart.



minimisation problem:

miniQi 2 S�s�i2
2 �37�

with respect to the unknown parameters.
A useful error measurement is the relative error. For

closed curves it can be formulated as

Er �
Xn
i�1

iQi 2 S�s�i2

Ri
�38�

whereRi is the distance of the pointGi from the barycentre
of the curve. The mean relative error is then

er � 1
n

Er � 1
n

Xn
i�1

iQi 2 S�s�i2

Ri
�39�

5. Illustrative examples

In this section several illustrative examples are presented
to demonstrate the techniques employed in the image acqui-
sition/geometric modelling system. The first experiment
involves modelling a human heart and in particular three
components of it, the right and left ventricles and the
myocardium. Each component was modelled separately
and then they were all pieced together to form a single
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Fig. 9. Data points on the surface of the right ventricle of the heart.

Fig. 7. Surface model of the left ventricle of the heart.

Fig. 8. Finite element mesh of the left ventricle.

Fig. 10. Cross-sectional data of the right ventricle of the heart.

Fig. 11. Surface model of the right ventricle of the heart.



model of the heart. The data points provided by the Univer-
sity of Ilmenau (Germany), were obtained from tomography
data ([19,20]) and were fitted by using the cross-sectional
design technique described in Section 3.3. The data points
of the left and right ventricles and the myocardium are
shown in Figs. 5, 9 and 13, respectively.

• First, the raw 3D data points were filtered according to
their distance from user specified planes. This not only
organises the raw 3D data into cross-sectional data but
also significantly reduces the amount of input to the
geometric modelling software, thus significantly increas-
ing the speed of the whole modelling procedure. All
points within some tolerance from a particular plane
were classified as belonging to the same cross-section
curve. The so-produced cross-sectional data points are
shown in Figs. 6, 10 and 14, respectively.

• The points on each curve were parametrised by a base
curve parametrisation method (using a circle as a base
curve) and the knot vectors were computed and made
compatible.

• The cross-sectional data were subsequently fitted with
cubic curves, with 20 control points each, using the

curve fitting technique described in Section 3.2. This
means that the weightswl

iand control pointsPl
i of Eqs.

(32) and (33) were computed.
• Then, the weights (wij) of the resulting surface were

computed using Eq. (32).
• The control points (Pij) of the resulting NURBS surface

were found using Eq. (33).

The resulting surfaces are shown in Figs. 7, 11 and 15.
One may observe that the models follow smoothly the corre-
spondingX, Y, Z data, allowing for a direct input to a finite
element geometric mesh generator. Problems encountered
during the geometric modelling procedure mainly concern:

(a) the appropriate selection of the control points to avoid
possible overlapping of the individual components of a
composite object such as the model of a complete heart.
Such problems may be due to inaccuracies in the image
acquisition or the modelling stage of the system, in areas
where two or more individual components are very close
to each other;
(b) to enable the creation of a smooth surface with no
localised disturbances. Such problems may be due to an
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Fig. 14. Cross-sectional data of the myocardium.

Fig. 12. Finite element mesh of the right ventricle.

Fig. 13. Data points on the surface of the myocardium of a human heart. Fig. 15. Surface model of the myocardium of Fig. 9.



uneven distribution of the 3D data points computed in the
image acquisition stage of the algorithm.

After the geometric models were created, it was possible
to use them as input to a commercial F.E. mesh generator by
using IGES interface with no need for manual manipulation
at the stage of mesh generation. Thus, importing the smooth
model to the ANSYS mesh generator, the F.E. models
shown in Figs. 8, 12 and 16 were obtained.

Error estimation for the three examples mentioned above
is given in the following table:

Mean error
(mm)

Mean relative error
(%)

Left ventricule 2.5 1.22
Right ventricule 2.8 1.42
Myocard 1.9 0.90

The technique presented here is also suitable for other
applications as well, for example in the field of agricultural
engineering. Thus, the same technique was applied in order
to model a pear. Geometric modelling of pears was used in
the framework of non-destructive testing concerning the
quality assessment of such fruits by employing system iden-

tification techniques [2,21]. Figs. 17–19 show the 3D data
obtained by the image acquisition technique described in
Section 2, the resulting surface of the pear and its finite
element model, respectively.

A major difficulty in order to produce a smooth surface of
the desired object is related to the distribution of the 3D data
point along the surface of object. If the data points resulting
from the image acquisition phase are not uniformly distrib-
uted the parameterisation of the corresponding cross-section
curves varies a lot between the curves. This may produce a
rather twisted geometric surface. So, extra attention is
needed in such cases in order to construct well parametrised
cross-section curves during the first steps of the geometric
modelling algorithm.

Finally, in Figs. 20–22 we present the image acquisition–
geometric modelling–finite element modelling cycle for a
simple quadric surface, a cone. The results show that, using
the technique described above, it is possible to model free-
form objects and also surfaces, such as quadrics, that are
often encountered in many modelling problems of artificial
objects, such as mechanical components, archaeological
objects etc.
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Fig. 16. Finite element mesh of the myocardium.

Fig. 17. Data points on the surface of a pear.

Fig. 18. NURBS surface of the pear.

Fig. 19. Finite element mesh of the pear.



6. Conclusion

An image acquisition–geometric modelling system for
the construction of geometric models of natural objects
was presented. The system is able of scanning the desired
object, obtain 3D information in the form of 3D data points
and fit a surface to them, thus creating a mathematical
description of the object.

In the image acquisition stage, a modified Differential
Matching method is used in order to compute coordinates
of points on the surface of the object.

Then, the computed 3D points are used in the geometric
modelling part of the system. They are organised in cross-
sectional data and a NURBS curve is fitted to each cross-
section. The cross-section NURBS curves are then
“skinned”, producing a NURBS surface approximating the
object of interest.

The system presented is able to model both open and
closed surfaces, with NURBS surfaces of arbitrary degree.
In principle, objects with holes, slits etc. can be modelled,
but somehow this information has to be obtained before-
hand, probably in the image acquisition stage. In this case,

additional topological information must be added in the
input to the geometric modelling system, i.e. some sort of
neighbourhood connectivity information of the data points.
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