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We study the secretary problem in which rank-ordered lists are generated by the Mallows 
model and the goal is to identify the highest ranked candidate through a sequential 
interview process which does not allow rejected candidates to be revisited. The main 
difference between our formulation and existing models is that, during the selection 
process, we are given a fixed number of opportunities to query an infallible expert whether 
the current candidate is the highest-ranked or not. If the response is positive, the selection 
process terminates, otherwise, the search continues until a new potentially optimal 
candidate is identified. Our optimal interview strategy, as well as the expected number of 
candidates interviewed and expected number of queries used can be determined through 
the evaluation of well-defined recurrence relations. Specifically, if we are allowed to query 
s − 1 times and to make a final selection without querying (thus, making s selections 
in total) then the optimum scheme is characterized by s thresholds that depend on the 
parameter θ of the Mallows distribution but are independent on the maximum number of 
queries.

 2023 Elsevier B.V. All rights reserved.

1. Introduction

The secretary problem, also known as the game of googol and the picky bride problem, was formally introduced by 
Gardner [11,12] and is considered a prototypical example in sequential analysis, optimization, and decision theory. It can be 
stated as follows: N individuals are assumed to be ranked from best-to-worst without ties according to their qualifications. 
They apply for a “secretary” position, and are interviewed one by one, in a uniformly random order. When the ith candidate 
appears, one can only rank her/him with respect to the i −1 already interviewed individuals. At the time of the ith interview, 
the employer can make the decision to hire the person presented or continue with the interview process by rejecting the 
candidate; rejected candidates cannot be revisited at a later time. If only one selection is to be made, what selection strategy 
(i.e., stopping rule) maximizes the probability of selecting the best (highest ranked) candidate?

The first published solution to the problem is due to Lindley [19] in 1961 and is based on algebraic methods. Dynkin [5]
solved the problem in 1963 by viewing the selection process as a Markov chain. For N large enough, the answer turns out to 
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be surprisingly elegant and simple: the first N/e candidates are automatically rejected (e stands for the base of the natural 
logarithm) and the first candidate that outranks all previously seen candidates after that point is selected for an offer. This 
strategy ensures a probability of successful identification of the best candidate equal to 1/e, provided that N is allowed to 
go to infinity.

The secretary problem has been extended in many directions. Examples include full information games [15], the classical 
secretary problem on posets [9,13,14,25] and in the context of matroid theory [2,27], as well as the Prophet inequality 
model [18]. For more extensions and a detailed history of the development of secretary problem, the interested reader is 
referred to [6,8]. In particular, an extension of the classical secretary problem, known as the Dowry problem with multiple 
choices (henceforth, the Dowry problem), was studied by Gilbert and Mosteller in their seminal work [15]. In the Dowry 
problem, one is allowed to select s ≥ 1 candidates during the interview process, and the criteria for success is that the 
selected group includes the optimal candidate. This review process can be motivated or extended in many different ways: 
For example, one may view the s-collection to represent candidates invited for a second round of interviews.

For both the secretary and Dowry problem, the modeling assumption is that the candidates are presented to the evaluator 
uniformly at random. Nevertheless, it is often the case that the candidates are presented in an order that is nonuniform [4,
16,17,20,21]. This consideration lends itself to a generalization of the secretary problem introduced by Jones in [17]. The 
paper [17] considers candidates arriving in an order dictated by a sample permutation from the Mallows distribution [23]. 
In particular, when N → ∞, Jones [17] showed that the optimal strategy for the classical secretary problem under the 
Mallows model (parametrized by θ > 0) is as follows: (1) when θ < 1, reject all but the last j = max(−1/ ln θ, 1) candidates 
and select the next left-to-right maximum thereafter; and (2) when θ > 1, reject the first k candidates and select the next 
left-to-right maximum thereafter. Here, k is a function of θ but independent on N . It is important to point out that the focus 
of the work addressed the secretary problem (with one selection), with recent extensions providing companion solutions 
for the postdoc problem [20,21], introduced by Dynkin in the 1980s [26,28].

Motivated by a recent line of problems considering learning problems with queries [1,3,10,24], we introduce the problem 
of query-based sequential analysis under the Mallows model. In our setting, we make use of the Mallows distribution1 and 
assume that the decision making entity has access to a limited number of queries to an infallible expert. When faced 
with a candidate identified by an exploration-exploitation procedure as the potentially optimal choice, an expert provides 
an answer of the form “Best” and “Not the best.” If the answer is “Not the best,” a new exploration-exploitation stage 
is initiated, with the potential of using another query at the end of the process. If the answer is “Best,” the sequential 
examination process terminates. Given a budget of s − 1 queries, where s is usually a relatively small positive integer, e.g., 
2 ≤ s ≤ 5, the questions of interest is to find the optimal interview strategy, the optimal probability of success and the 
expected number of candidates interviewed or experts queried until success or termination. Note that we are allowed to 
make a final selection without querying experts after using all s − 1 queries; thus, we have a budget of s − 1 queries and 
can make at most s selections.

When applied on the random interview model, the above setting resembles the Dowry problem as both allow for se-
lecting s candidates. In the Dowry problem, one is allowed to make s selections without the information about the global 
ranking of the selected candidates while in our query-based setting the expert is asked if the candidate is globally the 
best. Furthermore, it assumes that candidate lists are Mallows samples and even for the Dowry problem, such a distribution 
assumption was not considered in the past.

For a Mallows distribution parametrized by θ > 0, the case θ > 1 corresponds to a decreasing trend in the quality 
of candidates while the case 0 < θ < 1 corresponds to an increasing trend in the quality of candidates. The case θ = 1
corresponds to the uniform distribution. In our query-based model, we are provided with s − 1 (s ≥ 1) opportunities to 
query an expert whether the current candidate is the best or not. If the best candidate is not identified after these queries 
we are still allowed to make a final selection without querying experts. In terms of the optimal probability of winning and 
the optimal strategy, the query-based model with s − 1 queries is equivalent to the Dowry problem with s selections, since 
(i) they both have in total a maximum budget of s selections; (ii.1) if a selected candidate presented as the ith selection, 
where 1 ≤ i ≤ s − 1, is the globally best candidate then in the query-based model we accept this candidate and stop our 
search. In the Dowry model we select, save, and move on since we still have at least one selection left, which will not 
influence the result as we already picked the best candidate; (ii.2) if the sth selection is the best candidate, the two models 
are equivalent as we will save the selected candidate in both models; (iii.1) if a candidate at the ith selection time, where 
1 ≤ i ≤ s − 1, is not the globally best candidate then in the query-based model we will be informed about this fact and will 
continue the search while in the Dowry model we will not have this information available but will still continue since there 
is at least one selection left; (iii.2) if a selected candidate at the sth selection point is not the best, then under both models 
we will save the candidate and terminate.

The optimal query and selection strategies for both our query-based model and the Dowry model depend on the value of 
the parameter θ of the Mallows model. For N → ∞ and θ > 1, the optimal strategy2 is an s-threshold (k1, . . . , ks)-strategy 
(formally defined in Theorem 25) with 0 ≤ k1 ≤ . . . ≤ ks '→ ∞, where ki , 1 ≤ i ≤ s, is the threshold for the ith selection. In 

1 Our results actually apply to a broader class of distributions represented by prefix-equivariant statistics, as will be apparent from our proofs.
2 Since there may exist more than one optimal strategies which can attain the optimal winning probability, we use “an optimal strategy” to refer to one 

of the optimal strategy and “the optimal strategy” to refer to all optimal strategies.
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this setting, an optimal strategy is as follows: When making the ith selection, for each 1 ≤ i ≤ s, we reject all candidates up 
until position ki , then select the next left-to-right maxima (a candidate which is the best when compared with all examined 
candidates up to that point). For 0 < θ < 1, the optimal strategy is also an s-threshold (k1, . . . , ks)-strategy; however, in this 
case, k1 ≤ . . . ≤ ks ≤ N − 1 and N − k1 '→ ∞.

Furthermore, let N be a fixed positive integer; for each positive real number θ , there exists a sequence of numbers 
a1(θ), a2(θ), . . . that depends only on θ , such that a1(θ) ≥ a2(θ) ≥ a3(θ) ≥ . . . and an optimal strategy for the proposed 
query-based model (with s − 1 queries in total) is the s-threshold (as(θ), . . . , a1(θ))-strategy. In addition, the thresholds 
in the (as(θ), . . . , a1(θ))-strategy do not change with the value of s if read from the right. For example, let θ > 0 be 
fixed, and assume that the optimal strategy for s = 2 is the (a2(θ), a1(θ))-strategy and an optimal strategy for s = 3 is the 
(a3(θ), a2(θ), a1(θ))-strategy; when s increases from 2 to 3, our optimal strategy will only add a3(θ) on the left and the 
parameter values at later positions in the strategy will not change with s. Even though a special case of our version of 
the problem exhibits similarities with the Dowry problem with multiple choices proposed by Gilbert and Mosteller [15], 
there are essential structural and methodological differences, since in our case we allow for early stopping, address non-
uniform (e.g., Mallows) candidate interview distributions and, most importantly, provide an exact (non-asymptotic) proof of 
the optimality of our scheme for any number of queries.

An important combinatorial method to study sequential problems under nonuniform ranking models was developed in 
a series of papers by Fowlkes and Jones [7], and Jones [16,17]. For consistency, we use some of the notation and definitions 
from Jones [17] but also introduce a number of new concepts and combinatorial proof techniques. In particular, finding 
recurrence relations for more than one selection is significantly more challenging than for the secretary problem, and the 
optimal strategies differ substantially from the classical ones as our results include multiple thresholds for stopping.

The paper is organized as follows. Section 2 introduces the relevant concepts, terminology and models used throughout 
the paper. The same section also contains a number of technical lemmas that help in establishing our main results pertaining 
to the optimal selection strategies. An in-depth analysis of the exploration stages and the probabilities of success for the 
optimal selection processes under the Mallows distribution are presented in Section 4. Numerical results for the exploration 
phase lengths and optimal winning probabilities versus θ are discussed in Section 5. Results of our analysis for the expected 
number of questions (selections) used are presented in Section 6, with all numerical results available in the full online 
version of the manuscript [22].

2. Preliminaries

The sample space is the set of all permutations of N elements, i.e. the symmetric group S N , with the underlying σ -
algebra equal to the power set of SN . The best candidate is indexed by N , the second-best candidate by N − 1, . . ., and the 
worst candidate is indexed by 1. The interview committee can accurately compare the candidates presented up to a certain 
time point, but cannot assess the quality of the future candidates. We also assume that there is a budget of s − 1 queries 
(s ≥ 1) to be made that produce an answer whether a current candidate is the globally best one or not, as well as a final 
selection that does not involve queries (thus, a total of s selections). These modeling assumptions are equivalent to those 
of the Dowry problem with s selections if one only considers the optimal probability of success and winning strategy. Still, 
there are differences in the expected interview times which are discussed in Section 6.

Furthermore, unlike the standard model of the secretary and Dowry problem, our framework assumes that the candidates 
are presented (one-by-one, from the left) according to a permutation (order) dictated by the Mallows distribution Mθ , 
parametrized by a real number θ > 0. The probability of presenting a permutation π ∈ S N to the hiring committee equals

f (π) = θ c(π)

/ ∑

π∈S N

θ c(π),

where c : SN → N equals the smallest number of adjacent transpositions needed to transform π into the identity permu-
tation [12 · · · N]. Equivalently, c(π) equals the number of pairwise element inversions, and is also known as the Kendall τ
distance between the permutation π and the identity permutation [12 · · · N]. Note that the notation for a permutation in 
square bracket form should not be confused with the notation for a set [a, b] = {a,a + 1, . . . ,b}, b ≥ a, and the meaning of 
the notation used will be clear from the context.

As remarked upon in Section 1, the query-based model and the Dowry model in the uniform permutation selection 
setting are the same problem when considering the maximum probability of winning and a corresponding optimal strategy. 
Therefore, for simplicity, we present our results for the new Mallows model in the “language” of the Dowry problem with s
selections.

2.1. The Q , Q o, Q̄ probabilities and strike sets

For a given permutation π ∈ SN drawn according to the Mallows model, we say that a strategy wins if it correctly 
identifies the best candidate when presented with π . The notion of a prefix is introduced to represent the current relative 
ordering of candidates. Given a permutation π ∈ SN , the k(th) prefix of π , denoted by π |k , is a permutation in Sk and it 
represents the relabeling of the first k elements of π according to their relative order. For example, if π = [635124] ∈ S6
and k = 4, then π |4 = [4231].
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Fig. 1. The prefix tree, Q 1, Q o
1 , Q 2, Q o

2 probabilities, and a 2-strike set when N = 4 and θ = 1.

Definition 1. Let σ ∈
N⋃

i=1
Si and assume that the length of the permutation, |σ |, equals k.

(1) We say that π ∈ SN is σ -prefixed if π |k = σ . For example, π = [165243] ∈ S6 is σ = [1432]-prefixed.
(2) Given that π is σ -prefixed, we say that π is σ -winnable if accepting the prefix σ , i.e. if accepting the |σ |th

candidate when the order σ is encountered identifies the best candidate of the interview order π . More precisely, for 
σ = [σ (1)σ (2) · · ·σ (k)], we have that π is σ -winnable if π is σ -prefixed and π(k) = N .

Definition 2. A left-to-right maxima in a permutation π ∈ SN is a position whose value is larger than all values to the left of 
the position. For example, if π = [423516] ∈ S6, then the first, fourth, and sixth position are left-to-right maxima.

Definition 3. We say that a permutation σ ∈
N⋃

i=1
Si is eligible if it ends in a left-to-right maxima or has length N . For 

example, let N = 6. Then both [1324] and [165243] are eligible.

A permutation π ∈ SN is sampled from the Mallows model before the interview process. During the interview process, 
each entry of π is presented one-by-one from the left; the relative ordering of the positions presented so far forms a prefix 
of π . That is the only information that can be used to decide whether to accept or reject the current candidate. Therefore, 
every strategy can be represented as a set of permutations of possibly different lengths that lead to an accept decision for 
the last candidate observed; such a set is called a strike set. More precisely, the selection process proceeds as follows: If the 
prefix we have seen so far is in the strike set, then we accept the current candidate and continue (if there is at least one 
selection left); if it does not belong to the strike set, we reject the current candidate and continue. For example, let N = 4
and s = 1. Then, the boxed set of permutations A = {[12], [213], [3124], [3214]} in Fig. 1 is a strike set. The corresponding 
interview strategy may be summarized as follows: If the relative order of the candidates interviewed so far is in the set A, 
then accept the current candidate; otherwise, reject the current candidate.

Since in our model there are s selections, we make use of s-strike sets defined below.

Definition 4. A set X ⊆ ⋃N
j=1 S j is called an s-minimal set if it is impossible to have s + 1 elements α1, α2, . . . , αs+1 ∈ X

such that αi+1 is a prefix of αi , for all i ∈ {1, 2, . . . , s}.

Definition 5. A set of permutations A ⊆ ⋃N
j=1 S j is called an s-strike set if it satisfies the following three conditions:

(1) It comprises prefixes that are eligible.
(2) The set A is s-minimal. The set A may contain elements α1, α2, . . . , αs such that αi+1 is a prefix of αi , for all 

i ∈ {1, 2, . . . , s − 1}. In other words, based on an s-strike set one can make at most s selections.
(3) Every permutation in SN contains some element of A as its prefix (i.e., given an s-strike set one can always make a 

selection based on its elements).

A 1-strike set corresponds to the valid strike set defined in the paper of Jones [17] when only one choice is allowed. We 
use the term strike set whenever s, the number of total selections, is clear from the context.

From the previous definition and the fact that we are allowed to make at most s selections it follows that any optimal 
strategy for our problem can be represented by an s-strike set. For example, the set {[1], [12], [213], [3124], [3214]} in Fig. 1
is a 2-strike set, which also represents an optimal strategy for the case N = 4 and s = 2. See also Example 28. Furthermore, 
for a permutation σ of length k, where 1 ≤ k ≤ N , and i ∈ {1, 2, . . . , s}, we make extensive use of the following probabilities.

Definition 6. Let σ be a permutation of length k, where 1 ≤ k ≤ N , and let i ∈ {1, 2, . . . , s}. Define
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Q i(σ ), the probability of identifying the best candidate with the strategy accepting the kth position and using the best 
strategy thereafter conditioned on the pre-selected interviewing order π being σ -prefixed and i selections still being avail-
able when interviewing the candidate at position k.

Q o
i (σ ), the probability of identifying the best candidate with the best strategy after making a decision for the kth position

conditioned on the pre-selected interviewing order π being σ -prefixed and i selections still being available right after the 
interview of the kth candidate.

Q̄ i(σ ), which equals Q̄ i(σ ) = max{Q i(σ ), Q o
i (σ )}.

In words, Q represents the probability of winning by accepting the current candidate while Q o is the probability of 
winning based on future selections in the interview process. In order to ensure the maximum probability of winning, an 
optimal strategy will examine two available choices, i.e. “accept the current candidate” or “reject the current candidate 
and implement the best strategy in the future” at each stage of the interview and select the one with a better chance of 
identifying the best candidate.

Remark 7. Let 1 ≤ i ≤ s. Consider an arbitrary permutation σ of length N . If the last position of σ is N , then Q i(σ ) = 1, 
Q o

i (σ ) = 0, and Q̄ o
i (σ ) = 1. If the last position of σ is not N , then Q i(σ ) = 0, Q o

i (σ ) = 0, and Q̄ o
i (σ ) = 0, since selecting 

the last candidate will not result in success and the search will terminate after interviewing the last candidate. For a 
permutation σ of length at least N − i, Q i+1(σ ) = . . . = Q s(σ ). Furthermore, for a permutation σ of length at least N − i, 
Q o

i (σ ) = Q o
i (σ ) = . . . = Q o

s (σ ).

We also need the following definitions.

Definition 8. Let σ be a permutation of length k ≤ N . The standard denominator S D(σ ) of σ equals

S D(σ ) =
∑

σ -prefixed π∈S N

θ c(π).

Furthermore, Win(σ ) stands for the sum of the weights θ c(π) over all σ -winnable permutations π ∈ SN .

The case i = 1 was first analyzed by Jones [17], establishing that

Q 1(σ ) =

∑

σ -winnable π∈S N

θ c(π)

∑

σ -prefixed π∈S N

θ c(π)
= W in(σ )

S D(σ )
. (1)

Definition 9. The * operation for two fractions a
b and c

d is defined as a
b * c

d = a+c
b+d .

Roughly speaking, the * operation will be used to compute the probability of the union of two disjoint events from two 
disjoint sample spaces over a new sample space equal to the union of the sample spaces. It is important to point out that 
we do not cancel common divisors in the defining fractions for the probabilities Q , Q o, Q̄ until the final step.

Each entry of pre-selected permutation π is presented one-by-one from the left during the interview process, and the 
relative ordering of the already observed positions forms a prefix of π . This relative ordering changes with more candidates 
being interviewed and we need a means to describe this process.

Definition 10. For each σ of length & − 1, where & ≤ N , we define λ j(σ ), 1 ≤ j ≤ &, to be the σ -prefixed permutation of 
length & such that its last position has value j; the permutation is obtained by relabeling the & positions of σ . For example, 
for σ = [123], a permutation of length 3, we have λ1(σ ) = [2341], λ2(σ ) = [1342], λ3(σ ) = [1243] and λ4(σ ) = [1234].

Let σ be a permutation of length 1 ≤ k ≤ N with Q i(σ ), Q o
i (σ ), Q̄ i(σ ) defined as above, and 1 ≤ i ≤ s selections available 

right before processing the kth candidate of a σ -prefixed permutation. For each 1 ≤ i ≤ s, if the kth position of σ is selected, 
then the number of selections available decrease by one; if the kth candidate is rejected, then the number of selections 
available does not change. When the number of available selections becomes zero or all candidates are examined, the 
process terminates.

After making a decision on the |σ |th candidate, the interviewer examines the next applicant while the relative order of 
the interviewed candidates changes to one of λ1(σ ), . . . , λk+1(σ ). An optimal strategy involves making a decision with the 
largest probability of winning when encountering each of the λ1(σ ), . . . , λk+1(σ ):

Q o
i (σ ) = Q̄ i(λ1(σ )) * · · · * Q̄ i(λk+1(σ )). (2)

Proposition 11 provides a way to write Q i(σ ) using Q probabilities with smaller subscripts (i.e., Q 1(σ ) and Q o
i−1(σ )). 

This simple result is heavily used in the proofs to come.
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Proposition 11. For i ∈ {2, . . . , s},

Q i(σ ) = Q 1(σ ) + Q o
i−1(σ ). (3)

Proof. Equation (3) holds since there are two (disjoint) events that ensure winning after examining the current candidate, 
i.e., (a) the current candidate is the best and (b) the current candidate is not the best but we identify the best candidate 
at a later time with a best strategy after rejecting the current candidate. In the first case, the probability of successfully 
identifying the best candidate is Q 1(σ ); in the second case, the number of available selections decreases by one and the 
corresponding probability is Q o

i−1(σ ). !

Following an approach suggested by Jones [17], we make use prefix trees which naturally capture the inclusion relation-
ships between prefixes of permutations. The concept is best described by an illustrative example, shown in Fig. 1 for S4. 
The correspondence between sub-trees/sub-forests is crucial for the proof of Lemma 20 and 22.

Definition 12. Let T be the tree capturing the inclusion relationships between prefixes of permutations of length at most 
N . In other words, for V being the collection of all permutations of length at most N , we let T = (V , E) be such that if 
σ , τ ∈ V and σ is a prefix of τ with |σ | = |τ | − 1, then we have an edge στ ∈ E . We define T̄ (σ ) to be the subtree in T
comprising σ and its descendants and let T o(σ ) = T̄ (σ ) − σ be the forest obtained by deleting σ from T̄ (σ ).

In Fig. 1, if σ = [12], then T̄ (σ ) is the subtree induced by the vertices

{[12], [123], [132], [231], [1234], [1243], [1342], [2341], [1324], [1423], [1432], [2431], [2314], [2413], [3412],
[3421]}

and T o(σ ) is the forest induced by the vertices

{[123], [132], [231], [1234], [1243], [1342], [2341], [1324], [1423], [1432], [2431], [2314], [2413], [3412],
[3421]}.

Let F1 be the sub-forest obtained by deleting the vertex [12] in the tree induced by [12] and its descendants, let F2 be 
the sub-forest obtained by deleting the vertex [21] in the tree induced by [21] and its children. Then, there is a bijection 
between F1 and F2 which preserves all the probabilities used for evaluating the selection strategies.

Definition 13. We say that a prefix σ is type i-positive if Q i(σ ) ≥ Q o
i (σ ) and type i-negative otherwise, for i ∈ {1, . . . , s}.

We show next that the probabilities Q o
i , Q i, Q̄ i for each i ∈ {1, . . . , s} can be calculated (pre-calculated) using a sequential 

procedure (backward induction). Based on this result, we will find the winning probability in Section 4 by solving a few 
well-defined recurrence relation.

Proposition 14. Let τ be any permutation of length k, where 1 ≤ k ≤ N. The probabilities Q o
i (τ ), Q i(τ ), Q̄ i(τ ) for each i ∈ {1, . . . , s}

can be computed recursively.

Proof. In order to compute the probabilities Q o
i (τ ), Q i(τ ) for each i ∈ {1, . . . , s}, we use a double-induction on the subscript 

i and the length of the prefix.
Base case for outer induction on i: We first establish the base case for i = 1. By Remark 7, the permutations of length 

N are type 1-positive, which establishes the base case for the induction on the length of a prefix. More precisely, for a 
permutation τ of length N , if τ (N) = N then Q 1(τ ) = Q̄ 1(τ ) = 1 and Q o

1 (τ ) = 0; if τ (N) < N then Q 1(τ ) = Q o
1 (τ ) =

Q̄ 1(τ ) = 0.
Assume that the probabilities Q 1, Q o

1 , Q̄ 1 for permutations of length longer than k, 1 ≤ k ≤ N −1, are already known. We 
show that Q 1(τ ), Q o

1 (τ ), and Q̄ 1(τ ) can then also be determined for a length-k permutation τ . By Equation (1), the value of 
Q 1(τ ) can be obtained by finding a fraction with denominator equal to the sum of θ c(π) over all π ∈ SN that are τ -prefixed 
(i.e., S D(τ )) and the numerator equal to the sum of θ c(π) over all π ∈ SN that are τ -winnable; those values are available 
since θ and the statistic c (Kendall distance in our model) are known. By Equation (2), the probability Q o

1 (τ ) can be obtained 
from Q o

1 (τ ) = *k+1
j=1 Q̄ 1(λ j(τ )). Since each λ j(τ ) has length larger than that of τ , each of the Q̄ 1(λ j(τ )) is already available 

according to the inductive hypothesis. The Q̄ 1(τ ) probabilities can be determined from Q̄ 1(τ ) = max{Q 1(τ ), Q o
1 (τ )}, where 

Q 1(τ ) and Q o
1 (τ ) are known.

Main proof following the base case: Assume now that we know the Q q, Q o
q , Q̄ q probabilities for each 1 ≤ q ≤ i − 1, 

i ∈ {2, . . . , s}, and for every permutation in 
N⋃

j=1
S j . We prove the claimed result for i. The probabilities Q i, Q̄ i of prefixes of 

6
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length N take either the value 1 or 0 depending on whether the last position has value N , while the probabilities Q o
i are 

all 0. This serves as the base case for the inner induction argument on the length of the prefixes.
Let τ be a permutation of length k, where 1 ≤ k ≤ N −1. Given the probabilities Q i, Q o

i , Q̄ i for prefixes of lengths greater 
than k, the Q o

i (τ ) probabilities for prefixes τ of length k can be obtained via Q o
i (τ ) = *k+1

j=1 Q̄ i(λ j(τ )) from Equation (2); the 
probabilities Q̄ i(λ j(τ )) are known by the inductive hypothesis. Moreover, we can find Q i(τ ) by Proposition 11, i.e., Q i(τ ) =
Q 1(τ ) + Q o

i−1(τ ), where Q 1(τ ) is known from the base case analysis and Q o
i−1(τ ) is available based on the inductive 

hypothesis. Finally, Q̄ i(τ ) can be found using the definition Q̄ i(τ ) = max{Q i(τ ), Q o
i (τ )}. !

Recall that by Equation (1), Q 1(σ ) can be written as a fraction with denominator S D(σ ) and numerator equal to the 
sum of θ c(π) over all π that are σ -winnable. In Proposition 15 below we show that the probabilities Q i(σ ), where 2 ≤ i ≤ s, 
and Q o

i (σ ), where 1 ≤ i ≤ s, can also be expressed as fractions with the standard denominator S D(σ ).

Proposition 15. For each 1 ≤ i ≤ s and a permutation σ of length & with & ≤ N − 1 − i, there exists a collection of σ -prefixed 
permutations (σ ,i such that each µ ∈ (σ ,i is of length larger than |σ | and type i-positive. Furthermore, the set (σ ,i is 1-minimal, and 
Q o

i (σ ) = *µ∈(σ ,i Q i(µ), i.e.,

Q o
i (σ ) · S D(σ ) =

∑

µ∈(σ ,i

Q i(µ) · S D(µ) and S D(σ ) =
∑

µ∈(σ ,i

S D(µ). (4)

Furthermore,

Q i(σ ) · S D(σ ) = Q 1(σ ) · S D(σ ) +
∑

µ∈(σ ,i−1

Q o
i−1(µ) · S D(µ). (5)

Proof. The case i = 1 in Equation (4) was analyzed in [17]. Since Q 2(σ ) = Q 1(σ ) + Q o
1 (σ ), there is a set (σ ,1 such that

Q 2(σ ) · S D(σ ) = Q 1(σ ) · S D(σ ) + Q o
1 (σ ) · S D(σ ) = Q 1(σ ) · S D(σ ) +

∑

µ∈(σ ,1

Q 1(µ) · S D(µ),

where (σ ,1 is 1-minimal and consists of type 1-positive permutations of length > |σ |.
After making a decision on the |σ |th candidate, an optimal strategy will examine the children of σ in the prefix tree, 

i.e. λ1(σ ), . . . , λ&+1(σ ), and then make a decision that leads to the largest probability of winning. We present the following 
algorithm that prove the part of the proposition pertaining to Q o

i (σ ).

Initialization step: Let (i =∅ and B = {λ1(σ ), . . . , λ&+1(σ )}.
We repeat the Main step until the process terminates.

Main step: Check if B = ∅; if yes, stop and return the set (i ; if no, then do the following: Pick an arbitrary permutation 
φ ∈ B , say of length q, with |σ | < q ≤ N; check if φ is both eligible and type i-positive (Q i(φ) ≥ Q o

i (φ)); if yes, set 

(i = (i ∪ φ and B = B − φ; if no, do not update (i and let B = (B − φ) ∪
q+1⋃

j=1
λ j(φ). Note that the probabilities Q i(φ)

and Q o
i (φ) are known by Proposition 14.

Since the permutations of length N are type i-positive for each 1 ≤ i ≤ s, the algorithm eventually terminates. By the 
criteria on the main step of the algorithm, it will produce a set (i of type i-positive eligible permutations that is 1-minimal 
and each of the γ ∈ (i has length larger than |σ |. At the end of the process, B is an empty set. This follows from two 
observations.

Observation (i): There is no pair of elements α, β ∈ (i such that α is a prefix of β , i.e., (i contains 1-minimal prefixes, 
since otherwise the sub-forest T o(α) will not be processed by the algorithm and it will be impossible for β to be selected 
for inclusion in (i .

Observation (ii): Since we choose a permutation only if it is type i-positive and eligible, every permutation in (i is type 
i-positive and eligible.

Furthermore, by the main step of the algorithm and the induction hypothesis,

Q o
i (σ ) · S D(σ ) =

∑

γ ∈(i

Q i(γ ) · S D(γ ) and S D(σ ) =
∑

γ ∈(i

S D(γ ).

Equivalently, if we divide by S D(σ ) on both sides, we obtain

Q o
i (σ ) = *γ ∈(i Q i(γ ).

To prove the corresponding formula for Q i+1(σ ), note that Q i+1(σ ) = Q 1(σ ) + Q o
i (σ ) and invoke the result of (4) for 

Q o
i (σ ). !

7
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Given the probabilities Q o
i , Q i, Q̄ i for all permutations and i ∈ {1, . . . , s}, we describe next a procedure for finding an 

optimal strategy and its corresponding strike set.

Theorem 16. There exists an s-strike set A which can be partitioned as As ∪ · · · ∪ A1 , where each Ai is a set of type i-positive 1-
minimal permutations, 1 ≤ i ≤ s. The maximum probability of winning equals *σ∈As Q s(σ ). Expressed in terms of the probability Q 1, 
the maximum probability reads as

∑

σ∈A

Q 1(σ ) · S D(σ )

/ ∑

π∈S N

θ c(π). (6)

Proof. The optimal winning probability is Q̄ s([1]). We start by checking whether Q s([1]) ≥ Q o
s ([1]).

Case 1: Q o
s ([1]) > Q s([1]). Then the strike set As corresponds to the set ([1],s of Proposition 15 and the winning prob-

ability equals Q o
s ([1]). By Equation (4) in Proposition 15, we need to examine each of the permutations in As in order to 

find Q o
s ([1]).

Case 2: Q s([1]) ≥ Q o
s ([1]). Then the strike set As = {[1]} and the winning probability equals Q s([1]).

For both Case 1 and Case 2, we apply Equation (5) to each µ ∈ As and then find Q o
s−1(µ) for each µ ∈ As . We apply 

Proposition 15 again and obtain a strike set As−1. We can use this process to find As−2, then As−3, . . ., and finally A1. 
Furthermore, it follows that each Ai is type-i-positive and 1-minimal, the set A is an s-strike set, and Equation (6) holds. !

2.2. Properties of the Q , Q o, Q̄ probabilities

Definition 17. A statistic c is said to be prefix-equivariant if it satisfies c(π) − c(gτ · π) = c([12 · · ·k]) − c(τ ) for all prefixes 
τ and all π ∈ T̄ ([12 · · ·k]), where k is the length of τ .

Intuitively, the condition c(π) −c(gτ ·π) = c([12 · · ·k]) −c(τ ) enforces the statistic c to have the property that permuting 
the first k entries does not create or remove any “structures” counted by the statistic c that exist at positions larger than k. 
The condition also ensures many useful properties for the probabilities Q , Q o, Q̄ , including invariance under local changes 
(say, permuting the elements in a prefix). Prefix equivalence will be extensively used in the proofs of the theorems and 
lemmas to follow. It is straightforward to check that the Kendall statistic is prefix-equivariant.

Definition 18. Define gτ to be an action on the symmetric group that arranges (permutes) a prefix σ = [12 · · ·k] to some 
other prefix τ of the same length k. This action can be extended to T̄ (σ ) and is denoted by gτ · π : It similarly permutes 
the first k entries and fixes the remaining entries of π ∈ T̄ (σ ). It is easy to see that gτ is a bijection from T̄ (σ ) to T̄ (τ ).

Example 19. Let N = 6, τ = [132], and π = [245361]. Clearly, π is [123]-prefixed. Then gτ · π = [254361].

We show in Lemma 20 that the probabilities Q i(σ ), Q o
i (σ ), Q̄ i(σ ) only depend on the length and the value of the last 

position of σ , where 1 ≤ i ≤ s.

Lemma 20. Suppose c is a prefix-equivariant statistic. For all permutations τ of length k ≤ N − 1, the probabilities Q i for each 
i ∈ {1, . . . , s} are preserved under the restricted bijection gτ : T o(12 · · ·k) → T o(τ ). Furthermore, if τ is eligible then Q i([12 · · ·k]) =
Q i(τ ). Consequently, for σ ∈ T o(12 · · ·k),

(a) The probabilities Q o
i (σ ) are preserved by gτ ;

(b) The probabilities Q̄ i(σ ) are preserved by gτ ;
(c) If σ and τ are eligible, we have that σ is type i-positive if and only if gτ · σ is type i-positive.
Additionally, for σ = [12 · · ·k] and eligible permutation τ of length k, the statements (a),(b),(c) hold.

Proof. The proof proceeds by induction on the subscript i of the probabilities Q i, Q o
i , Q̄ i . The case i = 1 was analyzed in 

Theorem 3.5 of [17]. Assume that the result holds for the probabilities Q m, Q o
m, Q̄ m with m ≤ i − 1. We next prove the 

claimed result for Q i, Q o
i , Q̄ i , where 1 ≤ i ≤ s − 1.

Let σ ∈ T o(12 · · ·k). We have

Q i(gτ · σ ) = Q 1(gτ · σ ) + Q o
i−1(gτ · σ ) = Q 1(σ ) + Q o

i−1(σ ) = Q i(σ ).

If τ is eligible then we apply the argument to the restricted bijection T o([12 · · · (k − 1)]) → T o(τ |k−1).

Claim 21. For σ of length k < & ≤ N, Q o
i (gτ · σ ) = Q o

i (σ ).

8
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Proof. We use induction on the length of σ . When σ has length N it holds that Q o
i (gτ ·σ ) = Q o

i (σ ) = 0. Assume now that 
statement (a) holds for prefixes of length at least & + 1. We next present an argument for the case when σ is of length &, 
where k < & ≤ N − 1.

By the already proved result for the probability Q i and the induction hypothesis, the probabilities Q i and Q o
i for a 

permutation µ of length larger than & only depend on the length of µ and the value of the last position of µ. By the Main 
Step of the algorithm described in the proof of Proposition 15, if we process σ and end up obtaining a set (i = {γ1, . . . , γr}, 
then when we process gτ · σ we end up obtaining the set (′

i = {gτ · γ1, . . . , gτ · γr}. Therefore, by Proposition 15,

Q o
i (gτ · σ ) = Q i(gτ · γ1) * Q i(gτ · γ2) * · · · * Q i(gτ · γr)

= Q i(γ1) * Q i(γ2) * · · · * ·Q i(γr) = Q o
i (σ ). !

By Claim 21, statement (a) is true. Claims (b) and (c) can be established from the previous results and the fact Q̄ i(σ ) =
max{Q i(σ ), Q o

i (σ )}. This completes the main part of the proof.
The statements (a), (b), and (c) hold for σ = [12 · · ·k] and a permutation τ which is eligible and of length k, since we 

can apply the above argument to T o(12 · · · (k − 1)) → T o(τ |k−1). !

We prove next that Q o
i (σ ) depends on the length of σ but not on the value of the last position of σ .

Lemma 22. For all 1 ≤ i ≤ s, the probability Q o
i (σ ) only depends on the length of σ .

Proof. We know Q o
i (σ ) = 0 for every σ of length N . Let σ ′ and σ ′′ be two permutations of length k − 1, where k ≤ N . For 

each permutation σ of length k − 1, we define σ j , 1 ≤ j ≤ k, as in Definition 10. Let φ = [12 · · · (k − 1)]. By Lemma 20, and 
using the bijections gσ ′ : T o(12 · · · (k − 1)) → T o(σ ′) and gσ ′′ : T o(12 · · · (k − 1)) → T o(σ ′′), we have

Q o
i (σ ′) = Q̄ i(λ1(σ

′)) * · · · * Q̄ i(λk(σ
′)) = Q̄ i(λ1(φ

′)) * · · · * Q̄ i(λk(φ
′))

= Q̄ i(λ1(σ
′′)) * · · · * Q̄ i(λk(σ

′′)) = Q o
i (σ ′′). !

In order to simplify our exposition, in Lemma 23 and Corollary 24, we change the notation and let Q i(σ ), Q o
i (σ ), Q̄ i(σ )

stand only for the numerators in the definition of the underlying probabilities, each with respect to the standard denominator 
S D(σ ). All equalities involving the changed probability notations hold when the original denominators agree.

Lemma 23. Let σ = [12 · · · (k − 1)] and define Q̄ 0 = 0 for any permutation. For 1 ≤ i ≤ s, one has

Q o
i (σ ) = Q̄ i(λk(σ )) + Q o

i (λk(σ )) ·
k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) and

Q i(σ ) = Q̄ i−1(λk(σ )) + Q i(λk(σ )) ·
k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )).

Proof. The case i = 1 was proved in Theorem 3.6 of [17]. We first consider Q o
i (σ ). Note that σ has k children 

(λ1(σ ), . . . , λk(σ )) in the prefix tree. The permutation λk(σ ) itself is an eligible child thus Q̄ i(λk(σ )) is the optimal proba-
bility for the subtree rooted at λk(σ ). The subtrees beneath each of the permutations λi(σ ), i ∈ {1, . . . , k −1}, are isomorphic 
to T o(λk(σ )) via the bijections gλi(σ ) . For each λi(σ )-prefixed π ′ ∈ SN , we have to account for a factor of θ c(λi (σ ))−c(λk(σ )) . 
This is due to the fact that π ′ corresponds to a λk(σ )-prefixed permutation of π via gλi(σ ) , such that π ′ = gλi(σ ) · π and 
i ∈ {1, . . . , k − 1}.

Since c is prefix-equivariant,

θ c(π ′) = θ c(π)−(c(λi(σ ))−c(λk(σ ))).

Therefore,

Q o
i (σ ) = Q̄ i(λ1(σ )) + . . . + Q̄ i(λk−1(σ )) + Q̄ i(λk(σ ))

= Q o
i (λ1(σ )) + . . . + Q o

i (λk−1(σ )) + Q̄ i(λk(σ )) = Q o
i (λk(σ )) ·

k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) + Q̄ i(λk(σ )).

By Equation (3), we have

9
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Q i(σ ) = Q 1(σ )+ Q o
i−1(σ ) = Q 1(λk(σ )) ·

k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) + Q̄ i−1(λk(σ ))+ Q o
i−1(λk(σ )) ·

k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ ))

= Q i(λk(σ )) ·
k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) + Q̄ i−1(λk(σ )). !

We observe that Q o
i (σ ) ≥ Q o

i−1(σ ), Q i(σ ) ≥ Q i−1(σ ), Q̄ i(σ ) ≥ Q̄ i−1(σ ), and Q i(σ ) ≥ Q o
i−1(σ ) hold true for every σ ∈

N⋃

k=1
Sk and 1 ≤ i ≤ s. By Lemma 23, we show in Corollary 24 that if an eligible permutation is negative then all eligible 

permutations of shorter length are negative as well.

Corollary 24. For increasing prefixes σ = [12 · · · (k − 1)] and λk(σ ) = [12 · · ·k], we have that if λk(σ ) is type i-negative then σ is 
type i-negative, where 1 ≤ i ≤ s.

Proof. The case i = 1 was established in Corollary 3.7 of [17]. Suppose that σ is type i-negative, i.e., such that Q o
i (λk(σ )) >

Q i(λk(σ )). By Lemma 23 and Q̄ i(λk(σ )) ≥ Q̄ i−1(λk(σ )),

Q o
i (σ ) = Q o

i (λk(σ )) ·
k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) + Q̄ i(λk(σ )) > Q i(λk(σ )) ·
k−1∑

j=1

θ c(λ j(σ ))−c(λk(σ )) + Q̄ i−1(λk(σ )) = Q i(σ ). !

The probabilities Q , Q o, Q̄ henceforth refer to their original definition (with the denominators included). In words, 
Corollary 24 asserts that each Q i(k) − Q o

i (k) is a non-decreasing function of k. By Lemma 20 and 22, if σ is eligible, then the 
probabilities Q i(σ ), Q o

i (σ ), Q̄ i(σ ) only depend on its length. Let Q i(k) denote the probability Q i of eligible permutations 
of length k, where 1 ≤ i ≤ s. The probabilities Q o

i (k) and Q̄ i(k), where 1 ≤ i ≤ s, are defined similarly.

3. The optimal strategy

By the proof of Theorem 16, we start with checking if Q s([1]) ≥ Q o
s ([1]) while there are s selections left. For the ith

choice ( j = s + 1 − i selections left), 1 ≤ i ≤ s, by the algorithm described in Proposition 15, we check if σ is eligible and 
type j-positive, i.e., if Q j(σ ) ≥ Q o

j (σ ); if yes, we accept the current candidate and continue to the next selection (if there 
is one is left); if no, we reject the current candidate and continue our search; if there are no selections left, we terminate 
the process. By Corollary 24, we know each Q j(k) − Q o

j (k) is a non-decreasing function of k, which allows us to formulate 
the optimal strategy.

Theorem 25. Suppose that the probability distribution on SN is governed by a prefix-equivariant statistic (which includes the 
Kendall statistic) c. For each fixed θ > 0, an optimal strategy for our problem with s selections is a positional s-thresholds 
(k1(θ), k2(θ), . . . , ks(θ))-strategy, i.e., there are s numbers 0 ≤ k1(θ) ≤ k2(θ) ≤ . . . ≤ ks(θ) ≤ N such that when considering the 
ith selection, where 1 ≤ i ≤ s, we reject the first ki(θ) candidates, wait the completion (i − 1)th selection, and then accept the next 
left-to-right maxima.

Proof. The algorithms described in Theorem 16 (Proposition 15) produce a strike set which guarantees the optimal winning 
probability. By Corollary 24 and Q j(N) ≥ Q o

j (N), there exists some 0 ≤ ki(θ) ≤ N −1 such that Q j(k) ≥ Q o
j (k) for k ≥ ki(θ) +

1 and Q j(k) < Q o
j (k) for all k ≤ ki(θ), where 1 ≤ i ≤ s. Therefore, an optimal strategy is to reject the first ki(θ) candidates 

and then accept the next left-to-right maxima thereafter. It is also clear that every optimal strategy needs to proceed until 
the (i − 1)th selection is made before considering the ith selection. Thus, ki−1(θ) ≤ ki(θ) for each i ∈ {2, . . . , s}. !

To clarify how the (k1, k2, . . . , ks)-strategy with s thresholds, described in Theorem 25, works, we present an example 
for N = 1, 000, and s = 2.

Example 26. The (223, 367)-strategy for N = 1, 000, and s = 2 involves two thresholds, k1 = 223 and k2 = 367. For the 
first selection, we automatically reject the initial 223 candidates and accept the next best-so-far candidate. For the second 
selection, we must reject all candidates until candidate 367, wait for the completion of the first selection (if the first 
selection has not been made until this point, which is the case if no candidate indexed by a value between 224 and 367
is a best-so-far), and then accept the next best-so-far candidate. To iterate, it is possible that the first best-so-far candidate 
(after candidate 223) appears after candidate 367. For instance, suppose that the first best-so-far candidate (after candidate 
223) appears at position 527 and the second best-so-far candidate (after candidate 367) appears at position 658. In this 
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case, our first selection will be candidate 527. Our second selection will be candidate 658, since we rejected all candidates 
until candidate 367, waited for the first selection to be completed (and thus cannot select candidate 527), and then accept 
the next best-so-far candidate.

By the definition of the probabilities Q j(k), Q o
j (k), Q̄ j(k), we know that they only depend on θ, k, N , and the number of 

selections left before interviewing the current candidate, i.e., the subscript j. Thus, for two different models with s1 and s2
selections respectively (say s1 < s2), and the same values of θ and N , we have that the thresholds k′

s1+1− j(θ) for the model 
with s1 selections and k′′

s2+1− j(θ) for the model with s2 selections are the same whenever 1 ≤ j ≤ s1. In other words, for 
each fixed θ > 0, our optimal strategy is right-hand based; and, Corollary 27 holds.

Corollary 27. Let N be a fixed positive integer. For each θ > 0, there is a sequence of numbers a1(θ), a2(θ), . . ., such that when the 
number of selections s ≥ 1 is fixed, then an optimal strategy is the (as(θ), as−1(θ), . . . , a1(θ))-strategy. In other words, the (s +1 − i)th

threshold ks+1−i(θ) (the ith from the right) does not depend on the total number of selections allowed (i.e., the value of s) and always 
equals ai(θ), for 1 ≤ i ≤ s.

Example 28. To clarify the above observations and concepts, we present an example for the case θ = 1, s = 2, and N = 4. 
An optimal strategy is the (0, 1)-strategy where we accept the first candidate, ask the expert whether this candidate is the 
best, and then accept the next left-to-right maxima. The optimal winning probability is 17/24, an improvement of 6/24
when compared with the optimal winning probability which equals 11/24 for the case when only one selection is allowed 
(see Fig. 1). Note that for each prefix σ ∈ S4, we list the probabilities Q 1, Q o

1 in the first line and the probabilities Q 2, Q o
2

in the second line underneath each prefix shown in Fig. 1.

4. Results for the Mallows distribution

Definition 29. Let P N (θ) (henceforth P N to avoid notational clutter) be equal to 1 + θ + . . . + θ N−1; by convention, we set 
P0(θ) = 0. Furthermore, let (P N)! be a polynomial in θ equal to (P N )! = P N P N−1 · . . . · P1.

The following result is well-known and also proved in [17].

Lemma 30 (Lemma 6.2 in [17], [23]). We have

(P N )! =
∑

π∈S N

θ#inversions in π .

For the set [1, n + m], an ordered 2-partition of the values into two parts ,1 and ,2 with |,1| = n and |,2| = m is 
a partition where all values in ,1 are positioned before all values in ,2, while the internal order within ,1 and ,2 is 
irrelevant.

We define

B(n,m) :=
∑

All ,1,,2 ordered partitions of [n+m]
θ#crossing inversions of (,1,,2),

where a crossing inversion with respect to (,1, ,2) is inversions of the form (a, b) where a ∈ ,1, b ∈ ,2, and a > b. A 
straightforward induction argument can be used to prove that if θ = 1 then

B(n,m) =
(

n + m
n

)
.

For n, m ≥ 1, define
(

Pn+m

Pn

)
:= (Pn+m)!

(Pm)! · (Pn)!
.

The following result was established in a paper by the authors of this work [21].

Lemma 31 ([21]). For θ '= 1, n, m ≥ 1,

B(n,m) = (1 − θn+m) · (1 − θn+m−1) · . . . · (1 − θn+1)

(1 − θm) · (1 − θm−1) · . . . · (1 − θ)
, with B(n,0) = B(0,m) = 1.
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Note that

B(n,m) = Pn+m · . . . · Pn+2 · Pn+1

Pm · . . . · P2 · P1
= (Pn+m)!

(Pm)! · (Pn)!
=

(
Pn+m

Pn

)
.

In order to classify the permutations and compute the winning probabilities according to the selection strategy, we 
define the following concepts.

Definition 32. Let π ∈ SN . We say that π is (k1, . . . , ks)-winnable if the value N is picked using the s-thresholds (k1, . . . , ks)-
strategy, where s ≥ 1 is an integer. Furthermore, we define W (N, k1, . . . , ks) to be the sum of all weights of the (k1, . . . , ks)-
winnable permutations. In other words,

W (N,k1, . . . ,ks) :=
∑

π∈S N is (k1,...,ks)−winnable

θ# of inversions in π .

In order to find W (N, k1, . . . , ks) for a given (k1, . . . , ks)-strategy, we make use of the following definition.

Definition 33. We call a permutation π ∈ SN a (k1, . . . , ks)-≤ r-pickable permutation, for 0 ≤ r ≤ s − 1, if the process of 
applying the (k1, . . . , ks)-strategy to π uses at most r selections. In addition, we define T≤r(N, k1, . . . , ks) according to

T≤r(N,k1, . . . ,ks) =
∑

(k1,...,ks)−≤r-pickable permutations π∈S N

θ# inversions in π .

Remark 34. For consistency of notation, we allow N < kr for 1 ≤ r ≤ s. Note that if N ≤ kr+1 then every permutation in 
SN uses at most r selections. Moreover, if N ≥ kr+1 + 1 then (k1, . . . , kr+1)- ≤ r-pickable permutations are equivalent to 
(k1, . . . , kr+2)- ≤ r-pickable permutations, . . ., (k1, . . . , ks)- ≤ r-pickable permutations. Thus, we collectively refer to all these 
permutations as (k1, . . . , kr+1)- ≤ r-pickable permutations.

Another result of interest establishes a formula for T0(m, k) (i.e., T≤0(m, k)).

Lemma 35 ([21]). One has T0(m, 0) = 0, while for k ≥ 1,

T0(m,k) = (θm−1 + . . . + θm−k) · (Pm−1)! = θm−k · Pk · (Pm−1)!.

We present next the recurrence relation which can be used to find T≤r−1(m, k1, . . . , kr), where 1 ≤ r ≤ s.

Lemma 36. For each 1 ≤ r ≤ s and m ≥ kr + 1,

T≤r−1(m,k1, . . . ,kr) = (Pm−1)! · θm−kr · Pkr + (Pm−1)! ·
m−1∑

i=kr

T≤r−2(i,k1, . . . ,kr−1)

(Pi)!
· θm−1−i.

Proof. We have to consider two separate cases depending on the position of the value m.
Case 1: The value m is at a position i ∈ [1, kr]. If the value m is at a position i in [1, kr−1], we make at most r − 1

selections; if the value m is at a position i ∈ [kr−1 + 1, kr], then we either have made at most r − 2 selections before 
position i, and ended up without any further selections after position i; or, we made the (r − 1)th selection at some position 
j ∈ [kr−1 + 1, i − 1] (note that using our strategy we cannot make the rth selection until after position kr ), and once again 
ended up without any further selections after position i. In the latter case, we do not select the candidate at position i. The 
other positions can be represented by an arbitrary permutation in Sm−1. This argument accounts for the term

(θm−1 + θm−2 + . . . + θm−kr ) · (Pm−1)! = (Pm−1)! · θm−kr · Pkr .

Case 2: The value m is at a position i ∈ [kr +1, m]. Then the entries at positions [1, i −1] must form a (k1, . . . , kr)-≤ (r −2)

-pickable permutation, since if r − 1 selections were made before the position i, then the rth selection will occur either 
before position i or at position i. There are no restrictions for entries at positions [i + 1, m]. The value m itself contributes 
θm−i to the claimed expression. Therefore, for Case 2, we have the following contributing term

m∑

i=kr+1

θm−i · T≤r−2(i − 1,k1, . . . ,kr−1) · B(i − 1,m − i) · (Pm−i)! =

(Pm−1)! ·
m∑

i=kr+1

T≤r−2(i − 1,k1, . . . ,kr−1)

(Pi−1)!
· θm−i . !

12
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We first address the following special case for which m = kr and T≤r−1(m, k1, . . . , kr), and use it later to obtain an 
explicit formula for W (N, k1, . . . , ks).

Lemma 37. For each 1 ≤ r ≤ s we have

T≤r−1(kr,k1, . . . ,kr) = (Pkr )!,
since kr equals the threshold for the rth selection. Thus, in this case we are not allowed to make the rth selection. For m ≥ kr + 1,

T≤r−1(m,k1, . . . ,kr)

(Pm)! = 1
Pm

·
(

θm−kr · Pkr + θm−kr−1−1 · Pkr−1 ·
m−1∑

i=kr

1
Pi

+ θm−kr−2−2 · Pkr−2 ·
m−1∑

i1=kr

1
Pi1

i1−1∑

i2=kr−1

1
Pi2

+ . . . + θm−k1−r+1 · Pk1 ·
m−1∑

i1=kr

1
Pi1

·
i1−1∑

i2=kr−1

1
Pi2

∑
· · ·

ir−2−1∑

ir−1=k2

1
Pir−1

)

.

Proof. The proof is by induction. The case r = 1 holds by Lemma 35. Assume the result is true for all number of queries less 
than r, where 1 ≤ r ≤ s. We prove that it holds for r as well. By Lemma 36, T≤r−1(m, k1, . . . , kr) can be expressed in terms 
of T≤r−2(i, k1, . . . , kr−1), kr ≤ r ≤ m − 1. Thus, by using the formula for T≤r−2(i, k1, . . . , kr−1), guaranteed by the inductive 
hypothesis, we obtain the claimed formula for T≤r−1(m,k1,...,kr )

(Pm)! . The actual derivations are omitted. !

To find W (N, k1, . . . , ks), we use a special-case result of Jones [17] for s = 1.

Theorem 38 (Jones [17]). For k1 ≥ 1,

W (N,k1) = θ N−k1−1 · (P N−1)! · Pk1 ·
N−1∑

i=k1

1
Pi

.

Lemma 39. For 1 ≤ r ≤ s and N ≥ kr + 1,

W (N,k1, . . . ,kr) = θ · P N−1 · W (N − 1,k1, . . . ,kr) + T≤r−1(N − 1,k1, . . . ,kr).

Proof. We consider the value at position N . There are two possible cases to consider.
Case 1: The value is N . Then, in order to select the value N at the last position, we require that there are at most r − 1

selections made for the first N − 1 positions. This gives rise to the term T≤r−1(N − 1, k1, . . . , kr).
Case 2: The value is i ∈ {1, . . . , N −1}. Then, the first N −1 positions form a (k1, . . . , kr)-winnable permutation. The value 

i at the last position contributes θ N−i to the overall expression. Therefore, the total contribution equals

(θ N−1 + . . . + θ) · W (N − 1,k1, . . . ,kr) = θ · P N−1 · W (N − 1,k1, . . . ,kr). !

Lemma 40 describes the winning probability for a given (k1, . . . , ks)-strategy, with 0 ≤ k1 ≤ . . . ≤ ks ≤ N .

Lemma 40. For each 1 ≤ s and N ≥ ks + 1 we have

W (N,k1, . . . ,ks)

(P N)! = 1
P N

·
((

θ N−k1−1 · Pk1 ·
k2−1∑

i=k1

1
Pi

)
+

(
θ N−k2−1 · Pk2 ·

k3−1∑

i=k2

1
Pi

+θ N−k1−2 · Pk1 · δ(k2,k3) ·
k3−1∑

i1=k2+1

1
Pi1

i1−1∑

i2=k2

1
Pi2

)
+

(
θ N−k3−1 · Pk3 ·

k4−1∑

i=k3

1
Pi

+δ(k3,k4) · (θ N−k2−2 · Pk2 ·
k4−1∑

i1=k3+1

1
Pi1

i1−1∑

i2=k3

1
Pi2

+ θ N−k1−3 · Pk1 ·
k4−1∑

i1=k3+1

1
Pi1

i1−1∑

i2=k3

1
Pi2

i2−1∑

i3=k2

1
Pi3

)
)

+ . . . +
(
θ N−ks−1 · Pks ·

N−1∑

i=ks

1
Pi

+

13
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δ(ks, N) · (θ N−ks−1−2 · Pks−1 ·
N−1∑

i1=ks+1

1
Pi1

i1−1∑

i2=ks

1
Pi2

+ . . . + θ N−k1−s · Pk1 ·
N−1∑

i1=ks+1

1
Pi1

i1−1∑

i2=ks

1
Pi2

· · ·
is−1−1∑

is=k2

1
Pis

)
))

,

where δ(ki, ki+1) (by default, ks+1 = N) equals 1 if ki+1 ≥ ki + 2 and 0 otherwise, for 2 ≤ i ≤ s.

Proof. We prove the claim by induction. The case s = 1 holds by Theorem 38. Assume the claim holds for W (N, k1, . . . , kr)/

(P N)!, where r < s. We prove the result holds for r = s. By Lemma 39,

W (N,k1, . . . ,ks) = θ · P N−1 · W (N − 1,k1, . . . ,ks) + T≤s−1(N − 1,k1, . . . ,ks)

= θ · P N−1 · (θ · P N−2 · W (N − 2,k1, . . . ,ks) + T≤s−1(N − 2,k1, . . . ,ks)) + T≤s−1(N − 1,k1, . . . ,ks) = . . . =

θ N−ks · (P N−1)!
(Pks−1)!

· W (ks,k1, . . . ,ks−1,ks) +
N−ks∑

i=1

θ i−1 · (P N−1)!
(P N−i)!

· T≤s−1(N − i,k1, . . . ,ks) =

θ N−ks · (P N−1)!
(Pks−1)!

· W (ks,k1, . . . ,ks−1) +
N−ks∑

i=1

θ i−1 · (P N−1)!
(P N−i)!

· T≤s−1(N − i,k1, . . . ,ks).

By the inductive hypothesis, we can use the formula for W (ks, k1, . . . , ks−1), and the formula of T≤s−1(m, k1, . . . , ks) in 
Lemma 37 to establish the claim. The derivations are omitted. !

Remark 41. A (k1, . . . , ks)-strategy with ki = ki+1 is equivalent to a (k′
1, . . . , k′

s)-strategy with k′
j = k j for j '= i + 1 and 

k′
i+1 = ki + 1, where 1 ≤ i ≤ s. Thus, we may assume that when k1 = 0 we have k2 ≥ 1. Furthermore, for k1 = 0,

W (N,0,k2, . . . ,ks) = θ N−1 · (P N−1)! + W (N,k2, . . . ,ks) and
W (N,k1, . . . ,ks)

(P N)! = θ N−1

P N
+ W (N,k2, . . . ,ks)

(P N )! .

We henceforth focus on the optimal strategy when N → ∞. Let 0 < θ < 1 be fixed. The optimal strategy is right-hand 
based, i.e., we wait until the very end to make even the first selection (the difference between N and k1 is a fixed number 
for each given θ , with 0 < θ < 1).

Theorem 42. The asymptotically optimal (k1, . . . , ks)-strategy for θ < 1 has to satisfy N − k1 '→ ∞.

Proof. The proof is postponed to the Appendix (Section A). !

Let θ > 1 be fixed. The optimal strategy is left-hand based, i.e., the threshold for the sth selection is a constant which 
only depends on θ .

Theorem 43. The asymptotically optimal (k1, . . . , ks)-strategy for θ > 1 has to satisfy ks '→ ∞.

Proof. The proof is postponed to the Appendix (Section A). !

By Lemma 42, we know that for N → ∞, 0 < θ < 1, the optimal strategy is a (k1, . . . , ks)-strategy for some k1 ≤ . . . ≤ ks
with N −k1 '→ ∞. By Lemma 40 and the fact that 1

Pi
= 1−θ

1−θ i → 1 − θ when i → ∞ and 0 < θ < 1, the optimal probability is 
a function of N − k1, . . . , N − ks and does not depend on N . By Corollary 27, we also know that for a fixed 0 < θ < 1, there 
is an optimal strategy satisfying ki = as+1−i(θ), where 1 ≤ i ≤ s. To simplify notation, we henceforth use a j to denote a j(θ), 
1 ≤ j ≤ s.

First, note that 1
1−θ i → 1 when 0 < θ < 1 and i → ∞. Let

H ′
1 = θ N−a1 · (1

θ
− 1) ·

N−1∑

i=a1

1,

H ′
2 = θ N−a2 ·

(
(

1
θ

− 1) ·
a1−1∑

i=a2

1 + (
1
θ

− 1)2 · δ(a1, N) ·
N−1∑

i1=a1+1

i1−1∑

i2=a1

1
)
,

H ′
3 = θ N−a3 ·

(
(

1
θ

− 1) ·
a3−1∑

i=a2

1 + (
1
θ

− 1)2 · δ(a2,a1) ·
a1−1∑

i1=a2+1

i1−1∑

i2=a2

1 + (
1
θ

− 1)3 · δ(a1, N) ·
N−1∑

i1=a1+1

i1−1∑

i2=a1

i2−1∑

i3=a2

1
)
,

. . .

14
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H ′
s = θ N−as ·

(
(

1
θ

− 1) ·
as−1−1∑

i=as

1 + (
1
θ

− 1)2 · δ(as−1,as−2) ·
as−2−1∑

i1=as−1+1

i1−1∑

i2=as−1

1

+(
1
θ

− 1)3 · δ(as−2,as−3) ·
as−3−1∑

i1=as−2+1

i1−1∑

i2=as−2

i2−1∑

i3=as−1

1 + . . . + (
1
θ

− 1)s · δ(a1, N) ·
N−1∑

i1=a1+1

i1−1∑

i2=a1

i2−1∑

i3=a2

· · ·
is−1−1∑

is=as−1

1
)
,

where δ(x, y) = 1 if y ≥ x + 2, and equals 0 otherwise.
Hence, after reorganizing and simplifying the formula presented in Lemma 40, we have

lim
N→∞

W (N,as, . . . ,a1)

(P N)! = lim
N→∞

s∑

i=1

H ′
i =: P ′.

By Lemma 43, we know that for N → ∞, θ > 1, the optimal strategy is a (k1, . . . , ks)-strategy for some 0 ≤ k1 ≤ . . . ≤
ks '→ ∞. By Lemma 40, the fact that 1

Pi
= θ−1

θ i−1
when θ > 1, and the observation that each of the sums

N−1∑

i1=ks+1

1
θ i1 − 1

i1−1∑

i2=ks

1
θ i2 − 1

· · ·
ir−1−1∑

ir=ks+2−r

1
θ ir − 1

, where 2 ≤ r ≤ s,

converges when N → ∞, it follows that the optimal probability is a function of k1, . . . , ks and does not depend on N .
By Corollary 27, we similarly know that for a fixed θ > 1, there is an optimal strategy that satisfies ki = as+1−i(θ), where 

1 ≤ i ≤ s. Next, let

H ′′
1 = (1 − 1

θa1
) · (1 − 1

θ
) ·

N−1∑

i=a1

1
θ i − 1

,

H ′′
2 = (1 − 1

θa2
) ·

(
(1 − 1

θ
) ·

a1−1∑

i=a2

1
θ i − 1

+ (1 − 1
θ

)2 · δ(a1, N) ·
N−1∑

i1=a1+1

1
θ i1 − 1

i1−1∑

i2=a1

1
θ i2 − 1

)
,

H ′′
3 = (1 − 1

θa3
) ·

(
(1 − 1

θ
) ·

a2−1∑

i=a3

1
θ i − 1

+ (1 − 1
θ

)2 · δ(a2,a1) ·
a1−1∑

i1=a2+1

1
θ i1 − 1

i1−1∑

i2=a2

1
θ i2 − 1

+

(1 − 1
θ

)3 · δ(a1, N) ·
N−1∑

i1=a1+1

1
θ i1 − 1

i1−1∑

i2=a1

1
θ i2 − 1

i2−1∑

i3=a2

1
θ i3 − 1

)
,

. . .

H ′′
s = (1 − 1

θas
) ·

(
(1 − 1

θ
) ·

as−1−1∑

i=as

1
θ i − 1

+ (1 − 1
θ

)2 · δ(as−1,as−2) ·
as−2−1∑

i1=as−1+1

1
θ i1 − 1

i1−1∑

i2=as−1

1
θ i2 − 1

+

(1 − 1
θ

)3 · δ(as−2,as−3) ·
as−3−1∑

i1=as−2+1

1
θ i3 − 1

i1−1∑

i2=as−2

1
θ i2 − 1

i2−1∑

i3=as−1

1
θ i3 − 1

+ . . .+

(1 − 1
θ

)s · δ(a1,aN) ·
N−1∑

i1=a1+1

1
θ i1 − 1

i1−1∑

i2=a1

1
θ i2 − 1

i2−1∑

i3=a2

1
θ i3 − 1

· · ·
is−1−1∑

is=as−1

1
θ is − 1

)
,

where δ(x, y) = 1 if y ≥ x + 2, and equals 0 otherwise.
After reorganizing terms and simplifying the formula presented in Lemma 40 we obtain

lim
N→∞

W (N,as, . . . ,a1)

(P N)! = lim
N→∞

s∑

i=1

H ′′
i =: P ′′.

By Theorems 42 and 43, and the formulas above, when 0 < θ < 1, P ′ is a function of b1 := N − a1, . . . , bs := N − as with 
1 ≤ b1 < b2 < . . . < bs , and is maximized at some b′

1, . . .b′
s with b′

s '→ ∞. When θ > 1, P ′′ is a function of a1, . . . , as with 
0 ≤ as ≤ as−1 ≤ . . . ≤ a1, and is maximized at some a′′

1, . . .a′′
s with a′′

1 '→ ∞. By Corollary 27, for each fixed 0 < θ < 1 we 
can pick some large enough constant, say 1000 (1000 is a large enough value to serve as a “proxy” for ∞, as can be seen 
from our subsequent numerical computations for values of θ as small as 0.01 and s as large as 5), and perform a computer 
search for a′′

1 (and b′
1). Recall that this value characterizes our optimal strategy for s = 1. We then proceed to search for 

a′′
2 ≤ a′′

1 (b′
2 ≥ b′

1), which jointly with a′′
1 (b′

1) characterize our optimal strategy for s = 2. We then search for a′′
3, . . . (b′

3, . . .) 
following the same procedure.
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Fig. 2. The maximum probability of success using our optimal strategy under the Mallows model.

5. Numerical results

All results presented herein hold for N → ∞. By Corollary 27, an optimal strategy for s′ = s − 1 ≥ 0 queries and a fixed 
θ > 1 is an (as(θ), . . . , a1(θ))-strategy, where ai(θ) '→ ∞ for 1 ≤ i ≤ s. For the case 0 < θ < 1, we let bi(θ) = N − ai(θ), 
where i ≥ 1. An optimal strategy for s′ = s − 1 ≥ 0 queries and a fixed 0 < θ < 1 is an (N − bs(θ), . . . , N − b1(θ))-strategy, 
where bi(θ) '→ ∞ for each 1 ≤ i ≤ s. Since the maximum probability of success increases very slowly as s increases above 5, 
and since the corresponding computational times increase as well, we only numerically computed the maximum probability 
of success and an optimal strategy for s ≤ 5. The results are presented in Table 1.

As expected, for each fixed s ≥ 1, the smallest probability of success arises for θ = 1. Moreover, if s is a fixed positive 
integer, then the optimal probability of success tends to 1 when θ → 0 as well as when θ → ∞. It is also intuitively clear 
that when 0 < θ < 1, as θ decreases, the Mallows distribution concentrates around the identity permutation [12 · · · N]; in 
this setting, a (N − bs, . . . , N − b1)-strategy with “small” values of b1, . . . , bs has a high probability to identify the best 
candidate. When θ > 1, the Mallows distribution concentrates around the permutation [N(N − 1) · · · 21] and as θ increases, 
a (as, . . . , a1)-strategy with “small” values of a1, . . . , as has a high probability to identify the best candidate. Note that for 
θ > 1 and a fixed (as, . . . , a1)-strategy, the value of θ for which the probability of success is maximized does not occur 
when θ → 1+ or θ → ∞ but for some other fixed value. This is the reason for the observable small decreases in the 
optimal probability of success for θ > 1, depicted in Fig. 2.

For each fixed i ≥ 1, ai → ∞ as θ → 1+ and the number bi → ∞ as θ → 1−. Furthermore, for each fixed θ > 0, the 
optimal probability of winning increases as s increases and tends to 1 as s → ∞. This is also intuitively clear, since for fixed 
θ > 0 there is a better chance of succeeding when more queries are allowed, and we are guaranteed to succeed if we have 
infinitely many selections. Note that this probability increases dramatically when s decreases. In particular, for s > 5 the 
smallest probability of success exceeds 0.9; this is the main reason why we focus our attention on results for s ≤ 5.

6. Expected number of queries and interviewed candidates

The maximum probability of winning for the Dowry model with s selections and the query-based model with s − 1
queries are the same, as both models have a budget of s selections and the goal is to choose the best candidate (note that 
this claim holds for all Mallows parameters, but that the Dowry problem has – until this work – only been studied for a 
uniform distribution of candidate orders for which θ = 1). However, the expected stopping times are very different. Under 
the query-based model, the process immediately terminates after obtaining a positive answer from the expert. On the other 
hand, the decision making entity continues to interview the remaining candidates after a selection is made (provided there 
is a selection left) under the Dowry setting, as it has no information about whether the current candidate is the best.

Furthermore, since a query to an expert is costly in practice, it is also of interest to examine the expected number of 
queries or interviews made during the process.

16
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Table 1
Maximum probability of success p and an optimal strategy for 0 < θ < 1 and θ > 1 under the Mallows model.

θ b1 p b2 p b3 p b4 p b5 p

0.01 1 0.99 2 0.9999 3 0.999999 4 0.99999999 5 0.9999999999
0.1 1 0.9 2 0.99 3 0.999 4 0.9999 5 0.99999
0.2 1 0.8 2 0.96 3 0.992 4 0.9984 5 0.99968
0.3 1 0.7 2 0.91 3 0.973 4 0.9919 5 0.99757
0.4 1 0.6 2 0.84 3 0.936 4 0.9744 5 0.98976
0.5 1 0.5 2 0.75 3 0.875 4 0.9375 5 0.96875
0.6 2 0.48 3 0.72 5 0.84672 6 0.916992 7 0.955008
0.7 3 0.441 5 0.67767 6 0.814527 8 0.89181519 9 0.9367475
0.8 4 0.4096 7 0.6455296 9 0.78394163 12 0.86742506 14 0.91836337
0.9 9 0.38742049 14 0.61618841 19 0.75683265 24 0.84462315 28 0.90023365
0.91 11 0.38552196 16 0.61384283 21 0.75431993 26 0.84249939 31 0.8984815
0.92 12 0.38365188 18 0.61122396 24 0.75183545 30 0.84029209 35 0.89669505
0.93 14 0.38150867 21 0.60859444 28 0.74920064 34 0.83810534 40 0.89490443
0.94 16 0.37948013 25 0.60588389 32 0.74670942 40 0.83589721 47 0.89310511
0.95 19 0.3773536 29 0.60328914 39 0.74418598 48 0.8337195 56 0.89132711
0.96 24 0.37541325 37 0.60083222 49 0.74172818 60 0.83157908 70 0.88956127
0.97 33 0.37353448 50 0.59832096 65 0.73930464 80 0.82945187 94 0.88780406
0.98 49 0.37160171 74 0.59585024 97 0.73687357 119 0.82732738 141 0.88604612
0.99 99 0.36972964 149 0.59341831 195 0.73448001 239 0.82521971 282 0.8842961

θ a1 p a2 p a3 p a4 p a5 p

1.01 46 0.36918367 25 0.59372585 15 0.73609875 9 0.82818603 6 0.8884655
1.02 23 0.37052858 12 0.59643023 7 0.74010572 4 0.83314574 3 0.89440668
1.03 15 0.37184338 8 0.59927181 5 0.74430003 3 0.83883113 2 0.90046661
1.04 11 0.37307045 6 0.60209564 4 0.74764429 2 0.84437558 1 0.90873876
1.05 9 0.37453849 5 0.60494232 3 0.75260449 2 0.84770309 1 0.9146162
1.06 8 0.37555657 4 0.60780968 2 0.75709372 1 0.85599814 1 0.91585315
1.07 6 0.376652 3 0.60956208 2 0.76137673 1 0.86299515 0 0.92841571
1.08 6 0.3782214 3 0.61365158 2 0.76357932 1 0.86737476 0 0.94144883
1.09 5 0.37998224 3 0.61493159 1 0.7678056 1 0.86916554 0 0.95173435
1.1 5 0.38013275 2 0.61811891 1 0.77490222 1 0.86897463 0 0.95988372
1.2 2 0.3946616 1 0.65166097 0 0.81832763 0 0.95363085 0 0.99176211
1.3 1 0.40196949 1 0.66305426 0 0.89382349 0 0.98072423 0 0.99771086
1.4 1 0.42452167 0 0.71023596 0 0.93366818 0 0.99101943 0 0.9992478
1.5 1 0.43301723 0 0.76635056 0 0.95655232 0 0.99547373 0 0.99972306
1.6 1 0.43330022 0 0.80830022 0 0.97048698 0 0.99757918 0 0.99988899
1.7 1 0.42868095 0 0.84044565 0 0.97935572 0 0.99864254 0 0.9999524
1.8 0 0.44444444 0 0.86557747 0 0.98520273 0 0.9992085 0 0.99997843
1.9 0 0.47368421 0 0.88555846 0 0.98917129 0 0.999523 0 0.99998975
2 0 0.5 0 0.90167379 0 0.99193195 0 0.99970422 0 0.99999493
3 0 0.66666667 0 0.969846 0 0.99918728 0 0.99999306 0 0.99999998
4 0 0.75 0 0.98686745 0 0.99983997 0 0.99999953 0 0.9999999999
5 0 0.8 0 0.99310967 0 0.99995498 0 0.99999994 0 0.9999999999

6.1. Expected number of queries

In this setting, we are interested in two expectations: Unconditional expectations: The expected number of selections 
made using the optimal strategy (described in Table 1); Conditional expectations: The expected number of selections made 
conditioned on the event that the best candidate is selected using the optimal strategy (described in Table 1).

Claim 44. The conditional and unconditional expected number of selections for the query-based model is the same as for the Dowry 
model.

Proof. Assume that under the query-based model we made a total r selections, where 0 ≤ r ≤ s, using our optimal 
(k1, . . . , ks)-strategy with ki = as+1−i(θ), 1 ≤ i ≤ s. We show next that the Dowry model makes the same number of se-
lections.

First, assume that r = 0. Then the value N is located at a position j ≤ k1, since otherwise there is at least one left-to-right 
maxima at a position in [k1, N] and thus our optimal query strategy will result in at least one selection in both models.

Next, assume that 1 ≤ r ≤ s −1 and that the rth query is made at a position j ≥ kr +1. The value N must be at a position 
h such that h ≥ j, since if h < j there would have been no query at position j.

Under the above assumption, we proceed as follows. First, assume that h = j. In the Dowry model, the 1st, . . ., (r − 1)th

selections/queries are the same as the expert keeps giving a negative answer. We then pick up the value N at position j
(without knowing this fact in the Dowry model) and examine the list until the end; we do not make the (r + 1)th selection 
since there is no left-to-right maxima after position j. Second, assume that h > j. Then we must have h ≤ kr+1 since 
otherwise the (r + 1)th selection will be made. In the Dowry model, the 1st, . . ., (r − 1)th, and rth selections are the same 
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as those in the query-based model as the latter gives negative answers. We do not make another selection until position 
kr+1 since the (r + 1)th selection is not allowed until after position kr+1, and we cannot perform the (r + 1)th selection after 
position kr+1 since there is no left-to-right maxima following position h.

The last case to consider is r = s. We used all s − 1 queries to query an expert, received s − 1 negative answers, and then 
made a final decision at position j ≥ ks + 1. Under the Dowry model, we made the same s − 1 selections, without knowing 
that they are not the best, then made the final selection at the same position j.

Similarly, we can show that if r, 1 ≤ r ≤ s, selections are made in the Dowry model then the same number of selections 
will be made using the query-based model. Similar arguments apply for the case when we condition on the event of 
identifying the best candidate. !

Definition 45. We call a permutation π ∈ SN exactly r-(k1, . . . , ks)-winnable if the best value N is selected as the rth selection 
when using the (k1, . . . , ks)-strategy, where 1 ≤ r ≤ s. For simplicity, we abbreviate the name to r-winnable whenever the 
strategy is clear. Similarly to Definition 32, we define for 1 ≤ r ≤ s that

Wr(N,k1, . . . ,ks) =
∑

r-winnable π∈S N

θ c(π).

Definition 46. We call a permutation π ∈ SN exactly r-(k1, . . . , ks)-pickable if it results in exactly r selections using the 
(k1, . . . , ks)-strategy, where 0 ≤ r ≤ s. We also abbreviate this reference to r-pickable whenever the strategy is clear. Similarly 
to Definition 33, we define for 0 ≤ r ≤ s that

Tr(m,k1, . . . ,ks) =
∑

r-pickable π∈S N

θ c(π).

By Definition 32 and 45, the following result is straightforward.

Proposition 47. One has W (N, k1, . . . , ks) =
s∑

i=1
W i(k1, . . . , ks).

6.1.1. The unconditional expectations
By Definition 46, it is straightforward to see that the expected number of selections made using the (k1, . . . , ks)-strategy 

equals

s∑

i=1

i · Ti(N,k1, . . . ,ks)

(P N)! .

The following Lemma is a consequence of Definitions 33 and 46.

Lemma 48. For N ≥ ks + 1, we have T0(N, k1, . . . , ks) = T0(N, k1), and for 1 ≤ i ≤ s,

T i(N,k1, . . . ,ks) = T≤i(N,k1, . . . ,ks) − T≤i−1(N,k1, . . . ,ks).

Every permutation uses at most s selections by the definition of the (k1, . . . , ks)-strategy. By Lemma 37, when θ > 1 and 
1 ≤ r ≤ s, we have

lim
N→∞

T≤r−1(N,k1, . . . ,ks)

(P N)! = lim
N→∞

T≤r−1(N,k1, . . . ,kr)

(P N)! = (1 − 1
θkr

)+

(1 − 1
θ

) · (1 − 1
θkr−1

) ·
∞∑

i=kr

1
θ i − 1

+ (1 − 1
θ
)2 · (1 − 1

θkr−2
) ·

∞∑

i1=kr

1
θ i1 − 1

i1−1∑

i2=kr−1

1
θ i2 − 1

+ . . .+

(1 − 1
θ

)r−1 · (1 − 1
θk1

) ·
∞∑

i1=kr

1
θ i1 − 1

i1−1∑

i2=kr−1

1
θ i2 − 1

∑
· · ·

ir−2−1∑

ir−1=k2

1
θ ir−1 − 1

.

When 0 < θ < 1 and 1 ≤ r ≤ s, we define zr = N − kr . Since z1 = N − k1 '→ ∞,

lim
N→∞

T≤r−1(N,k1, . . . ,ks)

(P N)! = lim
N→∞

T≤r−1(N,k1, . . . ,kr)

(P N)! = θ zr +
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θ zr−1 · (1
θ

− 1) · lim
N→∞

N−1∑

i=kr

1 + θ zr−2 · (1
θ

− 1)2 · lim
N→∞

N−1∑

i1=kr

i1−1∑

i2=kr−1

1 + . . .+

θ z1 · (1
θ

− 1)r−1 · lim
N→∞

N−1∑

i1=kr

i1−1∑

i2=kr−1

∑
. . .

ir−2−1∑

ir−1=k2

1.

6.1.2. The unconditional expectations
The expected number of queries made conditioned on successfully identifying the best candidate N using the (k1, . . . , ks)-

strategy equals

s∑

i=1
i · W i(N,k1, . . . ,ks)/((P N )!)

W (N,k1, . . . ,ks)/((P N )!) =

s∑

i=1
i · W i(N,k1, . . . ,ks)

W (N,k1, . . . ,ks)
.

Assume that N ≥ ks + 1 and observe that W (N,k1,...,ks)
(P N )! represents the probability of selecting the best candidate using the 

(k1, . . . , ks)-strategy. Fix k1, . . . , ks . Since there can be at most s selections when using the (k1, . . . , ks)-strategy, W (N,k1,...,ks)
(P N )!

represents the entity of interest when at most s selections are made, W (N,k1,...,ks−1)
(P N )! represents the entity of interest when 

at most s − 1 selections are made, . . ., and W (N,k1)
(P N )! represents the entity of interest when at most 1 selection is made using 

the (k1, . . . , ks)-strategy. This implies the following lemma.

Lemma 49. For N ≥ ks + 1, we have W1(N, k1, . . . , ks) = W (N, k1), and for 2 ≤ i ≤ s,

W i(N,k1, . . . ,ks) = W (N,k1, . . . ,ki) − W (N,k1, . . . ,ki−1).

6.2. The expected number of candidates interviewed

The results for the query-based and the Dowry model differ in this setting. For the query-based model, we are informed 
when the best candidate is selected and thus stop interviewing. However, for the Dowry model, we do not have this 
information and will continue interviewing until the last candidate, except if we run out of selections.

The results below pertain to the case that we are performing interviews using a (k1, . . . , ks)-strategy, where ki = as+1−i
for each 1 ≤ i ≤ s. As before, we examine both the unconditional expectations and the conditional expectation given that 
best candidate is identified.

6.2.1. The query-based model
Case 1: Unconditional expectations. Define

Y ′(m) =
∑

π∈S N s.t. we terminate at m
using the (k1, . . . ,ks)-strategy

θ c(π).

We are interested in
N∑

j=k1+1

j · Y ′( j)
(P N)! .

Let k1 + 1 ≤ m ≤ N . There are three cases to consider for the position m at which we stop interviewing the candidates 
in π .

Case 1.1: ki + 1 ≤ m ≤ ki+1, where 1 ≤ i ≤ s − 1. The position m must contain the value N and at most i − 1 selections 
can be made before position m, since if the former constraint does not hold we will continue interviewing until the sth

selection and if the latter constraint does not hold then we cannot select the best candidate at position m and thus will not 
stop at position m.

Therefore,

Y ′(m) = θ N−m · B(m − 1, N − m) · T≤i−1(k1, . . . ,ks) · (P N−m)! = (P N−1)!
(Pm−1)!

· θ N−m · T≤i−1(m − 1,k1, . . . ,ks).

Case 1.2: ks + 1 ≤ m ≤ N − 1. Then interviews terminate at m if either m is a left-to-right maxima and all s − 1 experts 
were queried before position m (with a final selection left for position m); or position m has value N and at most s − 2
experts were queried before position m. To see this, if we stop at position m then position m must be a left-to-right maxima 
and either no selection is left after the final selection at position m (i.e., we cannot continue interviewing) or position m
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has the value N and there is at least one query left before interviewing position m (thus we query the expert and get the 
answer that we found the best candidate and stop at position m).

In the former case, the first m positions are arbitrary elements from {1, . . . , N}; the mth position has the largest value 
among the first m positions; and exactly s − 1 selections were used for positions in [1, m − 1]. Now, Ts−1(m − 1, k1, . . . , ks)
counts the inversions within the first m positions, (P N−m)! counts the inversions within positions [m +1, N], while B(m, N −
m) counts the inversions between the two sets. Moreover, θ N−m · T≤s−2(m −1, k1, . . . , ks) · B(m −1, N −m) · (P N−m)! accounts 
for the case when position m has value N and at most s − 2 queries are made before position m.

Therefore,

Y ′(m) = B(m, N −m) ·Ts−1(m−1,k1, . . . ,ks) ·(P N−m)!+θ N−m ·T≤s−2(m−1,k1, . . . ,ks) · B(m−1, N −m) ·(P N−m)!

= Ts−1(m − 1,k1, . . . ,ks) · (P N )!
(Pm)! + θ N−m · T≤s−2(m − 1,k1, . . . ,ks) · (P N−1)!

(Pm−1)!
.

Case 1.3: m = N . Since the interviewing process must stop at N we have

Y ′(N) = (P N)! −
N−1∑

j=k1+1

Y ′( j).

Case 2: Conditional Expectations. Define

Y ′′(m) =
∑

π∈S N is (k1, . . . ,ks)-winnable and
the search terminates at m

θ c(π).

We are interested in
N∑

j=k1+1
j · Y ′′( j)/(P N)!

W (N,k1, . . . ,ks)/(P N)! =

N∑

j=k1+1
j · Y ′′( j)

W (N,k1, . . . ,ks)
.

There are two cases to consider.
Case 2.1: ki + 1 ≤ m ≤ ki+1, where 1 ≤ i ≤ s − 1. Then the value N had to be at position m and at most i − 1 selections 

were made before position m, since position m must contain the value N in order for the process to terminate successfully, 
and since if i selections were made before position m, one could not have chosen the value N at position m. Therefore, for 
this case

Y ′′(m) = θ N−m · T≤i−1(m − 1,k1, . . . ,ks) · B(m − 1, N − m) · (P N−m)! = (P N−1)!
(Pm−1)!

· θ N−m · T≤i−1(m − 1,k1, . . . ,ks).

Case 2.2: m ≥ ks + 1. Again the value N had to be at position m and at most s − 1 selections had to be made before 
position m. Therefore, for this case

Y ′′(m) = θ N−m · T≤s−1(m − 1,k1, . . . ,ks) · B(m − 1, N − m) · (P N−m)! = (P N−1)!
(Pm−1)!

· θ N−m · T≤s−1(m − 1,k1, . . . ,ks).

6.2.2. The expectations for the dowry model
In the Dowry model, the aim is to use all s selections, since we do not have the information whether each of our 

selection is the best or not. Hence, m ≥ ks + 1.
Case 1: Unconditional Expectations. Define

Z ′(m) =
∑

π∈S N terminate at m
using the (k1, . . . ,ks)-strategy

θ c(π).

We are interested in
N∑

j=ks+1

j · Z ′( j)
(P N)! .

Case 1.1: ks + 1 ≤ m ≤ N − 1. We only care whether the sth selections is made at position m. Thus, for each subset S
of m values of {1, . . . , N}, since the largest value of S must be placed at position m and exactly s − 1 selections had to be 
made before position m, we have that Ts−1(m − 1, k1, . . . , ks) counts the number of inversions within the first m positions 
for each fixed S; B(m, N − m) counts the number of inversions between the two sets in the partition of N , |,1| = m and 
|,2| = N − m, while (P N−m)! counts the number of inversions within positions [m + 1, N]. Therefore, in this case,
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Z ′(m) = Ts−1(m − 1,k1, . . . ,ks) · B(m, N − m) · (P N−m)! = Ts−1(m − 1,k1, . . . ,ks) · (P N)!
(Pm)! .

Case 1.2: m = N . All cases not covered by Case 1.1 include terminating at the last position and thus in this case

Z ′(m) = (P N)! −
N−1∑

j=ks+1

Z ′( j).

Case 2: Conditional Expectations. Define

Z ′′(m) =
∑

π∈S N is (k1, . . . ,ks)-winnable
and terminates at m

θ c(π).

The entity of interest is

N∑

j=ks+1
j · Z ′′( j)/(P N)!

W (N,k1, . . . ,ks)/(P N)! =

N∑

j=ks+1
j · Z ′′( j)

W (N,k1, . . . ,ks)
.

Case 2.1: Terminating at a position ks + 1 ≤ j ≤ N − 1 and identifying the optimal candidate. Then, the sth selection is 
made at position m and position m has value N . Therefore, in this case,

Z ′′( j) = θ N−m · Ts−1(m − 1,k1, . . . ,ks) · B(m − 1, N − m) · (P N−m)! = θ N−m · Ts−1(m − 1,k1, . . . ,ks) · (P N−1)!
(Pm−1)!

.

Case 2.2: Terminating at position N and identifying the optimal candidate. It is possible that not all of the s −1 selections 
were used before and the best candidate was selected at position N; it is also possible that the best candidate was picked 
at some position in [ks+1, N − 1] but not all selections were used before the position N and thus the search continued until 
after position N (those two possibilities do not account for all possible cases). In this case,

Z ′′(N)

(P N)! = W (N,k1, . . . ,ks)

(P N)! −
N−1∑

j=ks+1

Z ′′( j)
(P N)! .
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Appendix A

We make use of the following two results.

Theorem 50 (Jones [17], Theorem 6.5). For θ < 1, the optimal asymptotic selection strategy for the secretary problem is to reject 
N − j(θ) '→ ∞ (not depending on N) candidates and then accept the next left-to-right maxima thereafter.

Theorem 51 (Jones [17], Corollary 6.6). For θ > 1, the optimal asymptotic selection strategy for the secretary problem is to reject 
j(θ) '→ ∞ (not depending on N) candidates and then accept the next left-to-right maxima thereafter.

Proof of Theorem 42. The proof follows by induction. First, note that N −k1 '→ ∞ implies N −k2, . . . , N −ks '→ ∞. The base 
case for one threshold hold by Theorem 50. We assume the argument works for ≤ s − 1 thresholds and prove the result for 
s-thresholds with s ≥ 2.
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By Lemma 39 and the fact T≤s−1(ks, k1, . . . , ks−1, ks) = (Pks )!, we have

W (N,k1, . . . ,ks)

(P N)! = 1
P N

·
(θ N−ks · Pks · W (ks,k1, . . . ,ks−1)

(Pks )!
+ T≤s−1(N − 1,k1, . . . ,ks)

(P N−1)!
+

θ · T≤s−1(N − 2,k1, . . . ,ks)

(P N−2)!
+ . . . + θ N−ks−2 · T≤s−1(ks + 1,k1, . . . ,ks)

(Pks+1)!
+ θ N−ks−1 · 1

)
. (7)

Step 1: Suppose that N − ks '→ ∞ does not hold, i.e., that N − ks → ∞. Then, since the probability

W (ks,k1, . . . ,ks−1)

(Pks )!
≤ 1, we have

θ N−ks · Pks · W (ks,k1, . . . ,ks−1)

(Pks )!
→ θ N−ks

1 − θ
· W (ks,k1, . . . ,ks−1)

(Pks )!
→ 0.

Moreover, by Lemma 37, for 0 ≤ j ≤ N − ks − 2,

θ j · T≤s−1(N − j − 1,k1, . . . ,ks)

(P N− j−1)!
= 1

P N− j−1
·
(
θ N−ks−1 · Pks + θ N−ks−1−2 · Pks−1 ·

N− j−2∑

i=ks

1
Pi

+ (8)

θ N−ks−2−3 · Pks−2 ·
N− j−2∑

i1=ks

1
Pi1

i1−1∑

i2=ks−1

1
Pi2

+ . . . + θ N−k1−s · Pk1 ·
N− j−2∑

i1=ks

1
Pi1

·
i1−1∑

i2=ks−1

1
Pi2

∑
· · ·

is−2−1∑

is−1=k2

1
Pis−1

)
.

For each term inside the bracket of (8), since N − ki → ∞, θ N−ki → 0 exponentially, and the sum part (without the 
multiplier) of each term approaches infinity as a polynomial function in N − ki+1 ≤ N − ki . The latter claim holds since 
1
Pi

= 1−θ
1−θ i ≤ 1 when i ≥ 1 and the smallest value of the subscript equals k2 ≥ 1.

Since N − j − 1 ≥ ks + 1, we have

θ j · T≤s−1(N − j − 1,k1, . . . ,ks)

(P N− j−1)!
≤ (θ N−ks−1 + θ N−ks−1−2 · (N − ks−1) + θ N−ks−2−3 · (N − ks−2)

2 + . . .

+θ N−k1−s · (N − k1)
s−1) ≤ s · s

max
q=1

{θ N−kq−(s+1−q) · (N − kq)
s−q} → 0.

Above, the convergence rate → 0 is exponential. Thus,

T≤s−1(N − 1,k1, . . . ,ks)

(P N−1)!
+ θ · T≤s−1(N − 2,k1, . . . ,ks)

(P N−2)!
+ . . . + θ N−ks−2 · T≤s−1(ks + 1,k1, . . . ,ks)

(Pks+1)!
+ θ N−ks−1

≤ (N − ks) · s · s
max
q=1

{θ N−kq−(s+1−q) · (N − kq)
s−q} ≤ s · s

max
q=1

{θ N−kq−(s+1−q) · (N − kq)
s+1−q} → 0.

Step 2: Suppose that N − k1 '→ ∞ does not hold, i.e., that N − k1 → ∞.
From Step 1, we know that for an optimal strategy, N − ks '→ ∞ has to hold. We also know that ks − k1 → ∞. By the 

induction hypothesis,

W (ks,k1, . . . ,ks−1)

(Pks )!
is maximized when ks − k1 '→ ∞( and is not maximized when ks − k1 → ∞). (9)

Moreover, for each 0 ≤ j ≤ N − ks − 1, by Lemma 37 and (8),

θ j · T≤s−1(N − j − 1,k1, . . . ,ks)

(P N− j−1)!
is maximized when N − ks, . . . , N − k1 '→ ∞. (10)

To see why this is the case, say N −ki → ∞ and N −ki+1 '→ ∞. Then the term involving θ N−kq−(s+1−q) approaches zero for 
1 ≤ q ≤ i (when k1 = 0, the last term is zero by default).

Therefore, by (9) and (10),

W (N,k1, . . . ,ks)

(P N)! is maximized only when N − k1 '→ ∞,

which also implies N − k1 '→ ∞, . . . , N − ks '→ ∞. !

Proof of Theorem 43. The proof proceeds by induction. For consistency, let k0 = −1 and ks+1 = N .
Note that ks '→ ∞ implies ks−1, . . . , k1 '→ ∞. By Theorem 51, the argument works for one threshold. Suppose now that 

the argument works for at most s − 1 thresholds. We prove the claimed result for s thresholds. To this end, we show that 
the choice ki '→ ∞ and ki+1 → ∞ is always at least as good as the choice ki−1 '→ ∞ and ki → ∞, where 1 ≤ i ≤ s − 1.
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Claim 52. For the case ki → ∞ and ki−1 '→ ∞, where 1 ≤ i ≤ s we have

W (N,k1, . . . ,ks)

(P N)! → W (ki,k1, . . . ,ki−1)

(Pki )!
.

Proof. By Lemma 39 and T≤s−1(ks, k1, . . . , ks−1, ks) = (Pks )!,

W (N,k1, . . . ,ks)

(P N)! = 1
P N

·
(θ N−ks · Pks · W (ks,k1, . . . ,ks−1)

(Pks )!
+ T≤s−1(N − 1,k1, . . . ,ks)

(P N−1)!
+

θ · T≤s−1(N − 2,k1, . . . ,ks)

(P N−2)!
+ . . . + θ N−ks−2 · T≤s−1(ks + 1,k1, . . . ,ks)

(Pks+1)!
+ θ N−ks−1

)
.

= · · · =
1

P N
·
(θ N−ki · Pki · W (ki,k1, . . . ,ki−1)

(Pki )!
+

T≤s−1(N − 1,k1, . . . ,ks)

(P N−1)!
+ θ · T≤s−1(N − 2,k1, . . . ,ks)

(P N−2)
+ . . . + θ N−ks−2 · T≤s−1(ks + 1,k1, . . . ,ks)

(Pks+1)!
+ θ N−ks−1

+ · · · +

+θ N−ki+1 · T≤i(ki+1 − 1,k1, . . . ,ki)

(Pki+1−1)!
+ . . . + θ N−ki−2 · Ti(ki + 1,k1, . . . ,ki)

(Pki+1)!
+ θ N−ki−1

)
. (11)

Since T j(m, k1, . . . , k j+1) ≤ (Pm)!,

T≤s−1(N − 1,k1, . . . ,ks)

(P N−1)!
+ θ · T≤s−1(N − 2,k1, . . . ,ks)

(P N−2)!
+ . . . + θ N−ks−2 · T≤s−1(ks + 1,k1, . . . ,ks)

(Pks+1)!
+ θ N−ks−1

+ · · · +

+θ N−ki+1 · T≤i(ki+1 − 1,k1, . . . ,ki)

(Pki+1−1)!
+ . . . + θ N−ki−2 · Ti(ki + 1,k1, . . . ,ki)

(Pki+1)!
+ θ N−ki−1

≤ 1 + θ + . . . + θ N−ki−1 = θ N−ki − 1
θ − 1

,

and thus (11) converges to

1
1 − 1/(θ N)

·
(
(1 − 1/θki ) · W (ki,k1, . . . ,ki−1)

(Pki )!
+ (1/θki − 1/(θ N))

)
→ W (ki,k1, . . . ,ki−1)

(Pki )!
as ki → ∞. !

We compare the class of (k1, . . . , ks)-strategies for which ki−1 '→ ∞ (Case 1) and ki → ∞, with the class of (k1, . . . , ks)-
strategies for which ki '→ ∞ and ki+1 → ∞ (Case 2).

Claim 53. For every strategy (k′
1, . . . , k′

s) covered under Case 1 there is a strategy covered under Case 2 which performs better.

Proof. Let (k′
1, . . . , k′

s) be a strategy with k′
i−1 '→ ∞ and k′

i → ∞ (Case 1) and let (k′′
1, . . . , k′′

s ) be a strategy such that k′′
j = k′

j
for j ∈ {1, . . . , s} − {i}, k′′

i '→ ∞. Note that k′′
i '→ ∞, k′′

i+1 → ∞ and thus the (k′′
1, . . . , k′′

s )-strategy is also covered under Case 
2.

By Claim 52, the probability of success for the (k′
1, . . . , k′

s)-strategy is

lim
ki→∞

W (k′
i,k′

1, . . . ,k′
i−1)

(Pk′
i
)! < lim

k′′
i+1→∞

W (k′′
i+1,k′′

1, . . . ,k′′
i−1,k′′

i )

(Pk′′
i+1

)! ,

which is the winning probability for the (k′′
1, . . . , k′′

s )-strategy since the latter case has one more selection than the former 
case and the value k′′

i can be placed anywhere as long as k′′
i ≥ k′′

i−1 and k′′
i '→ ∞. !

By Claim 53, the proof follows. !
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