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Quickest Detection of Abrupt Changes
for a Class of Random Processes

George V. Moustakides,Senior Member, IEEE

Abstract—We consider the problem of quickest detection of abrupt
changes for processes that are not necessarily independent and identically
distributed (i.i.d.) before and after the change. By making a very simple
observation that applies to most well-known optimum stopping times
developed for this problem (in particular CUSUM and Shiryayev–Roberts
stopping rule) we show that their optimality can be easily extended to
more general processes than the usual i.i.d. case.

Index Terms—CUSUM, disruption problem, optimal stopping, quickest
detection.

I. INTRODUCTION

Recently, there has been rapidly increasing interest in the area of
change detection. This is due to the large number of applications that
can be mathematically formulated through this problem as well as the
development of theoretically and computationally tractable techniques
that can provide the corresponding solutions. Such applications
include: quality control, system monitoring, vibration monitoring,
segmentation of signals, change point problems in economic, medical,
seismic and astrophysical time series, etc. Characteristic references
and review articles for each application area can be found in [1], [2],
and a very complete presentation of the existing methodology in [1].

Despite the abundance of techniques addressing the change de-
tection problem, optimum schemes can be found only for the case
where the data are independent and identically distributed (i.i.d.) and
the distributions are completely known before and after the change.
For dependent data and/or cases where the distributions are partially
known, existing methods are eitherad hocor, at best, asymptotically
optimum. The only exception is the case of finite-state Markov chains,
where there exists a nonasymptotic optimality result for one of the
possible formulations of the change detection problem [13].

In this correspondence, by making a simple observation that
applies to most well-known optimum detection schemes, we are
going to extend their optimality property to a class of processes
that is not necessarily i.i.d. As will be seen, this class contains a
number of interesting examples of processes that are characterized
by common dependency structures used to model dependent data.
This generalization will, in fact, be possible at almost no cost as far
as mathematical analysis is concerned.

Before rigorously presenting the change detection problem and the
existing optimum schemes let us first introduce the data model we
intend to work with. Assume that we are given a sequence of random
variables�1; �2; � � � and denote byfFng the corresponding filtration
generated byf�ng: Consider also that we are given two sequences of
conditional probability measuresfIPn(�njFn�1)g; f n(�njFn�1)g
that can describe the statistics off�ng with n(�njFn�1) absolutely
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continuous with respect toIPn(�njFn�1) for everyn � 1: If

ln =
d n(�njFn�1)

dIPn(�njFn�1)
(1)

denotes the Radon–Nikodym derivative of the two conditional mea-
sures at timen, we are interested in processes that satisfy the
following key condition:

IPnf�n: ln � xjFn�1g = F0(x) (2)

for everyx � 0 and everyn � 1: Albeit the processf�ng can be
nonstationary and dependent, meaning that the conditional probability
of �n givenFn�1 depends in general onFn�1, with condition (2) we
require the conditional probability ofln to be independent ofFn�1
and stationary. The following lemma will, in fact, guarantee that the
corresponding processflng is i.i.d. under both measures induced by
the corresponding sequencesfIPng; f ng:

Lemma 1: Let flng be the sequence of random variables defined
by (1); then this process is i.i.d. under both probability measures
induced by the two sequences of conditional probability measure
fIPng andf ng with marginal distribution functions equal toF0(x)
andF1(x) = sx

0
z dF0(z), respectively.

Proof: Let us first compute the multivariate distribution of the
random variablesl1; � � � ; ln; under the probability measure induced
by the conditional measuresfIPng: Using (2) and the fact that the
eventfln � xg is Fn measurable we can write

Prfln � xn; � � � ; l1 � x1g

= Prfln � xnjFn�1g � � �Prfl1 � x1jF0g

= IPnf�n: ln � xnjFn�1g � � � IP1f�1: l1 � x1jF0g

= F0(xn) � � �F0(x1) (3)

which proves thatflng is i.i.d. with corresponding marginal distri-
bution equal toF0(x): To prove that this is also the case for the
sequencef ng, it is enough to show that a similar relation as in
(2) holds under this alternative sequence of conditional probability
measures, specifically that we can have

F1(x) = nf�n: ln � xjFn�1g (4)

By a simple application of change of measures and using (2) it is
easy to show that indeed the above equation is valid withF1(x) =
sx
0

z dF0(z):

The requirement imposed by condition (2) is, of course, very
restrictive; however, as we will see in Section III, there are several
interesting processes that can satisfy it. On the other hand, condition
(2) turns out to be sufficient for proving optimality for most well-
known stopping times encountered in the literature (for example,
CUSUM and the Shiryayev–Roberts stopping rule). This is because
these tests use only the processflng to form their test statistics and
the corresponding proofs rely only on the fact that this process is i.i.d.
Since for processesf�ng satisfying (2), the processflng is comprised
of mutually independent random variables, the optimality property of
the corresponding stopping times is clearly preserved.

II. OPTIMAL STOPPING TIMES

In this section we are going to describe the change detection
problem (also known as disruption problem) and briefly present the
stopping times that are known to optimally solve it.
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We assume that we are given a sequence of random variables
�1; �2; � � � and for some unknown timem � 1 the random
variables�1; � � � ; �m�1 are distributed according to the conditional
probability measuresIP1; � � � ; IPm�1 whereas the random variables
�m; �m+1; � � � according to m; m+1; � � � : We are interested in
detecting the time of changem: Detection is signaled through a
stopping timeN that attempts to minimize the detection delay
controlling at the same time the false alarm.

Let IEm denote expectation under the probability measure obtained
when there is a change at timem and IE1 expectation under no
change condition(m = 1): Let also all stopping times, we like to
consider, be adapted to the filtrationfFng generated by the sequence
f�ng:

There exist several formulations in the literature regarding the
change detection problem. A Bayesian approach proposed by
Shiryayev in [10, pp. 193–198] assumes a geometric prior on the
change timem of the formPrfm = 0g = � and

Prfm = ng = (1� �)(1� p)n�1p; n � 1:

The optimum stopping rule is required to minimize the risk function
J(N) = IEf1lfN < mg + c(N � m)+g: Shiryayev proved that,
for the case wheref�ng is i.i.d. before and after the change, the
optimum stopping rule consists in stopping the first time the posterior
probability�n (that the change has occurred) exceeds some constant
threshold. Since�n satisfies the recursion

�n =
�n�1ln + (1� �n�1)pln

�n�1ln + (1� �n�1)pln+ (1� �n�1)(1� p)
(5)

we can see that its computation depends only on the processflng;
therefore, the proof of optimality can be also valid for processes
satisfying condition (2).

A non-Bayesian formulation suggested by Lorden [3] consists in
finding the stopping time that minimizes

J(N) = sup
m�1

ess sup IEf(N �m+ 1)+jFm�1g

among all stopping times that satisfy the false alarm constraint
IE1fNg � 
 for some given
 > 0: Lorden showed in [3] that
the CUSUM test, introduced by Page [5], is asymptotically optimum.
Nonasymptotic optimality of the CUSUM test was first shown in [4]
and a different proof based on a Bayesian saddle point formulation
was provided in [8]. The CUSUM test is defined through the stopping
time NC = infnfn: Tn � �g where the statisticTn satisfies the
recursion

Tn = maxfTn�1; 1gln (6)

and� is a threshold selected to meet the false alarm constraint with
equality. All three proofs consider the case wheref�ng is i.i.d. before
and after the change but again we see that the test statisticTn depends
only on flng; therefore, the proofs can be easily extended to cover
processes satisfying (2).

An alternative non-Bayesian formulation was proposed by Pollak
and Seigmund in [7] consisting in minimizing the functional

J(N) = sup
m�1

IEmfN �mjN � mg

under the false alarm constraintIE1fNg � 
: Pollak in [6]
proved that the Shiryayev–Roberts stopping rule [9] asymptotically
minimizesJ(N) when the sequencef�ng is i.i.d. before and after
the change. Nonasymptotic optimality of a modified version of the
Shiryayev–Roberts stopping rule was recently presented by Yakir [14]
for the i.i.d. case. The corresponding stopping time is defined as

NS = infnfn: Sn � �g where the statisticsSn is defined through
the recursion

Sn = (1 + Sn�1)ln (7)

and� is a threshold selected to meet the false alarm constraint with
equality. Again, the proof can be shown to be valid for processes
satisfying (2).

Remark. If instead of the change detection problem we consider
the sequential hypotheses problem then, for exactly the same reasons,
we can extend the optimality property of the Sequential Probability
Ratio Test (SPRT) [11], [12] to processes satisfying (2).

The almost obvious generalization of optimality of most well-
known stopping times to processes satisfying (2) has, surprisingly,
a number of interesting applications that cannot be easily seen to
reduce to the usual i.i.d. case. We present several such examples in
the next section.

III. EXAMPLES

In this section we are going to present combinations of conditional
probability measures for which key condition (2) is satisfied and
therefore these cases reduce to the usual i.i.d. case.

A. Markov Chains

As was stated in the Introduction, this is the only dependency
model for which there exists a nonasymptotic optimum detection
scheme. Specifically, in [13] the change detection problem is solved
under the Bayesian formulation of geometric priors on the change
time. The optimum scheme is similar to the original one introduced
by Shiryayev, only now the threshold is state-dependent.

Here, in order to satisfy key condition (2), we are going to introduce
Markov chains with a special dependency structure. Specifically,
consider a Markov chain that has the same finite state spaceX

before and after the change and assume, without loss of generality,
that X = f1; � � � ; Kg: Let P = [p1 � � � pK ]t andQ = [q1 � � � qK ]t

denote the two transition matrices before and after the change with
pti; q

t
i ; i = 1; � � � ; K; their corresponding rows and superscript “t”

denoting transpose.1 If Ti; i = 1; � � � ; K; areK permutation matrices
(not necessarily distinct) and there exist vectorsp andq such that

pi = Tip; qi = Tiq; i = 1; � � � ; K (8)

then (2) is satisfied. The above condition implies that corresponding
rows of the matricesP andQ are obtained by applying the same
permutation on the elements of the vectorsp and q, respectively.
Notice that if all permutation matrices are equal to the identity matrix
then this reduces to the usual i.i.d. case.

To show (2) we can see thatln can be represented as a matrix
L which can be computed by dividing the two matricesQ and
P element-wise. For the matrixL we then have that its rows can
be obtained by applying the same permutation matricesTi; i =
1; � � � ; K; to a vectorl which is equal to the element-wise division
of the vectorsq andp: Since the same permutations apply toP and
L we conclude thatln can take only upon theK values of the vector
l; furthermore, each such value has aP probability of occurrence
equal to the corresponding element of the vectorp, this being true
independently ofFn�1, i.e., the row (state) the process was in at
time n � 1:

What was said above continuous to be valid if the vectorsp; q are
kept constant but the permutation matrices are time-dependent, thus
generating a nonhomogeneous Markov chain.

1We assume that theith row contains the transition probabilities for
statei:
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Let us consider the simple but illustrative special case of a Markov
chain with two states. For anya; b in the interval[0; 1], in order for
(2) to be valid, the transition matricesP;Q can either be

P =
a 1� a

a 1� a
Q =

b 1� b

b 1� b
(9)

corresponding to the usual i.i.d. case, or

P =
a 1� a

1� a a
Q =

b 1� b

1� b b
: (10)

These are the only two possibilities for a homogeneous chain with
two states. In particular, we can see that the interesting symmetric
case defined in (10) belongs to the class of processes satisfying key
condition (2). For nonhomogeneous chains, the transition matrices
become a function of time and can alternate between (9) and (10).

There is a point that needs to be stressed here. Notice that we
require condition (2) to be valid for everyn � 1: It is clear
that, for this example, we have validity of the key condition for
n � 2: In order for (2) to be true forn = 1 as well, the initial
probability measures of the chain before and after the change must
be, respectively, equal top andq (or the same permuted version of
these two vectors).

B. AR Processes

Let us consider a processf�ng that evolves, before and after the
change, on some setC0 that has finite Lebesgue measure. Let us also
assume that before the changef�ng is i.i.d. and uniformly distributed
on C0 and after the change that it has an AR dependency structure
of the form

�n = ��n�1 + wn; �0 = 0 (11)

with j�j < 1 and fwng i.i.d. with a probability density equal to
f1(w): We must stress that under the aforementioned model the
support off1(w) must be constraint in order for the processf�ng to
evolve onC0: If, for example,C0 = [�1; 1] then this requirement
is fulfilled whenever the support off1(w) is a subset of the interval
[�(1 � j�j); (1 � j�j)]:

Under the above constraint we can show that condition (2) is true.
Indeed, with� denoting the Lebesgue measure and by making use
of its translation invariance property we have

IPnf�n: ln � xjFn�1g

=
1

�fC0g
� �n: f1(�n � ��n�1) �

x

�fC0g

=
1

�fC0g
� w: f1(w) �

x

�fC0g
(12)

with the last quantity being a function only ofx:
This result can be easily extended to more complicated dependency

structures before and after the change. Specifically, consider processes
of the form

�n = g
i

n(�n�1; � � � ; �1) + wn; i = 0; 1 (13)

wheregin(�n�1; � � � ; �1); i = 0; 1 are nonlinear functions with the
superscript “0” referring to the data model before the change and
the superscript “1” after the change. The processwn, as before, is
i.i.d. and uniformly distributed before the change and has a density
f1(w) after the change. Care must be taken to ensure that, for given
�n�1; � � � ; �1; the points�n that are accessible through (13) using the
model before the change constitute a superset of the corresponding
points that are accessible through the alternative model. This is
necessary to guarantee the absolute continuity of the conditional
measures described in the Introduction.

A final example in this class is when relation (13) applies tof�ng
with the same functiongn(�n�1; � � � ; �1) before and after the change
and fwng is i.i.d. with a different distribution (not necessarily one
of the distributions being uniform). However, this is a case where
the problem can be easily seen to reduce to an equivalent problem of
testing i.i.d. processes sincefwng with wn = �n�gn(�n�1; � � � ; �1)
has exactly the required i.i.d. statistics.

C. Processes Evolving on a Circle

The third and final example where key condition (2) can be valid is
when we have processes evolving on a circle. Specifically, consider
a circle of unit radius and let�n 2 [0; 2�) denote the position of a
point on the circle. Let us assume that, before the change, process
f�ng is i.i.d. and uniformly distributed on the circle whereas after
the change it satisfies the following random (on the circle) walk:

�n = g(�n�1 + wn) (14)

with fwng i.i.d. and with densityf1(w): The functiong(�) is periodic
with period 2� and defined as

g(�) = � � 2k�; for 2k� � � < 2(k+ 1)�

k = 0;�1;�2; � � � : (15)

If h1(�nj�n�1) denotes the transition density after the change then
for �n; �n�1 2 [0; 2�) we have

h1(�nj�n�1) =

1

k=�1

f1(�n � �n�1 + 2k�) (16)

where�n � �n�1 + 2k� are the possible jumps that can lead state
�n�1 to �n, consequently,

ln = 2�

1

k=�1

f1(�n � �n�1 + 2k�): (17)

Sinceln is a function of the difference�n � �n�1 it is easy to see
that (2) is satisfied.

As pointed out by Prof. Ritov (Hebrew University of Jerusalem),
for this example, there exists an alternative way to generate i.i.d. ran-
dom variables. If we definevn = g(�n��n�1), with g(�) introduced
in (15), then one can show thatfvng is i.i.d. having a uniform density
before the change and a density equal to�1k=�1 f1(v + 2k�) after
the change. The resultingln can be easily seen to be identical to the
one defined in (17).

The above result can be extended to the case where, before the
change,f�ng is uniformly distributed on the circle and after the
change it satisfies

�n = g(un(�n�1; � � � ; �1) + wn) (18)

with g(�) as in (15) andfun(�n�1; � � � ; �1)g any sequence of
nonlinear functions.

IV. CONCLUSION

A simple observation that applies to all known stopping times
that optimally solve the change detection and the hypotheses testing
problem for the i.i.d. case, extends their optimality property to a
class of processes that can have strong dependency structures. Several
examples were shown to achieve optimal solutions through the use
of these popular stopping times.



1968 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 5, SEPTEMBER 1998

REFERENCES

[1] M. Basseville and I. Nikiforov,Detection of Abrupt Changes, Theory
and Application. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[2] E. Carlstein, H. Muller, and D. Seigmund, Eds.,Change-Point Problems.
Hayward, CA: Inst. Math. Stat., 1994.

[3] G. Lorden, “Procedures for reacting to a change in distribution,”Ann.
Math. Stat., vol. 42, pp. 1897–1908, 1976.

[4] G. V. Moustakides, “Optimal stopping times for detecting changes in
distributions,”Ann. Statist., vol. 14, pp. 1379–1387, 1986.

[5] E. S. Page, “Continuous inspection schemes,”Biometrika, vol. 41, pp.
100–115, 1954.

[6] M. Pollak, “Optimal detection of a change in distribution,”Ann. Statist.,
vol. 13, pp. 206–227, 1985.

[7] M. Pollak and D. Siegmund, “Approximations to the expected sample
size of certain sequential tests,”Ann. Statist., vol 6, pp. 1267–1282,
1975.

[8] Y. Ritov, “Decision theoretic optimality of the CUSUM procedure,”
Ann. Satist., vol. 18, pp. 1464–1469, 1990.

[9] A. N. Shiryayev, “On optimal methods in earliest detection problems,”
Theor. Probl. Appl., vol. 8, pp. 26–51, 1963.

[10] , Optimal Stopping Rules. New York: Springer-Verlag, 1978.
[11] A. Wald, Sequential Analysis. New York: Wiley, 1947.
[12] A. Wald and J. Wolfowitz, “Optimum character of the sequential

probability ratio test,”Ann. Math. Statist., vol. 19, pp. 326–339, 1948.
[13] B. Yakir, “Optimal detection of a change in distribution when the obser-

vations form a Markov chain with a finite state space,” inChange-Point
Problems, E. Carlstein, H. Muller, and D. Seigmund, Eds. Hayward,
CA: Inst. Math. Stat., 1994.

[14] , “A note on optimal detection of a change in distribution,”Ann.
Statist., vol. 25, no. 5, pp. 2117–2126, Oct. 1997.

On the Consistency of Minimum
Complexity Nonparametric Estimation

Zhiyi Chi and Stuart Geman

Abstract—Nonparametric estimation is usually inconsistent without
some form of regularization. One way to impose regularity is through
a prior measure. Barron and Cover [1], [2] have shown that complexity-
based prior measures can insure consistency, at least when restricted
to countable dense subsets of the infinite-dimensional parameter (i.e.,
function) space. Strangely, however, these results are independent of the
actual complexity assignment: the same results hold under an arbitrary
permutation of the match-up of complexities to functions. We will show
that this phenomenon is related to the weakness of the convergence
measures used. Stronger convergence can only be achieved through
complexity measures that relate to the actual behavior of the functions.

Index Terms—Consistency, minimum complexity estimation, minimum
description length, nonparametric estimation.

I. INTRODUCTION

Maximum-likelihood, least squares, and other estimation tech-
niques are generally inconsistent for nonparametric (infinite-
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dimensional) problems. Some variety of regularization is needed.
An appealing and principled approach is to base regularization
on complexity: Define an encoding of the (infinite-dimensional)
parameter, and adopt codelength as a penalty. Barron and Cover
[1], [2] have shown how to make this work. They get consistent
estimation for densities and regressions, as well as some convergence-
rate bounds, by constructing complexity-based penalty terms for
maximum-likelihood and least squares estimators.

Can we cite the results of Barron and Cover as an argument for
complexity-based regularization (or, equivalently, for complexity-
based priors)? Apparently not: The results are independent of the
particular assignment of complexities. Specifically, the results are un-
changed by an arbitrary permutation of the matching of complexities
to parameters.

Of course there are many ways to define convergence of functions.
We will show here that the surprising indifference of convergence
results to complexity assignments is in fact related to the convergence
measures used. Stronger convergence requires a stronger tie between
the parameters (functions) and their complexity measures.

Section II is a review of some Barron and Cover results. Then
some new results about consistency for nonparametric regression are
presented in Section III. (Proofs are in the Appendix.) Taken together,
the results of Section III establish the principle that stronger types
of convergence are sensitive to the particulars of the complexity
assignment. We work here with regression, but the situation is
analogous in density estimation.

Our results are about consistency only. The important practical
issue of relating complexity measures toratesof convergence remains
open.

II. COMPLEXITY-BASED PRIORS

Barron and Cover [1] have shown that the problem of estimating
a density nonparametrically can be solved using a complexity-based
prior by limiting the prior to a countably-dense subset of the space
of densities. More specifically, given a sequence of countable sets
of densities�n, and numbersLn(q) for densitiesq in �n, let
� = [n�n. SetLn(q) =1 for q not in�n. For independent random
variablesX1; X2; � � � ; Xn drawn from an unknown probability
density functionp, a minimum complexity density estimator̂pn is
defined as a density achieving the following minimization:

min
q2�

Ln(q)�

n

i=1

log q(Xi) :

If we think of Ln(q) as the description length of the densityq, then
the minimization is over total description length—accounting for both
the density and the data. Barron and Cover showed that ifLn satisfies
the summability condition

sup
n

q2�

2�L (q)
< +1

and the growth restriction

lim sup
n

Ln(q)

n
= 0; for everyq 2 � (1)

then for each measurable setS

lim
n!1

P̂n(S) = P (S) with probability one
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