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OPTIMALITY OF THE CUSUM PROCEDURE
IN CONTINUOUS TIME

BY GEORGE V. MOUSTAKIDES

Institut National de Recherche en Informatique et en Automatique
and University of Thessaly

The optimality of CUSUM under a Lorden-type criterion setting is
considered. We demonstrate the optimality of the CUSUM test for Itô
processes, in a sense similar to Lorden’s, but with a criterion that replaces
expected delays by the corresponding Kullback–Leibler divergence.

1. Introduction. The cumulative sum (CUSUM) test was proposed by Page
(1954) as a means to detect sequentially changes in distributions of discrete-time
random processes. Lorden (1971) introduced a min–max criterion for the change
detection problem, and established the asymptotic optimality of the CUSUM test
under his proposed performance measure. Moustakides (1986) proved optimality,
under Lorden’s criterion, for the i.i.d. case and for known distributions before and
after the change. Ritov (1990) demonstrated a Bayesian optimality property of
CUSUM, based on which he also provided an alternative proof for optimality
in Lorden’s sense. Moustakides (1998) extended the optimality of CUSUM to a
special class of dependent processes. Finally, optimum CUSUM procedures were
proposed by Poor (1998) for exponentially penalized detection delays.

In continuous time, the optimality of CUSUM has been established for
Brownian motion with constant drift by Beibel (1996), in the Bayesian setting
of Ritov (1990), which also yielded optimality in Lorden’s sense, and by
Shiryayev (1996). These results should be compared to the significantly richer and
more general ones available for the other popular sequential test, the sequential
probability ratio test (SPRT). In continuous time, the SPRT was shown to be
optimal in Wald’s sense [Wald (1947)] for Brownian motion with constant drift
by Shiryayev [(1978), page 180]. However, when one replaces in Wald’s criterion
the expected delay by the Kullback–Leibler (K–L) divergence, then Liptser and
Shiryayev [(1978), page 224] demonstrated the optimality of the SPRT for Itô
processes. This result was subsequently extended by Yashin (1983) and Irle (1984)
to more general continuous-time processes.

It is the goal of this work to demonstrate a similar extension for the optimality
of CUSUM. In particular, we shall show that the CUSUM is optimum in detecting
changes in the statistics of Itô processes, in a Lorden-like sense, when the expected
delay is replaced in the criterion by the corresponding K–L divergence. It should
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be noted that, for the special case of Brownian motion with constant drift, the
original Lorden criterion and the modified one proposed here coincide; thus, our
result also provides a different proof for the Lorden min–max problem considered
in Beibel (1996) and Shiryayev (1996).

2. Assumptions and background results. Let ξ be a continuous-time
process, and define the filtration F given by Ft = σ(ξs; 0 ≤ s ≤ t). We are
interested in the case where ξ is an Itô process satisfying

dξt = αt1{t>τ } dt + dwt,(2.1)

where α is a process adapted to the filtration F , w is a standard Brownian motion
with respect to the same filtration and τ ∈ [0,∞] denotes the time of change of
regime, which is considered deterministic but otherwise unknown. Moreover, we
assume that F0 is the trivial σ -algebra.

Given that ξ is observed sequentially, and assuming exact knowledge of the
model (2.1) before and after the change, our goal is to detect the change time τ as
soon as possible using a sequential scheme.

Let us introduce several definitions, assumptions and key results that are
necessary for our analysis. Let Pτ denote the probability measure when the change
is at time τ and Eτ [·] the corresponding expectation. With this notation, P0 is the
measure corresponding to the case of all observations being under the alternative
model, whereas P∞ corresponds to all observations being under the nominal one.
In other words, P∞ is the Wiener measure on the canonical space of continuous
functions, and P0 is the measure induced on this space by the process wt +∫ t

0 as ds.
We now need a first condition to ensure that ξ introduced in (2.1) is well defined.

Following Øksendal [(1998), page 44] we require the process α to be F adapted
and to satisfy

P0

[∫ t

0
|αs |ds < ∞

]
= 1 ∀ t ∈ [0,∞).(2.2)

The next step is to impose conditions that will guarantee the existence of the
Radon–Nikodym derivative dPτ /dP∞ and validity of Girsanov’s theorem. For this
purpose, consider the process

ut =
∫ t

0
αs dξs − 1

2

∫ t

0
α2

s ds,

which, because of (2.1), satisfies

dut =
{

αt dwt − 1
2α2

t dt, 0 ≤ t ≤ τ ,

αt dwt + 1
2α2

t dt, τ < t < ∞.
(2.3)

In order that this process be well defined under both hypotheses, again from
Øksendal [(1998), page 44] we need to assume that for every 0 ≤ t < ∞ we have

P0

[∫ t

0
α2

s ds < ∞
]

= P∞
[∫ t

0
α2

s ds < ∞
]

= 1.(2.4)
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Since (
∫ t

0 |αs |ds)2 ≤ t
∫ t

0 α2
s ds, it is clear that (2.4) also implies (2.2).

To ensure now that ut can play the role of log-likelihood between P0 and P∞,
we need to assume that eut is a martingale with respect to P∞. A sufficient
condition that can guarantee this fact is, for example, the Novikov condition,

E∞
[

exp
(∫ t

0

1
2α2

s ds

)]
< ∞ ∀ t ∈ [0,∞),(2.5)

or, alternatively,

E∞
[

exp
(∫ tn

tn−1

1
2α2

s ds

)]
< ∞,(2.6)

where {tn}∞n=0 is a strictly increasing sequence of positive real numbers that tends
to ∞ [for details, see Karatzas and Shreve (1991), page 198].

If eut is a martingale with respect to P∞, then Girsanov’s theorem applies and
we can write

dP0

dP∞
(Ft ) = eut , 0 ≤ t < ∞,(2.7)

or, more generally,

dPτ

dP∞
(Ft ) = eut−uτ for 0 ≤ τ ≤ t < ∞.(2.8)

Following Liptser and Shiryayev [(1978), page 225] we impose a final condition
on α:

P0

[∫ ∞
0

α2
t dt = ∞

]
= P∞

[∫ ∞
0

α2
t dt = ∞

]
= 1,(2.9)

which, as we will see in the next section, ensures a.s. finiteness of the optimal
scheme.

To summarize: the process α is required to satisfy (2.4) and (2.9); moreover,
eut is assumed to be a martingale with respect to P∞, with (2.5) or (2.6) being
sufficient conditions that guarantee this property. Let us now present a lemma that
will be needed later in our analysis.

LEMMA 1. Let (2.4) and (2.9) be valid, and suppose that {eut , 0 ≤ t < ∞} is
a martingale under P∞; then we have

Pτ

[∫ ∞
τ

α2
t dt = ∞

∣∣∣Fτ

]
= 1, Pτ -a.s.

for each 0 ≤ τ < ∞.

PROOF. From (2.9) and (2.4), it is seen that P0[∫ ∞
τ α2

t dt = ∞] = 1 holds for
every τ ∈ [0,∞), hence also Pτ [∫ ∞

τ α2
t dt = ∞] = 1 since Pτ � P0. This suggests

that

1 = Pτ

[∫ ∞
τ

α2
t dt = ∞

]
= Eτ

[
Pτ

[∫ ∞
τ

α2
t dt = ∞

∣∣∣Fτ

]]
,
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and leads directly to

Pτ

[∫ ∞
τ

α2
t dt = ∞

∣∣∣Fτ

]
= 1, Pτ -a.s.,

which is the desired relation. �

3. Lorden’s criterion and proposed modification. Detection of the change
time τ is performed with the help of a stopping time T . Lorden (1971) introduced
the following maximal possible conditional delay in issuing the alarm, as a
measure of performance for T ,

JL(T ) = sup
τ∈[0,∞)

ess supEτ [(T − τ )+|Fτ ],(3.1)

and suggested the following min–max problem as a criterion for defining an
optimal detection scheme: to minimize JL(T ) of (3.1) over all stopping times T

of F that satisfy the false-alarm constraint

E∞[T ] ≥ γ.

Here γ > 0 is a given constant. In other words, we are interested in the stopping
time that has the smallest worst conditional mean detection delay, under the
constraint that false alarms should occur with a mean period no smaller than γ .

Proceeding along the same lines as in Liptser and Shiryayev [(1978), page 225]
we propose the following alternative performance measure:

J (T ) = sup
τ∈[0,∞)

ess supEτ

[
1{T >τ }

∫ T

τ

1
2α2

t dt
∣∣∣Fτ

]
.(3.2)

This gives rise to the min–max optimization problem

inf
T ∈Jγ

J (T ) = inf
T ∈Jγ

sup
τ∈[0,∞)

ess supEτ

[
1{T >τ }

∫ T

τ

1
2α2

t dt
∣∣∣Fτ

]
,(3.3)

where Jγ is the class of F -stopping times T that satisfy the false-alarm constraint

E∞
[∫ T

0

1
2α2

t dt

]
≥ γ.(3.4)

Clearly, when α is constant the above criterion and optimization problem of
(3.2)–(3.4) are equivalent to the original ones defined by Lorden.

We should mention that the proposed modification is motivated by the K–L
divergence. Indeed, from (2.8) and by taking (2.3) into account, we conclude that,
for ∞ > t ≥ τ ≥ 0, the K–L divergence can be written as

Eτ

[
log

(
dPτ

dP∞
(Ft )

)∣∣∣Fτ

]
= Eτ

[∫ t

τ
αs dws +

∫ t

τ

1
2α2

s ds
∣∣∣Fτ

]
(3.5)

= Eτ

[∫ t

τ

1
2α2

s ds
∣∣∣Fτ

]
,

with equality in (3.5) whenever the displayed quantity is finite.
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REMARK. In view of (3.5), one might wonder why not define the performance
measure using directly the K–L divergence, that is,

J (T ) = sup
τ∈[0,∞)

ess supEτ

[
log

(
dPτ

dP∞
(FT )

)
1{T >τ }

∣∣∣Fτ

]
,(3.6)

instead of the seemingly arbitrary definition of (3.2). Unfortunately, this approach
presents certain technical difficulties. First, we need to limit ourselves to stopping
times that satisfy Ei[∫ T

0 α2
s ds] < ∞, i = 0,∞, in order to assure validity of (3.5).

Second, there is a more serious problem coming from Girsanov’s theorem: with
the usual conditions, the equality dP0/dP∞(Ft ) = eut is assured only for finite t .
Consequently, defining our measure as in (3.6) requires limiting even further
the class of stopping times to bounded ones. To bypass these two problems,
we introduced arbitrarily the measure (3.2), making only a loose connection to
the K–L divergence. Let us therefore, with a slight abuse of definition, call the
quantities in (3.2) and (3.4) the K–L detection divergence and the K–L false-alarm
divergence, respectively, keeping in mind that there exists a rich class of stopping
times for which each of these quantities indeed coincides with the corresponding
K–L divergence.

4. The CUSUM process. Let us now introduce the CUSUM process. If
mt denotes the running minimum of ut , that is,

mt = inf
0≤s≤t

us, 0 ≤ t < ∞,

then the CUSUM process is defined as

yt = ut − mt, 0 ≤ t < ∞.(4.1)

For ν ∈ (0,∞) a given threshold, the CUSUM stopping time with threshold ν is
defined as

Sν = inf{t ≥ 0 :yt ≥ ν}(4.2)

if the indicated set is not empty; otherwise, Sν = ∞.
At this point, it is appropriate to introduce certain key properties for the

two processes y, m, which are summarized in the following lemma. They are
consequences of very standard results in stochastic analysis [see Karatzas and
Shreve (1991), pages 149 and 210].

LEMMA 2. Let m, y be defined as above.

(i) The process y is always nonnegative. The process m is nonincreasing
and flat off the set {yt = 0}; equivalently, if f (y) is a continuous function with
f (0) = 0, then ∫ ∞

0
f (yt ) dmt = 0.(4.3)
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(ii) If a function f (y) is twice continuously differentiable, then

df (yt) = f ′(yt )(dut − dmt) + 1
2α2

t f
′′(yt ) dt.(4.4)

With the next theorem, we compute the K–L detection and false-alarm
divergence for the CUSUM stopping time of (4.2).

THEOREM 1. The CUSUM stopping time Sν is a.s. finite in the sense that

Pτ [Sν = ∞|Fτ ] = 0, Pτ -a.s.,(4.5)

P∞[Sν = ∞|Fτ ] = 0, P∞-a.s.(4.6)

For any 0 ≤ τ < ∞, the conditional K–L divergence is given by

Eτ

[
1{Sν>τ }

∫ Sν

τ

1
2α2

t dt
∣∣∣Fτ

]
= [g(ν) − g(yτ )]1{Sν>τ },(4.7)

E∞
[
1{Sν>τ }

∫ Sν

τ

1
2α2

t dt
∣∣∣Fτ

]
= [h(ν) − h(yτ )]1{Sν>τ }.(4.8)

Here the functions g(y), h(y) are defined as

g(y) = y + e−y − 1, h(y) = ey − y − 1.

They are both strictly increasing and strictly convex on [0,∞), with g(0) =
h(0) = 0 and g(∞) = h(∞) = ∞.

PROOF. Let Tn denote the stopping time

Tn = inf
{
t ≥ τ :

∫ t

τ

1
2α2

s ds ≥ n

}
.

Because of Lemma 1, Tn is Pτ -a.s. finite. If Sn
ν denotes Sn

ν = Sν ∧ Tn, then
Sn

ν is also Pτ -a.s. finite. Applying Itô’s rule to g(yt ) and using the observation
g′(y) + g′′(y) = 1, we can write

Eτ

[
g
(
ySn

ν

) − g(yτ )
∣∣Fτ

]
1{Sn

ν >τ }

= Eτ

[
1{Sn

ν >τ }
∫ Sn

ν

τ

1
2α2

t dt + g′(yt )αt dwt − g′(yt ) dmt

∣∣∣Fτ

]
.

Furthermore, on {Sn
ν ≥ t} we have yt ≤ ν. Consequently,

Eτ

[
1{Sn

ν>τ }
∫ Sn

ν

τ

1
2α2

t g
′(yt )

2 dt
∣∣∣Fτ

]
≤ (

g′(ν)
)2

n < ∞,

suggesting that the expectation of the stochastic integral is 0. On the other hand,
we have g′(0) = 0 and thus

∫ ∞
0 g′(yt ) dmt = 0 from (4.3). Thus, we end up with

Eτ

[
g
(
ySn

ν

) − g(yτ )
∣∣Fτ

]
1{Sn

ν >τ } = Eτ

[
1{Sn

ν >τ }
∫ Sn

ν

τ

1
2α2

t dt
∣∣∣Fτ

]
.(4.9)



308 G. V. MOUSTAKIDES

Now ySn
ν
≤ ν and g(·) is increasing. Therefore,

g(ν) = g(ν) − g(0) ≥ Eτ

[
g
(
ySn

ν

) − g(yτ )|Fτ

]
1{Sn

ν >τ }

= Eτ

[
1{Sn

ν >τ }
∫ Sn

ν

τ

1
2α2

t dt
∣∣∣Fτ

]
.

Because of Lemma 1, as n tends to ∞ Tn tends to ∞ as well and Sn
ν tends to Sν .

This yields

g(ν) ≥ Eτ

[
1{Sν>τ }

∫ Sν

τ

1
2α2

t dt
∣∣∣Fτ

]
≥ Eτ

[
1{Sν=∞}

∫ ∞
τ

1
2α2

t dt
∣∣∣Fτ

]
.

Using again Lemma 1, we conclude that Pτ [Sν = ∞|Fτ ] = 0, Pτ -a.s., which
is (4.5).

If we now return to (4.9), let n → ∞, use monotone convergence on the right-
hand side and bounded convergence on the left and use (4.5), we can prove (4.7).
Following similar steps we can show (4.6) and (4.8). �

We have the following two corollaries of Theorem 1.

COROLLARY 1. Let T be a stopping time and Sν the CUSUM stopping time
with threshold ν. If Tν = T ∧ Sν , then

Eτ

[
1{Tν>τ }

∫ Tν

τ

1
2α2

t dt
∣∣∣Fτ

]
= Eτ

[
g
(
y
Tν

) − g(yτ )|Fτ

]
1{Tν>τ },(4.10)

E∞
[
1{Tν>τ }

∫ Tν

τ

1
2α2

t dt
∣∣∣Fτ

]
= E∞

[
h
(
y
Tν

) − h(yτ )|Fτ

]
1{Tν>τ }.(4.11)

PROOF. The proof follows by another application of Itô’s rule. Expectation
of the stochastic integral is 0, because for 0 ≤ t ≤ Tν ≤ Sν we have 0 ≤ yt ≤ ν;
therefore, g′(yt ) and h′(yt ) are again bounded, and from Theorem 1 we have
Ei[∫ Tν

0 α2
t dt|Fτ ] < ∞. Finally, the Stieltjes integral involving dmt is again 0,

since g′(0) = h′(0) = 0. �

COROLLARY 2. Let T be a stopping time and Tν = T ∧ Sν . If the func-
tion f (y) is continuous and bounded for 0 ≤ y ≤ ν, then

Eτ

[
f

(
y
Tν

)∣∣Fτ

]
1{Tν>τ } = E∞

[
euTν −uτ f

(
y
Tν

)∣∣Fτ

]
1{Tν>τ }, P∞-a.s.(4.12)

PROOF. It should be noted that (4.12) is not obvious because Girsanov’s
theorem is valid only for bounded stopping times. Let M > 0. Then on {Tν > τ }
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we can write

Eτ

[
f

(
y
Tν

)∣∣Fτ

] = Eτ

[
1{Tν≤M}f

(
y
Tν

)∣∣Fτ

] + Eτ

[
1{Tν>M}f (y

Tν
)
∣∣Fτ

]
= E∞

[
1{Tν≤M}euTν −uτ f

(
y
Tν

)∣∣Fτ

] + Eτ

[
1{Tν>M}f

(
y
Tν

)∣∣Fτ

]
= E∞

[
euTν −uτ f

(
y
Tν

)∣∣Fτ

] − E∞
[
1{Tν>M}euTν−uτ f

(
y
Tν

)∣∣Fτ

]
+ Eτ

[
1{Tν>M}f

(
y
Tν

)∣∣Fτ

]
.

Notice now that on {Tν > τ } we have uTν − uτ ≤ uTν − mTν = y
Tν

≤ ν. Therefore,
we obtain the following bounds for the last two terms:

∣∣Eτ

[
1{Tν>M}f

(
y
Tν

)∣∣Fτ

]∣∣ ≤ max
0≤y≤ν

|f (y)|Pτ [Tν > M|Fτ ]
≤ max

0≤y≤ν
|f (y)|Pτ [Sν > M|Fτ ],

∣∣E∞
[
1{Tν>M}euTν −uτ f

(
y
Tν

)∣∣Fτ

]∣∣ ≤ eν max
0≤y≤ν

|f (y)|P∞[Tν > M|Fτ ]

≤ eν max
0≤y≤ν

|f (y)|P∞[Sν > M|Fτ ].

Both bounds, because of Theorem 1, tend to 0 as M → ∞. This concludes the
proof. �

Using Theorem 1, the K–L false-alarm divergence of Sν satisfies

E∞
[∫ Sν

0

1
2α2

t dt

]
= h(ν) − h(0) = h(ν).

Let ν� be the threshold for which the corresponding CUSUM stopping time
satisfies the false-alarm constraint (3.4) with equality, that is,

E∞
[∫ Sν�

0

1
2α2

t dt

]
= h(ν�) = eν� − ν� − 1 = γ.(4.13)

For every γ there is a unique ν� satisfying (4.13). The worst K–L detection
divergence of Sν� can be obtained from Theorem 1 using the increase of g(·).
Specifically,

J (Sν�) = sup
τ∈[0,∞)

ess sup{g(ν�) − g(yτ )} = g(ν�) − g(0) = g(ν�) = ν� + e−ν� − 1.

It is the goal of the next section to show that the CUSUM stopping time with
threshold ν� is, in fact, the one that solves the min–max optimization problem
defined by (3.3) and (3.4).
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5. Optimality of the CUSUM stopping time. To prove the optimality of Sν� ,
it is sufficient to show that for any stopping time T satisfying the false-alarm
constraint (3.4) we have J (T ) ≥ g(ν�). We will show this fact following similar
steps as in Moustakides (1986). We first obtain a convenient lower bound for J (T ).

THEOREM 2. Let T be a stopping time, let Sν be the CUSUM stopping time
with threshold ν and define Tν = T ∧ Sν . Then

J (T ) ≥ E∞[eyTν g(y
Tν

)]
E∞[eyTν ] .

PROOF. Since T ≥ Tν we have

J (T ) ≥ J (Tν) ≥ Eτ

[
1{Tν>τ }

∫ Tν

τ

1
2α2

t dt
∣∣∣Fτ

]
,(5.1)

J (T ) ≥ J (Tν) ≥ E0

[∫ Tν

0

1
2α2

t dt

]
,(5.2)

for any 0 ≤ τ < ∞, owing to (3.2). Applying Corollary 1 on the right-hand side
and Corollary 2 on both sides of (5.1), we obtain

J (T )E∞
[
euTν −uτ |Fτ

]
1{Tν>τ } ≥ E∞

[
euTν −uτ

[
g
(
y
Tν

) − g(yτ )
]∣∣Fτ

]
1{Tν>τ }.

Integrating both sides with −dmτ and recalling that mt is nonincreasing, then
taking expectation with respect to P∞, yields

J (T )E∞
[∫ Tν

0
euTν −uτ (−dmτ )

]
≥ E∞

[∫ Tν

0
euTν −uτ

[
g
(
y
Tν

) − g(yτ )
]
(−dmτ )

]
.

Using from Lemma 2 the fact that the process m is flat off the set {τ ≥ 0 :yτ =
0} = {τ ≥ 0 :uτ = mτ } and also that g(0) = 0, we can write the previous relation
as

J (T )E∞
[∫ Tν

0
euTν −mτ (−dmτ )

]
≥ E∞

[∫ Tν

0
euTν −mτ g

(
y
Tν

)
(−dmτ )

]
,

which leads to

J (T )E∞
[
eyTν − euTν

] ≥ E∞
[(

eyTν − euTν
)
g
(
y
Tν

)]
.(5.3)

Focusing now on (5.2), recalling that F0 is the trivial σ -algebra, using Corollaries
1 and 2, and that y0 = 0, we end up with

J (T )E∞
[
euTν

] ≥ E∞
[
euTν g

(
y
Tν

)]
.

By adding this relation, term by term, to (5.3), we obtain

J (T )E∞
[
eyTν

] ≥ E∞
[
eyTν g

(
y
Tν

)]
.
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Finally, since eν ≥ eyTν ≥ 1, we conclude that

J (T ) ≥ E∞[eyTν g(y
Tν

)]
E∞[eyTν ] ,

which proves the theorem. �

At this point, we need the following technical lemma.

LEMMA 3. Let T be a stopping time, let Sν be the CUSUM stopping time with

threshold ν, let Tν = T ∧ Sν and define the function ψT (ν) = E∞[∫ Tν

0
1
2α2

t dt].
Then ψT (ν) is continuous and increasing in ν with ψT (0) = 0 and ψT (∞) =
E∞[∫ T

0
1
2α2

t dt].

PROOF. Since for ν < µ we have Sν ≤ Sµ, we conclude that ψT (ν) is
increasing in ν. By observing that S0 = 0 and S∞ = ∞, we can verify the
correctness of the two values ψT (0) and ψT (∞). To show continuity, let ν < µ

and consider the difference

ψT (µ) − ψT (ν) = E∞
[∫ Tµ

Tν

1
2α2

t dt

]

= E∞
[
1{T >Sν}

∫ Tµ

Tν

1
2α2

t dt

]
+ E∞

[
1{T ≤Sν }

∫ Tµ

Tν

1
2α2

t dt

]

= E∞
[
1{T >Sν}

∫ Tµ

Tν

1
2α2

t dt

]
≤ E∞

[∫ Sµ

Sν

1
2α2

t dt

]

= h(µ) − h(ν),

where we have used the property that for ν < µ we have Sν ≤ Sµ. Therefore,
on the set {T ≤ Sν} we have that T = Tν = Tµ, whereas on {T > Sν} we have
that Sν = Tν ≤ Tµ ≤ Sµ. Continuity of ψT (ν) is a consequence of the continuity
of h(ν). �

We are now in a position to show the optimality of CUSUM. We first observe
that we can limit ourselves to stopping times that satisfy the false-alarm con-
straint (3.4) with equality. Indeed, if a stopping time T has E∞[∫ T

0
1
2α2

t dt] > γ ,
then from Lemma 3 we conclude that we can select a threshold ν such that the
stopping time Tν = T ∧ Sν satisfies (3.4) with equality. Since T ≥ Tν , this yields
J (T ) ≥ J (Tν), which suggests that Tν is preferable to T .

THEOREM 3. Any stopping time T that satisfies the false-alarm con-
straint (3.4) with equality has a K–L detection divergence J (T ) that is no less
than g(ν�).
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PROOF. Based on Theorem 2, it is sufficient to show that for every ε > 0 we
can find a threshold νε such that Tνε = T ∧ Sνε satisfies

E∞[eyTνε g(yTνε
)]

E∞[eyTνε ] ≥ g(ν�) − ε.(5.4)

To prove (5.4), let T be a stopping time satisfying the false-alarm constraint with
equality and consider any ε > 0. Then, because of Lemma 3, we can select a
sufficiently large threshold νε such that

γ ≥ E∞
[∫ Tνε

0

1
2α2

t dt

]
≥ γ − ε.

From Corollary 1, we have E∞[∫ Tνε

0
1
2α2

t dt] = E∞[h(y
Tνε

)], which suggests that

E∞
[
h
(
y
Tνε

)] ≥ γ − ε.(5.5)

Let U(Tνε) be the following expression:

U(Tνε) = E∞
[
eyTνε

[
g
(
y
Tνε

) − g(ν�)
] − h

(
y
Tνε

) + h(ν�)
]
.(5.6)

If we define the function p(y) = ey[g(y) − g(ν�)] − h(y) + h(ν�), we can then
verify that its derivative satisfies p′(y) = ey[g(y) − g(ν�)]. Due to the strict
increase in g(y), this suggests that p′(y) has the same sign as y −ν�, and therefore
p(y) has a minimum at y = ν�. Since p(ν�) = 0 we conclude that p(y) ≥ 0.
Consequently, we also have U(Tνε) ≥ 0. Using this fact in (5.6) along with (5.5)
and recalling from (4.13) that h(ν�) = γ yields

E∞
[
eyTνε g

(
y
Tνε

)] ≥ g(ν�)E∞
[
eyTνε

] + E∞
[
h
(
y
Tνε

)] − h(ν�)

≥ g(ν�)E∞
[
eyTνε

] − ε ≥ [g(ν�) − ε]E∞
[
eyTνε

]
,

where the last inequality holds because ey ≥ 1. This proves the theorem and
establishes optimality of the CUSUM stopping time. �

6. Discussion and examples. A key property for the validity of our result
is (2.9). In fact, this condition imposes a form of persistency in the difference
between the statistics of the two hypotheses, thus ensuring the a.s. finiteness of
the optimal stopping time. There are, of course, situations where (2.9) does not
hold, as, for example, in transient changes where the process returns to its nominal
statistics after a finite time. For such cases, CUSUM is not necessarily optimal
since the previous analysis is no longer valid (it is Theorem 1 that fails).

Extension of our result to multidimensional processes is straightforward. In
particular, if the observation is a vector Itô process 
 of the form

d
t =
{

At dt + �t dWt, 0 ≤ t ≤ τ ,

Bt dt + �t dWt, τ < t < ∞,



OPTIMALITY OF THE CUSUM PROCEDURE 313

where W is a vector Brownian motion, A and B are adapted vector processes and
� is an adapted matrix process, then our previous analysis goes through without
significant modifications. The log-likelihood ratio in this case satisfies

dut = AT
t d
t − 1

2AT
t At dt = AT

t dWt ± 1
2AT

t At dt,

where the superscript T denotes transpose, the − sign corresponds to the case
before the change, the + after, and the process A is defined as

At = �−1
t (Bt − At).

Here the quantity AT
t At plays the role of α2

t , and as was mentioned above all
results go through without major difficulty.

What is interesting to note in this more general setting is the fact that
when AT

t At is equal to a constant, the modified criterion is equivalent to the
original Lorden criterion. In other words, CUSUM is optimal in the original
Lorden sense not only for detecting changes in the constant drift of a Brownian
motion but also changes in which the process AT

t At is constant.
One might also consider the possibility of extending our result to the discrete-

time case. In particular, we are interested in observations ξn that satisfy the model

ξn = αn−11{n>τ } + wn,

with α adapted to the filtration F , where Fn = σ {ξk; 0 ≤ k ≤ n} and w is an
i.i.d. standard, zero-mean, unit-variance, Gaussian process. Unfortunately, this
generalization cannot be obtained by following a similar approach as in the
continuous-time case. The main bottleneck comes from Theorem 1; specifically, it
is not clear whether the two conditional divergences of the CUSUM test depend
only on yτ and, furthermore, whether expressions similar to Corollary 1 hold for
any other stopping time.

Let us now present two examples that fall into our class of processes (2.1).
Consider the case where αt = α(t), with α(t) a deterministic function of time.
This is the problem considered in Tartakovski (1995), where one is interested in
detecting changes in nonhomogeneous Gaussian processes. If for every finite t ≥ 0
we have

∫ t
0 α(s)2 ds < ∞ and limt→∞

∫ t
0 α(s)2 ds = ∞, then (2.4), (2.5) and (2.9)

are satisfied and therefore CUSUM is optimal in the proposed generalized sense.
A more interesting situation occurs when αt = −αξt , where α is a positive

constant. This corresponds to a standard Brownian motion without drift under
nominal conditions and to an Ornstein–Uhlenbeck process under change. Notice
that, under P∞, ξt = ξ0 + wt is Gaussian with mean ξ0 and variance equal to t ,
whereas under P0, ξt = ξ0e

−αt + ∫ t
0 e−α(t−s) dws is Gaussian with mean ξ0e

−αt

and variance (1 − e−2αt)/2α.
For (2.4) to be true, it is sufficient to have Ei[∫ t

0 ξ2
s ds] < ∞, i = 0,∞, which

can be directly verified.
To show that eut is a martingale, Corollary 5.16 from Karatzas and Shreve

(1991), page 200, applies showing validity of (2.6).
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For (2.9), to show first P∞[∫ ∞
0 ξ2

t dt = ∞] = 1, we observe, using the Schwarz
inequality, that

∫ t
0 ξ2

s ds ≥ (
∫ t

0 ξs ds)2/t . If we call zt = ∫ t
0 ξs ds/

√
t , then zt is

Gaussian with mean µt = c1
√

t and variance σ 2
t = c2t

2, where c1 and c2 are
constants. If M > 0, we can then write

P∞
[∫ ∞

0
ξ2
s ds ≤ M

]
≤ P∞

[∫ t

0
ξ2
s ds ≤ M

]
≤ P∞

[|zt | ≤
√

M
]

≤ �

(√
M − µt

σt

)
− �

(
−

√
M + µt

σt

)
,

where �(z) is the standard Gaussian cumulative distribution. The last term tends
to 0 as t tends to ∞. For a different proof, see Problem 6.30 of Karatzas and Shreve
[(1991), page 217].

To prove P0[∫ ∞
0 ξ2

t dt = ∞] = 1, we use Itô’s rule and conclude

zt =
∫ t

0
ξ2
s ds =

(
t − ξ2

t + ξ2
0 + 2

∫ t

0
ξs dws

)/
2α.

For the process zt , we can then show that its expected value is of the form
µt = c1t +o(t) and its variance σ 2

t = c2t +o(t), with c1 and c2 positive constants.
We can now use Chebyshev’s inequality and for any M > 0 and sufficiently large t

(such that µt > M) we can write

P0

[∫ ∞
0

ξ2
s ds ≤ M

]
≤ P0[zt ≤ M] = P0

[(
µt − zt

σt

)2

≥
(

µt − M

σt

)2]

≤
(

σt

µt − M

)2

.

The right-hand side term in the last inequality can be seen to tend to 0 as t tends
to ∞. Therefore, our optimality result applies to this case as well.
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