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OPTIMAL AND ASYMPTOTICALLY OPTIMAL CUSUM RULES
FOR CHANGE POINT DETECTION IN THE BROWNIAN
MOTION MODEL WITH MULTIPLE ALTERNATIVESY

B cTraTne M3yyaeTcsa 3amaya MOC/IENOBATENLHOTO OOHADYXEHUS W3-
MEHEHUs PABHOTO KOHCTAHTE CHOCA ODOYHOBCKOTO LBMXKEHUS B CIIy-
Yae MHOTMX ajIbTePHATUB. Kak Mepa KadyeCcTBa Mpensaraercs HeKOTO-
poe obobiienue kputepus Jlopaena. B ciyuae, xorna koddbduIMenTH
CHOCA, BO3MOXHEIE IIOCJE Pa3afkd, UMEIOT ONMHAKOBRIA 3HAK, HOKAa-
3aHO, 4TO MeTon KyMmynaTusHkXx cymm (CUSUM) aenseTcs onTuMans-
HBEIM IIpH OOHADYXEHNM HAUMEHBIIEro 10 abCOMIOTHON BETMYUHE CHOCA.
B cavuae. korma xo3h¢pUINEHTH CHOCA MMEIOT pa3HEIE 3HAKH, NPENb-
apaserca creunatbHoe 2-CUSUM mpaBuio, K0Topoe ABISETCS aCUMI-
TOTHYECKH ONMTHMAIBHBIM IIPU CTPEMJIIEHUM YACTOTHI JIOXKHEIX TPEBOT
K 6eCKOHEeYHOCTH.

K.aouesvie caosa u Ppasvt: oBHADYXEHMEe MOMEHTOB W3MEHEHUS,
ckopeiimee obHapyxeHue, meTon KyMyaaTuBHEX cymMm (CUSUM), asy-
CTODOHHMI METOI XyMYMATHBHHX cyMM (2-CUSUM).

1. Introduction and mathematical formulation of the problem.
We begin by considering the observation process {£;};»o with the following

dvnamics:
dé, = { dw;, tgé,
¢ pidt +dw, t>0, i=1,2,

where 6, the time of change, is assumed deterministic but unknown; y;, the
possible drifts the process can change to, are assumed known, but the specific
drift the process is changing to is assumed to be unknown. Our goal is to
detect the change and not to infer which of the changes occurred.

The probabilistic setting of the problem can be summarized as follows.

— The space of continuous functions 2 = C|0, o0].

— The filtration {#,} with &, = 0{&,, 0 < s <t} and o, = U, Fu.

— The families of probability measures:

1) {P}}, 0 € [0,00), whenever the change is y;, ¢ = 1, 2;
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2) P, the Wiener measure.

The objective is to detect the change as soon as possible while at the
same time controlling the frequency of false alarms. This is achieved through
the means of a stopping rule 7 adapted to the filtration .#;. One of the
possible performance measures of the detection delay, suggested by Lorden
in [6], considers the worst detection delay over all paths before the change
and all possible change points 6. It is

J(r) = SU esssup Eqf(r — 0)" | Fo, (1)

giving rise to the following constrained stochastic optimization problem:
inf J(7), E.[r]>T. (2)

Other performance measures include the Stationary Average Delay
Time (SADT), first advocated by Shiryaev in [13] and the Conditional Aver-
age Delay Time (CADT): supy Eg[(7 — 0) | 7 > 6]. The former is used in the
comparison between Roberts’ EWMA rule (see [11]) with Page’s CUSUM
rule (see [9]) and the Shiryaev-Roberts rule (see [13] and [12!) appearing
in the paper by Srivastava and Wu [16] for the one-sided alternative in the
Brownian motion model. The latter is used in [10], where the Shiryaev—
Roberts rule is compared with the CUSUM rule for the same problem. In
the multiple and two-sided alternative case, Tartakovsky in 17! proves the
asymptotic optimality of the N-CUSUM rule as the frequency of false alarms
tends to infinity by considering the CADT for all changes as a performance
measure in the exponential family model. Lorden in [6] proves the first-order
asymptotic optimality of the generalized CUSUM rule for two-sided alterna-
tives in the exponential family model. This result was further improved by
Dragalin in [3].

In order to incorporate the different possibilities for the u, we extend
Lorden’s performance measure inspired by the idea of the worst detection
delay regardless of the change (along the lines of [4]). It is

J(7) = max sup esssupE;[(T — 8)1 | Fy), (3)
PR

which results in a corresponding optimization problem of the form:
inf Jp (1), Ei[r]>T. _ (4)

It is easily seen, that in seeking solutions to the above problem, as
suggested in [7], we can restrict our attention to stopping times that satisfy
the false alarm constraint with equality. This is because, if Eo[r] > T,
we can produce a stopping time that achieves the constraint with equality
without increasing the detection delay, simply by randomizing between 7
and the stopping time that is identically 0. To this effect, we introduce the
following definition.
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Definition 1. Define J¢ to be the set of all stopping rules = that
are adapted to &%, and that satisfy E[r] = T.

The paper is organized as follows. In Section 2 the one-sided CUSUM
stopping rule along with its optimal character is presented. Section 3 is de-
voted to the presentation of the 2-CUSUM stopping rules and certain families
amongst them that display interesting properties. Finally, in Section 4, two
asvmptotic optimality results are provided as T' — oo.

2. The one-sided CUSUM stopping time. The CUSUM statistic
process and the corresponding one-sided CUSUM stopping time are defined
as follows.

Definition 2. Let A € R and v € R,. Define the following pro-
cesses:

1) uy(A) = A — %)\215; my(A) = infogeqr us(A);

2) y:(A) = us(A) — my(X) > 0, which is the CUSUM statistic process;

3) T.(A\,v) = inf{t > 0; y,()\) > v}, which is the CUSUM stopping time.

We are now in a position to examine two very important properties of
the one-sided CUSUM stopping time. The first is a characteristic specifically
inherent to the CUSUM statistic and is summarized in the following lemma.

Lemma 1. Fiz 6 € [0,00). Lett > 6 and consider the process

=u; —ug — Inf (u, — ug).
Y0 t 0 essst(’ e)

This is the CUSUM process when starting at time 0. We have that y: > y16
with equality if yo = 0.

P roof. The proof is a matter of noticing that we can write
) +
Ye = Yrg T+ <0g:£t(us — ug) + y0> > Yo (5)

and that infog ce(us —up) < 0.

By its definition it is clear that y; ¢ depends only on information received
after time 6. Thus, we conclude that all contribution of the observation
process {{;} before time 6 is summarized in ys. Relation (5), therefore,
suggests that, as a function of the information before 6, the worst detection
delay occurs whenever 3, = 0. In other words,

esssup o [(7.(A, ) - 0)* | F5] = Eo [(re(\,v) — 0)*|ys = 0]
= Eq [1.(\, V)). (6)
Equation (6) states that the CUSUM stopping time is an equalizer rule

over 8, in the sense that its performance does not depend on the value of
this parameter.
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The second property of the one-sided CUSUM comes as a result of
noticing that m, is nonincreasing and that when it changes (decreases) we
necessarily have m, = u,. In other words, when m, changes, y, attains its
smallest value, that is 0. When this happens we will say that the CUSUM
statistic process restarts. This important observation combined with stan-
dard results appearing in [5] allow for the computation of the CUSUM delay
function.

Lemma 2. Suppose a CUSUM stopping rule is based on the CUSUM
statistic with drift parameter A € R and has threshold v € R, . Then the

detection delay when the observation process &, has drift u € R is given by
Efr.(A, v)] = (2/2?) g(v, p), where

e +pv—1
P2

and p=2§—1.

g9(v,p) =
Proof. Consider the function f(y) = (2/2?)[g(v, p) —g(y, p)]- Then f
is a twice continuously differentiable function of y satisfying

pf W)+ f'y)= -1,  with f(0)=f(v)=0.

Using standard It6 calculus on the process f(y;) and the results appearing
in [5, pp. 149, 210] it is easy to show that for any stopping time 7 with
E[r] < oo, we have:

E(f(y.)] ~ f(y) = —E[7].

The desired formula follows by noticing that yo = 0 and for the CUSUM
stopping time we have y, = v (for more details see also [8]).

Notice that for a # 0 we have a~2g(v, p) = g(v/|al, p|a|). This suggests
the followfng alternative expression for the delay function:

Elr(\ )] = 29 (75, sien (2= ). (7)

In [2] and [14] it is shown that when there is only one possible alter-
native for the drift u, the CUSUM stopping rule 7.(u,v), with v satisfying
(2/p?) g(v,—1) = T, solves the optimization problem defined in (2). It is
also interesting to note that in [8], after a proper modification of Lorden’s
criterion that replaces expected delays with Kullback-Leibler divergences,
the optimality of the CUSUM can be extended to cover detection of general
changes in It6 processes.

When the sign of the alternative drifts is the same, with the help of
the following lemma we can show that the one-sided CUSUM stopping rule
that detects the smallest in absolute value drift is the optimal solution of
the problem in (4).
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Lemma 3. For every path of the Brownian motion wy, the process yi(X)
is an increasing (decreasing) function of the drift of the observation process &,
when A >0 (A <0).

Proof. Consider two possible drift values u;, pto with p; < p. We
define the following two observation processes & (u;) = wi(t — 6)1 + wy,
1 =1, 2, that lead to the corresponding CUSUM processes

1 1
w(A ) = M) = 5 A% = Muwe + it = 0)7} = 5 4%,
mt(’\a /1'1) = Og.}it us(’\nu‘i)a
yt(/\a lu'i) = ut(’\) /1'1) - mt(/\; ;u‘z)

Consider the difference y; (A, o) —y: (A, p1) = 6(t—0)r —my (A, po) +me (A, 1),
where 6 = A(ug — p1). Notice now that A > 0 implies 6 > 0 and we can write

us(’\> )u‘2) = us(’\a ,u'l) + 6(3 - 0)+ < ’U,s(/\, lu‘l) + 6(t - 9)+

Taking the infimum over 0 < s <t we get m,(A, p2) < m(A, pa) + (¢ —0)*
from which, by rearranging terms, we get that y,(X, p2) > v:(A, 1), The
case A < 0 can be shown similarly. Lemma 3 is proved.

From Lemma 3 it also follows that u; < u, implies E}[r.(),v)] >
E?[7.(\,v)] when A > 0 and the opposite when A < 0. As a direct con-
sequence of this fact comes our first optimality result concerning drifts with
the same sign.

Theorem 1. Let 0 < p; < pg or py € 1 < 0, then the one-sided
CUSUM stopping time T.(u,v1) with v, satisfying (2/u2) g(vy,-1) = T
solves the optimization problem defined in (4).

Proof. The proof is straightforward. Since v, was selected so that
Tc(p1, 1) satisfies the false alarm constraint, we have 7.(u,,v,) € . Then,
for all 7 € & we have

Ji(7) = max sup esssup Ej[(7 — ) | Fp] > supesssup Ej[(t — 6)1 | Fy]
i e 0

. 2
> E(l)[Tc(#l,lh)] = m?XEB[Tc(M,Ul)] = Jp(1e(p1, 1)) = ;2‘9(1/17 1).
1

The last inequality comes from the optimality of the one-sided CUSUM
stopping rule and the last three equalities are due to Lemma 3, the definition
of the performance measure J () in (3), and Lemma 2. Theorem 1 is proved.
It is worth pointing out that if we had n alternative drifts (instead of
two) of the form 0 < p; < pe < - < ppor 0> py > pg > -+ > py, and
we used the extended Lorden’s criterion in (3), the optimality of 7.(u1, 1),
presented in Theorem 1, would still be valid. Qur result should be compared
to [4] (which refers to discrete time and the exponential family), where for
the same type of changes only asymptotically optimum schemes are offered.
We also have the following corollary of Lemma 3.
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Corollary 1. Let 0 < || < |po| and define n;, 1 = 1,2, so that
(2/p2)g(mi, —1) =T > 0. Then we have

1 1
;?9(771,1) 2 u—%g(”h,l)- (8)

- Proof. Since the result is independent of the sign of the two drifts,
without loss of generality we may assume 0 < p; < py. Consider the two
CUSUM rules 7.(pi,m:), @ = 1,2. Because the two thresholds n; were selected
to satisfy the false alarm constraint, using Lemma 1, Lemma 3 and the
optimality of the one-sided CUSUM stopping time, the following inequalities
hold for all T € ¥

2
u—%g(”h, 1) = E(ly[‘rc(#h’h)] Z Eg[‘fc(ul,m)]

s%p esssup E3[(7.(k1,m) ~ 0)1 | Fo

\%

inf sup esssup E2[(r — 6)T | Zy]
T g

9
= Ej[r.(pe, m)] = ;gg(nz, 1).

Corollary 1 is proved.

3. Different drift signs and the 2-CUSUM stopping time. Let us
now consider the case py < 0 < y;. The very interesting problem of knowing
the amplitude of the drift but not the sign falls into this setting. What
has traditionally been done in the literature, dating as far back as Barnard
in [1], is to use the minimum of the stopping rules 7.(u1,v1) and 7.(p2.v2)
each tuned to detect the respective changes pu; and p,. To this effect. we
introduce the following 2-CUSUM stopping rule.

Definition 3. Let Ay, < 0 < A;. The 2-CUSUM stopping
time 7y.(A1, Az, 1, v2) is defined as follows: To.( A1, Az, 1, 15) = 7e( A1 1y) A
Te(Ag, o).

We will, from now on, denote all 2-CUSUM rules by 7. unless it is
necessary to give emphasis to their four parameters. By the definition of
the 2-CUSUM stopping rule it is apparent that it consists of running in
parallel the two CUSUM statistic processes y;(A;) and y;();) and stopping
whenever one of the two hits its corresponding threshold for the first time.
From Lemma 1 we can conclude that

esssup Ep[(12. — 0)" | Zy] = Ejf(72c — 0)" | yo (A1) = ys(X2) = 0]
= E:)[T%], (9)

from which we get

J1(72¢) = max sup esssup Ey[(72c — 6)* | Fo) = max Ep[rac]-
i ] '
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As we have seen the 2-CUSUM stopping rule is characterized by the four
parameters, A, Az, v1, and v,. Since our intention is to propose a specific
rule as the «preferable» one, we need to come up with a specific selection
of these parameters. For this purpose, up to this point, we only have one
equation available, namely, the false alarm constraint Ey[r2] = T. Hence,
we will gradually impose additional constraints on our 2-CUSUM structure
in order to arrive to a unique stopping rule. Once our rule is specified we
will support its selection by demonstrating that it enjoys a strong asymptotic
optimality property.

3.1. A special class of 2-CUSUM rules. First we shed our atten-
tion to a specific class of 2-CUSUM stopping rules that allow for the exact
computation of their performance.

Definition 4. Define
¢ = {Tzc(/\l,/\z,l/l,l/z); = |/\1|V and v, = |/\2IV}-

For 1, € 4 we have the following characteristic property.

Lemma 4. Let 1, € 4 then, when 7y stops, one of its CUSUM statistic
processes hits its corresponding threshold while the other necessarily restarts.

Proof. Although the proof given in [15, p. 28] for discrete time and
the exponential family, applies here as well (without major changes), we pre-
fer to give an alternative (hopefully easier) proof. Consider the process {Y;}
with

1
Y = [da] g (M) +H M we(Ae) = —3 (A2 A3+ A1 [AZ) t= 1Az me (A1) —| Mg ] me(Az).

Since y;(A;) > 0 we clearly have ¥; > 0. Let us suppose that ¥; > 0.
Then we notice that, when both processes m;(\;), i = 1,2, stay constant,
Y, decreases linearly in time. From this we conclude that Y; can increase
only when at least one of the two processes m;()\;) changes (decreases).
This implies that the corresponding CUSUM processes y;(A;) restarts. We
obviously cannot have both CUSUM processes restarting, since that would
yield Y¥; = 0. By its definition, the 2-CUSUM rule stops when one of the
two CUSUM processes hits its corresponding threshold. At this instant, we
necessarily have Y; > |A;)\2|v. In fact we are going to argue that equality
holds. Indeed we can see that when Y, hits the level [\ A2]v > 0 for the
first time, since Y; attains a new level, it has to be during an increase. But
the latter can only happen when one of the two CUSUM processes restarts
while the other necessarily hits its threshold. Lemma 4 is proved.

The following lemma uses the above property to derive a formula for
the expected delay of the 2-CUSUM rule.
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Lemma 5. Let 1o, = 11 ATy with 7o, € 4 and 11, T, the corresponding
one-sided CUSUM branches. Then the expected delay of the 2-CUSUM stop-
ping time T, is related to the corresponding delays of its one-sided CUSUM
branches through the formula

(Elrc])” = (Bln)) ™ + (Elna]) ™ (10)

Proof. The proof basically repeats the one presented in [15, p. 28]
for the discrete time case.

3.2. 2-CUSUM equalizer rules. It is well known that min-max
problems, such as (4), are solved by equalizer rules. In other words, by stop-
ping rules that demonstrate the same performance under the two changes.
Thus, we further restrict ourselves among the class of equalizer rules.

Definition 5. Define
P = {12c € 9; Eglrae) = Ej[m2c]}-

By the definition of the class of equalizer rules it follows that 2 C ¥.
Let us now find a simple condition that guarantees this property.
By using (7), (10) we get for i = 1,2

1 1 -1
(2g<v, ign (O) (2 =) T 2900, sign () (20 — A»)) - (1)

From (11) we can see that in order to have 75, € 2 we need

sign (A1) (21 — A1) = sign (A2)(2p2 — A2), (12)
sign (A2)(2p — A2) = sign (A)(2u2 — Aq). (13)

EB [7'20] =

One can now easily verify that both of the above equations (12) and (13)
are satisfied whenever

In other words, if we select A, A; to satisfy (14), then the corresponding
2-CUSUM stopping rule has the same performance under both drifts u,, .

By limiting ourselves to the class 2 (i.e., selecting v; = A v. 1, =
|A2|v and using (14)), apart from the false alarm constraint. we impose two
additional constraints on our four parameters. In order for the 2-CUSUM
rule to be completely specified we need one final condition. Qur intention
is to select the parameter A, so that the corresponding detection delay is
asymptotically (as T — 0o) minimized.

Theorem 2. Let py < 0 < py with || < |pa]. Consider all 2-CUSUM
stopping times 1o € ¥ N P. Then among all such stopping rules the one
with Ay = w1, Ay = 2uy + py is asymptotically optimal as T — oc.
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Proof. Since p; + pg <0, for any A\; > 0, from equation (14) we get
[A1] < |A2|. Let us first consider the false alarm constraint. Using (7), (10)
with p = 0 and v; = |\ |y, vy = |Ag|v, we get

1 1 -1
Bulrid = (555 * 55w p) =T (15)

By carefully examining the exponential rates of the two terms in (15) we
conclude that the leading term is the one containing A;. Hence, we get

Aw = InT(1 + o(1)). (16)

For the common detection delay, using equation (11) and substituting A, =
2(p1 + p2) — A1 we have the following estimates:

Bifrd = (o= * o)
T =
ol72e 29(v,2u1 — X)) 2g9(v, 2u2 — Ay)

2
2—111%'/\:(1 + 0(1)) for 2/11 > /\1 - 0,
= { ¥(1+0(1)) for 2pu, = A, (17)
26V|2#1-)\1[ ¢ \
—_— 1 2 .
WY (1+0(1)) or 2 < A

The objective is to minimize the detection delay with respect to A; in order
to find the best selection for this parameter. From (17) it is clear that it is
suflicient to limit ourselves to the case 0 < A; < 2u;, since for A; > 2y, the
detection delay increases significantly faster as v increases. For 0 < A\; < 2p,,
the detection delay, after substituting v from (16), can be written as

2InT

M= N (1+0(1)),

which is clearly minimized, asymptotically, for A; = u;. Using equation (14),
we also get Ay = 2u, + py. Theorem 2 is proved.

Let us now summarize our results. We propose the following 2-CUSUM
rule for the case py < 0 < py: when || < |po] select Ay = p1, Aa = 2ps + 1,
n = |mlv, v = 20 + v, I [ 2 {pe|, then Xy = 2p) + pg, Ao = pa,
= |2p; + pa|v, v2 = |ug|v. Finally, the parameter v is selected so as to
satisfy the false alarm constraint (15).

4. Asymptotic optimality in opposite sign drifts. For the specific
2-CUSUM rule introduced at the end of the previous section, we are going
to demonstrate two asymptotic optimality results. By means of an upper
and a lower bound on the performance of the unknown optimal stopping
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rule, we will show that in the case of equal in absolute value drifts the differ-
ence in performance between the unknown optimum rule and the proposed
2-CUSUM rule tends to a constant as T — oo. In the case of different in
absolute value drifts we have a stronger asymptotic result. In particular, we
will demonstrate that the difference in performance between the unknown
optimal rule and the proposed 2-CUSUM rule tends to 0 as T' = oo. This
should be compared to most existing asymptotic optimality results, where it
is shown that the ratio between the performance of the optimum and the pro-
posed scheme tends to unity (first order optimality). Our form of asymptotic
optimality is clearly stronger since it implies first order optimality, while the
opposite is not necessarily true.

Let 7, denote the specific 2-CUSUM rule proposed in the previous
section with the threshold v selected so that the false alarm constraint is
satisfied with equality. Since 75, constitutes a possible choice in the class ¢,
equation (9) and Lemma 2 imply that for all 7 € ¥

Eé [T2c] = E(2)[T2c] = JL(T2c) Z lI‘rlf Jr (T) (18)
To find a lower bound, we observe that for all 7 € £ we can write

inf J(7) = inf max sup esssup E}[(T — 8)* | F]
T .0

T 1

) 2
> max (inf sup esssup Ej[(7 — )T | 90]) = max EQ(% 1), (19)
3 r 0 i i

where for the last equality we used the optimality of the one-sided CUSUM
stopping rule and the expression for its worst detection delav from Lemma 2.
The two thresholds #;, ¢ = 1, 2, are selected to satisfy the false alarm con-
straint (2/u?) g(m;, —1) = T. The asymptotic results that follow examine
the way the two bounds approach each other. Since the performance of the
optimal stopping rule is between the two bounds, this will also determine
the rate with which the 2-CUSUM approaches the optimal solution.

4.1. The case of equal in absolute value drifts. We first consider
the special case p; = —py = p. Here our parameter selection takes the
form A; = p; = p and Ay = 2uy + g3 = pp; = —p which coincides with the
2-CUSUM scheme proposed in the literature. Let us now examine the two
bounds. The upper bound, from (11), with this specific parameter selection
becomes

i — 1 1 - i =
Jr(7ee) = Eg[2e) = (29(1/, ) + 290, _3#)> , =1.2. (20)

with the threshold v computed from the false alarm constraint (15) that
takes the form

Eo[r2] = (

1 1
+
29(1/7 —lu‘) 2g(l/> _lu‘)

) =e-w=T. @
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Similarly, the lower bound becomes (2/u?) g(n,1) with the threshold 7 sat-
isfying (2/u%) g(n,-1) =T.

Theorem 3. The difference in the performance between the proposed
2-CUSUM stopping rule and the optimal stopping rule is asymptotically, as
the false alarm constraint T — oo, bounded by the constant (2log2)/u?.

Proof. Solving for v from (21) we obtain uv = InT + In(u?/2) +
In2 + o(1). On the other hand, we can write (20) as Jp,(r3.) = (2/p®){uv +
e ™ — 1}{1 + O(uve=3*)}. Substituting the estimate for v we get

2

2
I = o { T+ k5~ 1424 o)}

Similarly, for the lower bound we have that the threshold 7 as a function
of T becomes n = InT + In(u?/2) + o(1). Therefore, the lower bound is of
the form (2/u®){InT + In(u?/2) — 1 4 o(1)}. Since the difference between
the upper and the lower bound bounds the difference Jp(73.) — inf, Ji(7),
we conclude that 0 < Jp(7a.) — inf, J,(7) < (2/u*){In2 + o(1)}, from which
the result follows by letting T' — co. Theorem 3 is proved.

18 T T T T T T T T T

16

—
L

3
glo
s 8
Q
£ s
>
<
4.
2F === Lower bound H
— 2-CUSUM
1 1 1

1 1 Y I (1 i .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Average False Alarm Delay T

Fig. 1. Typical form of the upper and lower bounds of the performance
of the optimum stopping rule for the case p3 = —pz = 1.

Figure 1 depicts the upper and lower bound as a function of the false
alarm constraint T for the case u; = —uz = 1. Since, as we can see, the
difference of the two bounds is increasing with 7', the constant proposed by
Theorem 3 corresponds to a worst case performance attained only in the
limit as T — oo.
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4.2. The case of different in absolute value drifts.

Theorem 4. The difference in the performance between the proposed
2-CUSUM stopping rule and the optimal stopping rule tends to 0 as the false
alarm constraint T — oo,

Proof We will only examine the case |u1| < |p2|. From Corollary 1
and equation (8) it follows that the maximum in the lower bound in (19) is
achieved for y;. Hence, as in Theorem 3, we get (2/p3){InT + In(u?)/2 —
14 o(1)} for the lower bound.

The upper bound is the detection delay of the proposed 2-CUSUM stop-
ping time 75.. From (11), with A; = p1, A2 = 2us + u;, we have

i 1 1 B
Jr(rae) = Eg[rac] = (Qg(l/, H) + 29(v, 2, — ,Ul))

2
= p {e™ + v — 1H{1 + O(pvePra—r¥)} (22)
1

where v is selected to satisfy the false alarm constraint, which by (15) takes
the form
1 1 ) -
+ =T.
29(v,—m1)  29(v. 2up + 1)

Eoo[rad] = < (23)
From (23) we get the estimate y;v = InT - In(u? 21 — o(1). This. when
substituted in (22), produces

2
2

2
JL(rzC)=E:',[rzc]=“ {lnT-t-ln%:--—lool‘}. (24)

1

Subtracting now the lower bound expression from the :pper bound expres-
sion in (24) we obtain

0 < ']L(TZC) — inf JL(T) <ol

which tends to 0 as T' — co. Theorem 4 is proved.

In Figure2 we present the two bounds for y, = 1 and p, =
—1.05,-1.15,—1.3. We recall that the upper bound is the detection delay of
the 2-CUSUM rule 7, € ¥N¥ with parameters A\, = y; and A\, = 2uy+ 4.
We can see that the difference between the two curves is tending to zero as
the false alarm tends to infinity, thus corroborating Theorem 4. What is
more interesting, however, is the fact that the two curves rapidly approach
each other, uniformly over T', as the ratio |u,|/|u,| of the two drifts increases.
As we can see, in the case u; = 1, uy = —1.3 the two bounds become almost
indistinguishable. This suggests that the proposed 2-CUSUM rule can be
(extremely) close to the unknown optimal rule, not only asymptotically, as
proposed by Theorem 4, but also uniformly over all false alarm values.

et e e
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Fig. 2. Typical form of the upper and lower bounds of the performance
of the optimal stopping rule for the case y2 < 0 < p1, with g1 = 1 and
4z = —1.05,-1.15,—1.3.

It is also worth noting that the difference in the performance of the
optimal rule and any 2-CUSUM rule in ¢ with parameters A\; = p; and
A2 € (—p1, 242 + py] (one such possibility is the selection proposed in the
literature A\; = p;, Ay = p2) also tends to 0 as T' — oo. Therefore, asymp-
totically optimal solutions allow for many different choices. It is, however,
our selection that leads to an equalizer rule.
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