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OPTIMAL AND ASYMPTOTICALLY OPTIMAL CUSUM RULES
FOR CHANGE POINT DETECTION IN THE BROWNIAN MOTION

MODEL WITH MULTIPLE ALTERNATIVES∗

O. HADJILIADIS† AND G.V. MOUSTAKIDES‡

Abstract. This work examines the problem of sequential change detection in the constant
drift of a Brownian motion in the case of multiple alternatives. As a performance measure an
extended Lorden’s criterion is proposed. When the possible drifts, assumed after the change, have
the same sign, the CUSUM rule, designed to detect the smallest in absolute value drift, is proven
to be the optimum. If the drifts have opposite signs, then a specific 2-CUSUM rule is shown to be
asymptotically optimal as the frequency of false alarms tends to infinity.
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1. Introduction and mathematical formulation of the problem. We be-
gin by considering the observation process {ξt}t>0 with the following dynamics:

dξt =

{
dwt, t � θ,

μi dt + dwt, t > θ, i = 1, 2,

where θ, the time of change, is assumed deterministic but unknown; μi, the possible
drifts the process can change to, are assumed known, but the specific drift the process
is changing to is assumed to be unknown. Our goal is to detect the change and not
to infer which of the changes occurred.

The probabilistic setting of the problem can be summarized as follows:
— The space of continuous functions Ω = C[0,∞].
— The filtration {Ft} with Ft = σ{ξs, 0 < s � t} and F∞ =

⋃
t>0Ft.

— The families of probability measures as follows:
(a) {Pi

θ}, θ ∈ [0,∞), whenever the change is μi, i = 1, 2;
(b) P∞, the Wiener measure.

The objective is to detect the change as soon as possible while at the same time
controlling the frequency of false alarms. This is achieved through the means of a
stopping rule τ adapted to the filtration Ft. One of the possible performance measures
of the detection delay, suggested by Lorden in [6], considers the worst detection delay
over all paths before the change and all possible change points θ. It is

J(τ) = sup
θ

ess supEθ

[
(τ − θ)

+ | Fθ

]
,(1)

giving rise to the following constrained stochastic optimization problem:

inf
τ
J(τ), E∞[τ ] � T.(2)
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Other performance measures include the Stationary Average Delay Time (SADT),
first advocated by Shiryaev in [13] and the Conditional Average Delay Time (CADT):
supθ Eθ[(τ −θ) | τ > θ]. The former is used in the comparison between Roberts’ expo-
nentially weighted moving averages (EWMA) rule (see [11]) with Page’s cumulative
sums (CUSUM) rule (see [9]) and the Shiryaev–Roberts rule (see [13] and [12]) ap-
pearing in the paper by Srivastava and Wu [16] for the one-sided alternative in the
Brownian motion model. The latter is used in [10], where the Shiryaev–Roberts rule
is compared with the CUSUM rule for the same problem. In the multiple and two-
sided alternative case, Tartakovsky in [17] proves the asymptotic optimality of the
N -CUSUM rule as the frequency of false alarms tends to infinity by considering the
CADT for all changes as a performance measure in the exponential family model.
Lorden in [6] proves the first-order asymptotic optimality of the generalized CUSUM
rule for two-sided alternatives in the exponential family model. This result was further
improved by Dragalin in [3].

In order to incorporate the different possibilities for the μi, we extend Lorden’s
performance measure inspired by the idea of the worst detection delay regardless of
the change (along the lines of [4]). It is

JL(τ) = max
i

sup
θ

ess supEi
θ

[
(τ − θ)+ | Fθ

]
,(3)

which results in a corresponding optimization problem of the form

inf
τ
JL(τ), E∞[τ ] � T.(4)

It is easily seen that in seeking solutions to the above problem, as suggested in [7],
we can restrict our attention to stopping times that satisfy the false alarm constraint
with equality. This is because, if E∞[τ ] > T , we can produce a stopping time that
achieves the constraint with equality, without increasing the detection delay, simply
by randomizing between τ and the stopping time that is identically 0. To this effect,
we introduce the following definition.

Definition 1. Define K to be the set of all stopping rules τ that are adapted
to Ft and that satisfy E∞[τ ] = T .

The paper is organized as follows. In section 2 the one-sided CUSUM stopping
rule along with its optimal character is presented. Section 3 is devoted to the presen-
tation of the 2-CUSUM stopping rules and certain families among them that display
interesting properties. Finally, in section 4, two asymptotic optimality results are
provided as T → ∞.

2. The one-sided CUSUM stopping time. The CUSUM statistic process
and the corresponding one-sided CUSUM stopping time are defined as follows.

Definition 2. Let λ ∈ R and ν ∈ R+. Define the following processes:
(a) ut(λ) = λξt − 1

2 λ
2t; mt(λ) = inf0�s�t us(λ);

(b) yt(λ) = ut(λ) −mt(λ) � 0, which is the CUSUM statistic process;
(c) τc(λ, ν) = inf{t � 0; yt(λ) � ν}, which is the CUSUM stopping time.
We are now in a position to examine two very important properties of the one-

sided CUSUM stopping time. The first is a characteristic specifically inherent to the
CUSUM statistic and is summarized in the following lemma.

Lemma 1. Fix θ ∈ [0,∞). Let t � θ and consider the process

yt,θ = ut − uθ − inf
θ�s�t

(us − uθ).
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This is the CUSUM process when starting at time θ. We have that yt � yt,θ with
equality if yθ = 0.

Proof. The proof is a matter of noticing that we can write

yt = yt,θ +

(
inf

θ�s�t
(us − uθ) + yθ

)+

� yt,θ(5)

and that infθ�s�t(us − uθ) � 0.
By its definition it is clear that yt,θ depends only on information received after

time θ. Thus, we conclude that all contributions of the observation process {ξt} before
time θ are summarized in yθ. Relation (5), therefore, suggests that, as a function of
the information before θ, the worst detection delay occurs whenever yθ = 0. In other
words,

ess supEθ

[
(τc(λ, ν) − θ)+ | Fθ

]
= Eθ

[
(τc(λ, ν) − θ)+|yθ = 0

]
= E0 [τc(λ, ν)].(6)

Equation (6) states that the CUSUM stopping time is an equalizer rule over θ, in the
sense that its performance does not depend on the value of this parameter.

The second property of the one-sided CUSUM comes as a result of noticing
that mt is nonincreasing and that when it changes (decreases) we necessarily have
mt = ut. In other words, when mt changes, yt attains its smallest value, that is, 0.
When this happens we will say that the CUSUM statistic process restarts. This im-
portant observation combined with standard results appearing in [5] allows for the
computation of the CUSUM delay function.

Lemma 2. Suppose a CUSUM stopping rule is based on the CUSUM statistic
with drift parameter λ ∈ R and has threshold ν ∈ R+. Then the detection delay when
the observation process ξt has drift μ ∈ R is given by E[τc(λ, ν)] = (2/λ2) g(ν, ρ),
where

g(ν, ρ) =
e−ρν + ρν − 1

ρ2
and ρ = 2

μ

λ
− 1.

Proof. Consider the function f(y) = (2/λ2)[g(ν, ρ) − g(y, ρ)]. Then f is a twice
continuously differentiable function of y satisfying

ρf ′(y) + f ′′(y) = −1 with f ′(0) = f(ν) = 0.

Using standard Itô calculus on the process f(yt) and the results appearing in [5,
pp. 149, 210] it is easy to show that for any stopping time τ with E[τ ] < ∞, we have

E[f(yτ )] − f(y0) = −E[τ ].

The desired formula follows by noticing that y0 = 0 and for the CUSUM stopping
time we have yτc = ν (for more details see also [8]).

Notice that for α �= 0 we have α−2g(ν, ρ) = g(ν/|α|, ρ|α|). This suggests the
following alternative expression for the delay function:

E
[
τc(λ, ν)

]
= 2g

(
ν

|λ| , sign (λ)(2μ− λ)

)
.(7)

In [2] and [14] it is shown that when there is only one possible alternative for
the drift μ, the CUSUM stopping rule τc(μ, ν), with ν satisfying (2/μ2) g(ν,−1) = T ,
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solves the optimization problem defined in (2). It is also interesting to note that in [8],
after a proper modification of Lorden’s criterion that replaces expected delays with
Kullback–Leibler divergences, the optimality of the CUSUM can be extended to cover
detection of general changes in Itô processes.

When the sign of the alternative drifts is the same, with the help of the following
lemma we can show that the one-sided CUSUM stopping rule that detects the smallest
in absolute value drift is the optimal solution of the problem in (4).

Lemma 3. For every path of the Brownian motion wt, the process yt(λ) is an
increasing (decreasing) function of the drift of the observation process ξt when λ > 0
(λ < 0).

Proof. Consider two possible drift values μ1, μ2 with μ1 < μ2. We define the
following two observation processes ξt(μi) = μi(t− θ)+ +wt, i = 1, 2, that lead to the
corresponding CUSUM processes

ut(λ, μi) = λξt(μi) −
1

2
λ2t = λ{wt + μi(t− θ)+} − 1

2
λ2t,

mt(λ, μi) = inf
0�s�t

us(λ, μi),

yt(λ, μi) = ut(λ, μi) −mt(λ, μi).

Consider the difference yt(λ, μ2)−yt(λ, μ1) = δ(t−θ)+−mt(λ, μ2)+mt(λ, μ1), where
δ = λ(μ2 − μ1). Notice now that λ > 0 implies δ > 0 and we can write

us(λ, μ2) = us(λ, μ1) + δ(s− θ)+ � us(λ, μ1) + δ(t− θ)+.

Taking the infimum over 0 � s � t we get mt(λ, μ2) � mt(λ, μ1) + δ(t − θ)+ from
which, by rearranging terms, we get that yt(λ, μ2) � yt(λ, μ1). The case λ < 0 can
be shown similarly. Lemma 3 is proved.

From Lemma 3 it also follows that μ1 � μ2 implies E1[τc(λ, ν)] � E2[τc(λ, ν)]
when λ > 0 and the opposite when λ < 0. As a direct consequence of this fact comes
our first optimality result concerning drifts with the same sign.

Theorem 1. Let 0 < μ1 � μ2 or μ2 � μ1 < 0, then the one-sided CUSUM
stopping time τc(μ1, ν1) with ν1 satisfying (2/μ2

1) g(ν1,−1) = T solves the optimization
problem defined in (4).

Proof. The proof is straightforward. Since ν1 was selected so that τc(μ1, ν1)
satisfies the false alarm constraint, we have τc(μ1, ν1) ∈ K. Then, for all τ ∈ K we
have

JL(τ) = max
i

sup
θ

ess supEi
θ

[
(τ − θ)+ | Fθ

]
� sup

θ
ess supE1

θ

[
(τ − θ)+ | Fθ

]
� E1

0

[
τc(μ1, ν1)

]
= max

i
Ei

0

[
τc(μ1, ν1)

]
= JL

(
τc(μ1, ν1)

)
=

2

μ2
1

g(ν1, 1).

The last inequality comes from the optimality of the one-sided CUSUM stopping rule,
and the last three equalities are due to Lemma 3, the definition of the performance
measure JL(τ) in (3), and Lemma 2. Theorem 1 is proved.

It is worth pointing out that if we had n alternative drifts (instead of two) of the
form 0 < μ1 � μ2 � · · · � μn or 0 > μ1 � μ2 � · · · � μn and we used the extended
Lorden’s criterion in (3), the optimality of τc(μ1, ν1), presented in Theorem 1, would
still be valid. Our result should be compared to [4] (which refers to discrete time
and the exponential family), where for the same type of changes only asymptotically
optimum schemes are offered.
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We also have the following corollary of Lemma 3.
Corollary 1. Let 0 < |μ1| � |μ2| and define ηi, i = 1, 2, so that

2

μ2
i

g(ηi,−1) = T > 0.

Then we have

1

μ2
1

g(η1, 1) � 1

μ2
2

g(η2, 1).(8)

Proof. Since the result is independent of the sign of the two drifts, without loss
of generality we may assume 0 < μ1 � μ2. Consider the two CUSUM rules τc(μi, ηi),
i = 1, 2. Because the two thresholds ηi were selected to satisfy the false alarm con-
straint, using Lemma 1, Lemma 3, and the optimality of the one-sided CUSUM stop-
ping time, the following inequalities hold for all τ ∈ K:

2

μ2
1

g(η1, 1) = E1
0

[
τc(μ1, η1)

]
� E2

0

[
τc(μ1, η1)

]
= sup

θ
ess supE2

θ

[
(τc(μ1, η1) − θ)+ | Fθ

]
� inf

τ
sup
θ

ess supE2
θ

[
(τ − θ)+ | Fθ

]
= E2

0

[
τc(μ2, η2)

]
=

2

μ2
2

g(η2, 1).

Corollary 1 is proved.

3. Different drift signs and the 2-CUSUM stopping time. Let us now
consider the case μ2 < 0 < μ1. The very interesting problem of knowing the amplitude
of the drift but not the sign falls into this setting. What has traditionally been done
in the literature, dating as far back as 1959 in Barnard [1], is to use the minimum
of the stopping rules τc(μ1, ν1) and τc(μ2, ν2), each tuned to detect the respective
changes μ1 and μ2. To this effect, we introduce the following 2-CUSUM stopping
rule.

Definition 3. Let λ2 < 0 < λ1. The 2-CUSUM stopping time τ2c(λ1, λ2, ν1, ν2)
is defined as follows: τ2c(λ1, λ2, ν1, ν2) = τc(λ1, ν1) ∧ τc(λ2, ν2).

We will, from now on, denote all 2-CUSUM rules by τ2c unless it is necessary to
give emphasis to their four parameters. By the definition of the 2-CUSUM stopping
rule it is apparent that it consists of running in parallel the two CUSUM statistic pro-
cesses yt(λ1) and yt(λ2) and stopping whenever one of the two hits its corresponding
threshold for the first time. From Lemma 1 we can conclude that

ess supEi
θ[(τ2c − θ)+ | Fθ] = Ei

θ

[
(τ2c − θ)+ | yθ(λ1) = yθ(λ2) = 0

]
= Ei

0[τ2c],(9)

from which we get

JL(τ2c) = max
i

sup
θ

ess supEi
θ

[
(τ2c − θ)+ | Fθ

]
= max

i
Ei

0[τ2c].

As we have seen, the 2-CUSUM stopping rule is characterized by the four pa-
rameters λ1, λ2, ν1, and ν2. Since our intention is to propose a specific rule as the
“preferable” one, we need to come up with a specific selection of these parameters.
For this purpose, up to this point we have only one equation available, namely, the
false alarm constraint E∞[τ2c] = T . Hence, we will gradually impose additional con-
straints on our 2-CUSUM structure in order to arrive at a unique stopping rule. Once
our rule is specified we will support its selection by demonstrating that it enjoys a
strong asymptotic optimality property.
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3.1. A special class of 2-CUSUM rules. First we direct our attention to a
specific class of 2-CUSUM stopping rules that allow for the exact computation of their
performance.

Definition 4. Define

G =
{
τ2c(λ1, λ2, ν1, ν2); ν1 = |λ1| ν and ν2 = |λ2| ν}.

For τ2c ∈ G we have the following characteristic property.
Lemma 4. Let τ2c ∈ G; then, when τ2c stops, one of its CUSUM statistic processes

hits its corresponding threshold while the other necessarily restarts.
Proof. Although the proof given in [15, p. 28] for discrete time and the exponential

family applies here as well (without major changes), we prefer to give an alternative
(hopefully easier) proof. Consider the process {Yt} with

Yt = |λ2| yt(λ1) + |λ1| yt(λ2) = −1

2
(|λ2|λ2

1 + |λ1|λ2
2) t− |λ2|mt(λ1) − |λ1|mt(λ2).

Since yt(λi) � 0 we clearly have Yt � 0. Let us suppose that Yt > 0. Then we notice
that, when both processes mt(λi), i = 1, 2, stay constant, Yt decreases linearly in
time. From this we conclude that Yt can increase only when at least one of the two
processes mt(λi) changes (decreases). This implies that the corresponding CUSUM
processes yt(λi) restart. We obviously cannot have both CUSUM processes restarting,
since that would yield Yt = 0. By its definition, the 2-CUSUM rule stops when one
of the two CUSUM processes hits its corresponding threshold. At this instant, we
necessarily have Yt � |λ1λ2| ν. In fact we are going to argue that equality holds.
Indeed we can see that when Yt hits the level |λ1λ2| ν > 0 for the first time, since Yt

attains a new level, it has to be during an increase. But the latter can happen only
when one of the two CUSUM processes restarts while the other necessarily hits its
threshold. Lemma 4 is proved.

The following lemma uses the above property to derive a formula for the expected
delay of the 2-CUSUM rule.

Lemma 5. Let τ2c = τ1 ∧ τ2 with τ2c ∈ G and τ1, τ2 the corresponding one-
sided CUSUM branches. Then the expected delay of the 2-CUSUM stopping time τ2c
is related to the corresponding delays of its one-sided CUSUM branches through the
formula

(
E[τ2c]

)−1
=

(
E[τ1]

)−1
+
(
E[τ2]

)−1
.(10)

Proof. The proof basically repeats the one presented in [15, p. 28] for the discrete
time case.

3.2. 2-CUSUM equalizer rules. It is well known that min-max problems,
such as (4), are solved by equalizer rules—in other words, by stopping rules that
demonstrate the same performance under the two changes. Thus, we further restrict
our attention to the class of equalizer rules.

Definition 5. Define

D =
{
τ2c ∈ G; E1

0[τ2c] = E2
0[τ2c]

}
.

By the definition of the class of equalizer rules it follows that D ⊂ G. Let us now
find a simple condition that guarantees this property.
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By using (7), (10) we get for i = 1, 2

Ei
0[τ2c] =

(
1

2g(ν, sign (λ1)(2μi − λ1))
+

1

2g(ν, sign (λ2)(2μi − λ2))

)−1

.(11)

From (11) we can see that in order to have τ2c ∈ D we need

sign (λ1)(2μ1 − λ1) = sign (λ2)(2μ2 − λ2),(12)

sign (λ2)(2μ1 − λ2) = sign (λ1)(2μ2 − λ1).(13)

One can now easily verify that both (12) and (13) are satisfied whenever

λ1 + λ2 = 2(μ1 + μ2).(14)

In other words, if we select λ1, λ2 to satisfy (14), then the corresponding 2-CUSUM
stopping rule has the same performance under both drifts μ1, μ2.

By limiting ourselves to the class D (i.e., selecting ν1 = |λ1| ν, ν2 = |λ2| ν and us-
ing (14)), apart from the false alarm constraint, we impose two additional constraints
on our four parameters. In order for the 2-CUSUM rule to be completely specified
we need one final condition. Our intention is to select the parameter λ1 so that the
corresponding detection delay is asymptotically (as T → ∞) minimized.

Theorem 2. Let μ2 < 0 < μ1 with |μ1| � |μ2|. Consider all 2-CUSUM stopping
times τ2c ∈ K ∩ D. Then among all such stopping rules the one with λ1 = μ1,
λ2 = 2μ2 + μ1 is asymptotically optimal as T → ∞.

Proof. Since μ1 + μ2 � 0, for any λ1 > 0, from (14) we get |λ1| � |λ2|. Let us
first consider the false alarm constraint. Using (7), (10) with μ = 0 and ν1 = |λ1| ν,
ν2 = |λ2| ν, we get

E∞[τ2c] =

(
1

2g(ν,−|λ1|)
+

1

2g(ν,−|λ2|)

)−1

= T.(15)

By carefully examining the exponential rates of the two terms in (15) we conclude
that the leading term is the one containing λ1. Hence, we get

λ1ν = log T
(
1 + o(1)

)
.(16)

For the common detection delay, using (11) and substituting λ2 = 2(μ1 +μ2)−λ1 we
have the following estimates:

Ei
0[τ2c] =

(
1

2g(ν, 2μ1 − λ1)
+

1

2g(ν, 2μ2 − λ1)

)−1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2ν

2μ1 − λ1

(
1 + o(1)

)
for 2μ1 > λ1 � 0,

ν2(1 + o(1)) for 2μ1 = λ1,

2eν|2μ1−λ1|

(2μ1 − λ1)2
(1 + o(1)) for 2μ1 < λ1.

(17)

The objective is to minimize the detection delay with respect to λ1 find the best
selection for this parameter. From (17) it is clear that it is sufficient to limit ourselves
to the case 0 � λ1 < 2μ1, since for λ1 � 2μ1 the detection delay increases significantly
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faster as ν increases. For 0 � λ1 < 2μ1, the detection delay, after substituting ν
from (16), can be written as

2 log T

λ1(2μ1 − λ1)

(
1 + o(1)

)
,

which is clearly minimized, asymptotically, for λ1 = μ1. Using (14), we also get
λ2 = 2μ2 + μ1. Theorem 2 is proved.

Let us now summarize our results. We propose the following 2-CUSUM rule for
the case μ2 < 0 < μ1: when |μ1| � |μ2|, select λ1 = μ1, λ2 = 2μ2 + μ1, ν1 = |μ1| ν,
ν2 = |2μ2 + μ1| ν. If |μ1| � |μ2|, then λ1 = 2μ1 + μ2, λ2 = μ2, ν1 = |2μ1 + μ2| ν, ν2 =
|μ2| ν. Finally, the parameter ν is selected to satisfy the false alarm constraint (15).

4. Asymptotic optimality in opposite sign drifts. We are going to demon-
strate two asymptotic optimality results for the specific 2-CUSUM rule introduced at
the end of the previous section. By means of an upper and a lower bound on the
performance of the unknown optimal stopping rule, we will show that in the case
of equal-in-absolute-value drifts the difference in performance between the unknown
optimum rule and the proposed 2-CUSUM rule tends to a constant as T → ∞. In the
case of different-in-absolute-value drifts we have a stronger asymptotic result. In par-
ticular, we will demonstrate that the difference in performance between the unknown
optimal rule and the proposed 2-CUSUM rule tends to 0 as T → ∞. This should
be compared to most existing asymptotic optimality results, where it is shown that
the ratio between the performance of the optimum and the proposed scheme tends to
unity (first order optimality). Our form of asymptotic optimality is clearly stronger
since it implies first order optimality, while the opposite is not necessarily true.

Let τ2c denote the specific 2-CUSUM rule proposed in the previous section with
the threshold ν selected so that the false alarm constraint is satisfied with equality.
Since τ2c constitutes a possible choice in the class K, (9) and Lemma 2 imply that for
all τ ∈ K

E1
0[τ2c] = E2

0[τ2c] = JL(τ2c) � inf
τ
JL(τ).(18)

To find a lower bound, we observe that for all τ ∈ K we can write

inf
τ
JL(τ) = inf

τ

max
i

sup
θ

ess supEi
θ

[
(τ − θ)+ | Fθ

]
� max

i

(
inf
τ

sup
θ

ess supEi
θ[(τ − θ)+ | Fθ]

)
= max

i

2

μ2
i

g(ηi, 1),(19)

where for the last equality we used the optimality of the one-sided CUSUM stopping
rule and the expression for its worst detection delay from Lemma 2. The two thresh-
olds ηi, i = 1, 2, are selected to satisfy the false alarm constraint (2/μ2

i ) g(ηi,−1) = T .
The asymptotic results that follow examine the way the two bounds approach each
other. Since the performance of the optimal stopping rule is between the two bounds,
this will also determine the rate with which the 2-CUSUM approaches the optimal
solution.

4.1. The case of equal-in-absolute-value drifts. We first consider the special
case μ1 = −μ2 = μ. Here our parameter selection takes the form λ1 = μ1 = μ and
λ2 = 2μ2 + μ1 = μ2 = −μ which coincides with the 2-CUSUM scheme proposed in
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the literature. Let us now examine the two bounds. The upper bound, from (11),
with this specific parameter selection becomes

JL(τ2c) = Ei
0[τ2c] =

(
1

2g(ν, μ)
+

1

2g(ν,−3μ)

)−1

, i = 1, 2,(20)

with the threshold ν computed from the false alarm constraint (15) that takes the
form

E∞[τ2c] =

(
1

2g(ν,−μ)
+

1

2g(ν,−μ)

)−1

= g(ν,−μ) = T.(21)

Similarly, the lower bound becomes (2/μ2) g(η, 1) with the threshold η satisfying
(2/μ2) g(η,−1) = T .

Theorem 3. The difference in the performance between the proposed 2-CUSUM
stopping rule and the optimal stopping rule is, as the false alarm constraint T → ∞,
asymptotically bounded by the constant (2log2)/μ2.

Proof. Solving for ν from (21) we obtain μν = log T +log(μ2/2)+log 2+o(1). On
the other hand, we can write (20) as JL(τ2c) = (2/μ2){μν+e−μν−1}{1+O(μνe−3μν)}.
Substituting the estimate for ν we obtain

JL(τ2c) =
2

μ2

{
log T + log

μ2

2
− 1 + log 2 + o(1)

}
.

Similarly, for the lower bound we have that the threshold η as a function of T becomes
η = log T +log(μ2/2)+o(1). Therefore, the lower bound is of the form (2/μ2){log T +
log(μ2/2) − 1 + o(1)}. Since the difference between the upper and the lower bound
bounds the difference JL(τ2c) − infτ JL(τ), we conclude that

0 � JL(τ2c) − inf
τ
JL(τ) � 2

μ2

{
log 2 + o(1)

}
,

from which the result follows by letting T → ∞. Theorem 3 is proved.
Figure 1 depicts the upper and lower bounds as a function of the false alarm

constraint T for the case μ1 = −μ2 = 1. Since, as we can see, the difference of the
two bounds is increasing with T , the constant proposed by Theorem 3 corresponds to
a worst case performance attained only in the limit as T → ∞.

4.2. The case of different-in-absolute-value drifts.
Theorem 4. The difference in the performance between the proposed 2-CUSUM

stopping rule and the optimal stopping rule tends to 0 as the false alarm constraint
T → ∞.

Proof. We will examine only the case |μ1| < |μ2|. From Corollary 1 and (8) it
follows that the maximum in the lower bound in (19) is achieved for μ1. Hence, as in
Theorem 3, we get (2/μ2

1){log T + log(μ2
1)/2 − 1 + o(1)} for the lower bound.

The upper bound is the detection delay of the proposed 2-CUSUM stopping
time τ2c. From (11), with λ1 = μ1, λ2 = 2μ2 + μ1, we have

JL(τ2c) = Ei
0[τ2c] =

(
1

2g(ν, μ1)
+

1

2g(ν, 2μ2 − μ1)

)−1

=
2

μ2
1

{
e−μ1ν + μ1ν − 1

}{
1 + O(μ1νe

(2μ2−μ1)ν)
}
,(22)
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Fig. 1. Typical form of the upper and lower bounds of the performance of the optimum stopping
rule for the case μ1 = −μ2 = 1.

where ν is selected to satisfy the false alarm constraint, which by (15) takes the form

E∞[τ2c] =

(
1

2g(ν,−μ1)
+

1

2g(ν, 2μ2 + μ1)

)−1

= T.(23)

From (23) we obtain the estimate μ1ν = log T + log(μ2
1/2) + o(1). This, when substi-

tuted in (22), produces

JL(τ2c) = Ei
0[τ2c] =

2

μ2
1

{
log T + log

μ2
1

2
− 1 + o(1)

}
.(24)

Subtracting now the lower bound expression from the upper bound expression in (24)
we obtain

0 � JL(τ2c) − inf
τ
JL(τ) � o(1),

which tends to 0 as T → ∞. Theorem 4 is proved.
In Figure 2 we present the two bounds for μ1 = 1 and μ2 = −1.05,−1.15,−1.3.

We recall that the upper bound is the detection delay of the 2-CUSUM rule τ2c ∈
G ∩ K with parameters λ1 = μ1 and λ2 = 2μ2 + μ1. We can see that the difference
between the two curves is tending to zero as the false alarm tends to infinity, thus
corroborating Theorem 4. What is more interesting, however, is the fact that the two
curves rapidly approach each other, uniformly over T , as the ratio |μ2|/|μ1| of the
two drifts increases. As we can see, in the case μ1 = 1, μ2 = −1.3 the two bounds
become almost indistinguishable. This suggests that the proposed 2-CUSUM rule
can be (extremely) close to the unknown optimal rule, not only asymptotically, as
proposed by Theorem 4, but also uniformly over all false alarm values.

It is also worth noting that the difference in the performance of the optimal rule
and any 2-CUSUM rule in G with parameters λ1 = μ1 and λ2 ∈ (−μ1, 2μ2 +μ1] (one
such possibility is the selection proposed in the literature: λ1 = μ1, λ2 = μ2) also
tends to 0 as T → ∞. Therefore, asymptotically optimal solutions allow for many
different choices. It is, however, our selection that leads to an equalizer rule.
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Fig. 2. Typical form of the upper and lower bounds of the performance of the optimal stopping
rule for the case μ2 < 0 < μ1, with μ1 = 1 and μ2 = −1.05,−1.15,−1.3.
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