
The Annals of Statistics
2008, Vol. 36, No. 2, 787–807
DOI: 10.1214/009053607000000938
© Institute of Mathematical Statistics, 2008

SEQUENTIAL CHANGE DETECTION REVISITED

BY GEORGE V. MOUSTAKIDES

University of Patras

In sequential change detection, existing performance measures differ sig-
nificantly in the way they treat the time of change. By modeling this quantity
as a random time, we introduce a general framework capable of capturing and
better understanding most well-known criteria and also propose new ones.
For a specific new criterion that constitutes an extension to Lorden’s perfor-
mance measure, we offer the optimum structure for detecting a change in
the constant drift of a Brownian motion and a formula for the corresponding
optimum performance.

1. Introduction. Suppose we are observing sequentially a process {ξt }t>0,

which up to and including time τ ≥ 0 follows the probability measure P∞ and
after τ it switches to an alternative regime P0. Parameter τ is the change-time and
denotes the last time instant the process is under the nominal regime P∞. The goal
is to detect the change of measures as soon as possible, using a sequential scheme.

Any sequential test can be modeled as a stopping time (s.t.) T adapted to the
filtration {Ft }t≥0, where Ft = σ {ξs,0 < s ≤ t} for t > 0; and F0 is the trivial
σ -algebra. We note that the process {ξt } becomes available for t > 0 while the
change-time τ can take upon the value 0 as well. This is because with τ = 0 we
would like to capture the case where all observations are under the alternative
regime, whereas τ = ∞ refers to the case where all observations are under the
nominal regime. More generally, Pτ denotes the probability measure induced by
the change occurring at τ and Eτ [·] the corresponding expectation. In particular, if
X is an F∞-measurable random variable and τ = t a deterministic time of change,
then we can write

Et [X] = E∞[E0[X|Ft ]].(1.1)

In developing optimum change detection algorithms, the first step consists in
defining a suitable performance measure. Existing criteria basically quantify the
detection delay (T − τ)+, where x+ = max{x,0}, by considering alternative ver-
sions of its average. These definitions play an important role in the underlying
mathematical model for the change-time τ .

Currently we distinguish two major models for change-time. The first, intro-
duced by Shiryayev (1978), assumes that τ is random with a known (exponential)
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prior. We can accompany this change-time model with the following performance
measure JS(T ) = Eτ [T − τ |T > τ ], that is, the average detection delay condi-
tioned on the event that we stop after the change. Alternatively, we can consider
τ to be deterministic and unknown and follow a worst-case scenario. There exist
two possibilities. The first, proposed by Lorden (1971), considers the worst average
delay JL(T ) = sup0≤τ essup Eτ [(T − τ)+|Fτ ] conditioned on the least-favorable
observations before the change. The second, due to Pollak (1985), uses the worst
average delay JP(T ) = sup0≤τ Eτ [T − τ |T > τ ] conditioned on the event that we
stop after τ .

Shiryayev’s Bayesian approach presents definite analytical advantages and has
been the favorite underlying model in several existing optimality results as Poor
(1998), Beibel (1996), Peskir and Shiryayev (2002), Karatzas (2003), Bayraktar
and Dayanik (2006) and Bayraktar, Dayanik and Karatzas (2006). The two deter-
ministic approaches on the other hand, although more analytically involved, are
clearly more tractable from a practical point of view since they do not make any
limiting assumptions.

As it will become evident in Section 3, the three performance criteria can be
ordered as follows: JS(T ) ≤ JP(T ) ≤ JL(T ). Because of this property, there ex-
ist strong arguments against Lorden’s measure as being overly pessimistic. Such
claims, however, tend to be inconsistent with the fact that JL(T ), whenever it can
be optimized, it gives rise to the CUSUM s.t., one of the most widely used change
detection schemes in practice. Despite their similarity, Pollak’s JP(T ) and Lor-
den’s JL(T ) measure, as we are going to see, differ in a very essential way. In fact
JP(T ), although not obvious at this point, will be shown to be closer to Shiryayev’s
JS(T ) measure than to Lorden’s JL(T ).

In the next section we present a general approach for modeling the change-
time τ . The three measures presented previously will turn out to be special cases of
our general setting corresponding to different levels and forms of prior knowledge.
The understanding of their differences will give rise to a discussion concerning the
suitability of each measure for the problem of interest and will explain, we believe
in a convincing way, why Lorden’s criterion, although seemingly more pessimistic
than the other two, is more appropriate for the majority of change detection prob-
lems. Finally, we are going to introduce an additional criterion that constitutes an
extension to Lorden’s JL(T ) performance measure. For this case, we will also pro-
vide the optimum test for detecting a change in the constant drift of a Brownian
motion and a formula for the corresponding optimum performance.

2. A randomized change-time. Suppose that nature, at every time instant t ,
consults the available information Ft and with some randomization probability de-
cides whether it should continue using the nominal probability measure or switch
to the alternative one. Consequently, let πt denote the randomization probability
that there is a change at t conditioned on the available information up to time t ,
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that is πt = P[τ = t |Ft ]. Clearly, πt is nonnegative and the process {πt } is {Ft }-
adapted.

We recall that time τ is usually considered in the literature as the first time
instant under the alternative regime. With the current setting this is no longer pos-
sible. Indeed, since there is a decision involved whether to change the statistics or
not, this decision must be made before any data under the alternative regime are
produced. Therefore, τ denotes the time we stop using the nominal regime.

Consider now a process {Xt }t≥0, where Xt is nonnegative and F∞-measurable
(the process in not necessarily {Ft }-adapted). We would like to compute the ex-
pectation of the random variable Xτ which is the τ -randomly-stopped version of
{Xt }, but we are interested only in finite values of τ . In other words we would like
to find Eτ [Xτ |τ < ∞]. Using (1.1) and that πt is Ft -measurable, we can write

Eτ

[
Xτ1{τ<∞}

] =
∞∑
t=0

Et [Xtπt ] =
∞∑
t=0

E∞[E0[Xt |Ft ]πt ].

Substituting Xt = 1 in the previous relation, we obtain Pτ [τ < ∞] = ∑∞
t=0E∞[πt ],

which is an expression for the probability of stopping at finite time. Combining the
two outcomes leads to

Eτ [Xτ |τ < ∞] =
∑∞

t=0 E∞[E0[Xt |Ft ]πt ]∑∞
t=0 E∞[πt ] .

From now on, and without loss of generality, we make the simplifying assump-
tion that Pτ [τ < ∞] = 1 (otherwise divide each πt with Pτ [τ < ∞]). Under this
assumption, we have

Eτ [Xτ ] =
∞∑
t=0

E∞[E0[Xt |Ft ]πt ].(2.1)

Let us summarize our change-time model. We are given a time increasing in-
formation (filtration) {Ft }t≥0 with F0 being the trivial σ -algebra, and a sequence
of {Ft }-adapted probabilities {πt }. Quantity πt denotes the history dependent ran-
domization probability that t is the last time instant we obtain information under
the nominal probability P∞ and at the next time instant the new information will
follow the alternative measure P0. For a process {Xt } with Xt being nonnegative
and F∞-measurable, we define the expectation of the τ -randomly-stopped process
Xτ with respect to the measure induced by the change, with the help of (2.1).

2.1. Decomposition of the change-time statistics. The process {πt } can be de-
composed as πt = �tpt where {�t } is a deterministic sequence of probabilities
defined as

�t = E∞[πt ] therefore
∞∑
t=0

�t = Pτ [τ < ∞] = 1;(2.2)
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and {pt } a nonnegative {Ft }-adapted process defined for �t > 0 as

pt = πt

�t

therefore E∞[pt ] = 1,(2.3)

while for �t = 0, we can arbitrarily set pt = 1. Quantity �t expresses the aggre-
gate probability that τ will stop at t , whereas pt describes how this probability is
distributed among the possible events that can occur up to time t . Since F0 is the
trivial σ -algebra, π0 is deterministic, therefore �0 = π0 and p0 = 1. Clearly �0

expresses the probability that the change takes place before the statistician obtains
any information.

3. Performance measure and optimization criterion. If T is an {Ft }-
adapted s.t. used by the statistician to detect the change, then we are interested
in defining a measure that quantifies its performance. Following the idea of Lor-
den (1971) and Pollak (1985), we propose the use of

J(T ) = Eτ [T − τ |T > τ ],
namely, the average detection delay conditioned on the event that we stop after τ .
Of course this measure makes sense for finite values of τ because a change at
infinity is regarded as “no change.” Since (T − t)+ and 1{T >t} are nonnegative
and F∞-measurable, by using (2.1) our measure can be written as

J(T ) =
∑∞

t=0 E∞[πtE0[(T − t)+|Ft ]]∑∞
t=0 E∞[πt1{T >t}]

(3.1)

=
∑∞

t=0 �tE∞[ptE0[(T − t)+|Ft ]]∑∞
t=0 �tE∞[pt1{T >t}] .

If we are interested in finding an optimum T , then we must minimize J(T ) with
respect to T , controlling at the same time the rate of false alarms. Similarly to Lor-
den (1971) and Pollak (1985), we propose the following constrained optimization
with respect to T :

inf
T

J(T ) subject to E∞[T ] ≥ γ.(3.2)

In other words, we minimize the conditional average detection delay, subject to the
constraint that the average period between false alarms is no less than a given value
γ ≥ 0. The performance measure, as we can see from (3.1), requires complete
knowledge of the two processes {�t } and {pt }. In the next subsection we extend
our definition to include cases where the statistics of τ are not exactly known or
they are limited to special cases.
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3.1. Special cases and uncertainty classes. If {�t }, {pt } are not known ex-
actly and instead we have available an uncertainty class T for τ , then we can ex-
tend the definition of our performance measure by adopting a worst-case approach
of the form supτ∈T J(T ), while (3.2) can be replaced by the following min-max
constrained optimization problem:

inf
T

sup
τ∈T

J(T ) subject to E∞[T ] ≥ γ.(3.3)

Next, we are going to identify the particular form of our criterion for specific
change-time classes. In order to facilitate our presentation, we first introduce a
technical lemma.

LEMMA 1. Let {�t } and {pt } be the processes defined in Section 2.1 satis-
fying (2.2) and (2.3), respectively. If {at }, {bt } are two nonnegative deterministic
sequences then

sup
{�t }

∑∞
t=0 �tat∑∞
t=0 �tbt

= sup
0≤t

at

bt

,(3.4)

where, for at = bt = 0 we define the ratio at/bt = 0. Furthermore, if xt , yt are two
nonnegative and Ft -measurable random variables then

sup
pt

E∞[ptxt ]
E∞[ptyt ] = essup

xt

yt

,(3.5)

where, as before, when xt = yt = 0 we define the ratio xt/yt = 0.

PROOF. To prove (3.4) notice that since at ≤ {sup0≤t (at/bt )}bt we conclude
that for any sequence {�t } we have∑∞

t=0 �tat∑∞
t=0 �tbt

≤ sup
0≤t

at

bt

.(3.6)

The upper bound in (3.6) is attainable by a sequence {�t } that places all its prob-
ability mass on the time instant(s) that attain the supremum. If the supremum is
attained in the limit, then for every ε > 0 we can find a sequence {�t } that de-
pends on ε, such that the left-hand side in (3.6) is ε close to the right-hand side.

Similar arguments apply for the proof of (3.5). Notice that, for every pt ≥ 0 sat-
isfying E∞[pt ] = 1 the combination E∞[pt ·] defines a probability measure on Ft

which is absolutely continuous with respect to P∞. Since xt ≤ {essup(xt/yt )}yt ,
P∞-a.s., this leads to

E∞[ptxt ]
E∞[ptyt ] ≤ essup

xt

yt

.

The upper bound is attainable by a probability measure E∞[pt ·] that places all its
mass on the event(s) that attain the essup, or we use limiting arguments if the essup
is attained as a limit. �
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Let us now proceed with the presentation of specific special cases and uncer-
tainty classes regarding the two processes {�t }, {pt }.

Case of known �t and pt = 1. Here, by selecting pt = 1, we limit our general
change-time model to the case where the probability that the change will occur
at t is independent from the observed history Ft . The corresponding performance
measure simplifies to the following expression

JS(T ) = J(T )|pt=1 =
∑∞

t=0 �tEt [(T − t)+]∑∞
t=0 �tP∞[T > t] ,(3.7)

where we used (1.1) to replace E∞[E0[(T − t)+|Ft ]] with Et [(T − t)+]. There
is no uncertainty class involved, we have simply limited the change-time τ to this
special case. We recall that Shiryayev (1978) first introduced this model for the
particular selection �t = (1 − δ)δt .

Case of arbitrary �t and pt = 1. We continue using the same model of the
previous case, but now we let {�t } be an arbitrary sequence of probabilities satis-
fying, according to (2.2),

∑∞
t=0 �t = 1. Using (3.4) from Lemma 1 and (1.1), it is

straightforward to prove that

JP(T ) = sup
{�t }

J(T )|pt=1 = sup
0≤t

Et [T − t |T > t].(3.8)

By considering arbitrary {�t }, we recover Pollak’s performance measure. From
the way JP(T ) is defined, it is evident that JS(T ) ≤ JP(T ).

Regarding the minimization of JP(T ) with respect to the s.t. T , Pollak (1985)
proposed the solution of the constrained optimization problem in (3.3). As candi-
date optimum s.t. for i.i.d. observations he suggested the Shiryayev–Roberts stop-
ping rule. Pollak was able to demonstrate asymptotic optimality (as γ → ∞) for
this test. Regarding nonasymptotic optimality of the Shiryayev–Robert s.t. with
respect to this criterion, see Mei (2006).

Case of arbitrary �t and arbitrary pt . Here the probability to stop at time
t depends on the observed history Ft , we thus return to our general change-time
model, but we assume complete lack of knowledge for the change time probabili-
ties. In order to find the worst-case performance, we need to maximize J(T ) with
respect to both processes {�t } and {pt }. We have the following lemma that treats
this problem.

LEMMA 2. Let {�t } and {pt } be defined as in Section 2.1 satisfying (2.2) and
(2.3) respectively, then

JL(T ) = sup
{�t },{pt }

J(T ) = sup
0≤t

essup Et [(T − t)+|Ft ].(3.9)
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PROOF. Using (3.4) from Lemma 1, for any given sequence {pt } we have

sup
{�t }

J(T ) = sup
0≤t

E∞[ptE0[(T − t)+|Ft ]]
E∞[pt1{T >t}] .

Using the fact that we can change the order of two consecutive maximizations, we
have

sup
{pt },{�t }

J(T ) = sup
{pt }

sup
0≤t

E∞[ptE0[(T − t)+|Ft ]]
E∞[pt1{T >t}]

= sup
0≤t

sup
pt

E∞[ptE0[(T − t)+|Ft ]]
E∞[pt1{T >t}]

= sup
0≤t

essup E0[(T − t)+|Ft ]

= sup
0≤t

essup Et [(T − t)+|Ft ],

where for the third equality we used (3.5) from Lemma 1 and for the last equality
the fact that E0[·|Ft ] = Et [·|Ft ]. This concludes the proof. �

Here we recover Lorden’s performance measure. It is clear that JP(T ) ≤ JL(T ),
since for Lorden’s measure we maximize over {pt } while in JP(T ) we consider
pt = 1. As it was demonstrated in Moustakides (1986) and Ritov (1990), solving
the optimization problem in (3.3) for Lorden’s criterion and for i.i.d. observations,
gives rise to the CUSUM test proposed by Page (1954). It is interesting to men-
tion that Ritov (1990) based his proof of optimality on a change-time formulation,
similar to the one proposed here.

A slight variation of the previous uncertainty class consists in assuming that the
change cannot occur outside a sequence {tn}n≥0 of known time instants. In other
words, we have �t = 0 if t /∈ {t0, t1, . . .}. This modifies the previous criterion in
the following way

JEL(T ) = sup
{�tn },{ptn }

J(T ) = sup
0≤n

essup Etn[(T − tn)
+|Ftn].(3.10)

With a more accurate description of the time instants where the change can occur,
one might expect to improve detection as compared to the CUSUM test. This mea-
sure is presented for the first time and will be treated in detail and under a more
interesting frame in Section 4.

It is also possible to examine, under the general model, the case where {�t } is
known and {pt } unknown or, alternatively, {�t } unknown and {pt } known. Clearly,
the first case could be regarded as an extension of Shiryayev’s approach to the
general change-time model proposed here. Unfortunately both cases lead to rather
complicated performance criteria, we, therefore, omit the corresponding analysis.
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Discussion. From the preceding presentation it is evident that the three perfor-
mance measures are ordered in the following way:

JS(T ) ≤ JP(T ) ≤ JL(T ),

giving the impression that Lorden’s criterion is more pessimistic than Shiryayev’s
and Pollak’s. This conclusion, however, is misleading since the underlying change-
time model for the Shiryayev and Pollak criterion is completely different and sig-
nificantly more limited than Lorden’s. We recall that JS(T ) and JP(T ) rely on the
assumption that the change at time t is triggered with a probability that does not
depend on the observed history Ft . In practice there are clearly applications where
this assumption is false and where it is more realistic to assume that the obser-
vations supply at least some partial information about the events that can trigger
the change. Therefore, whenever we adopt this logic, Lorden’s performance mea-
sure becomes more suitable than Shiryayev’s and Pollak’s. The same way JP(T )

is preferable to JS(T ) when there is no prior knowledge of {�t } [despite the fact
that JP(T ) is more “pessimistic” than JS(T )], we can also argue that JL(T ) is
preferable to JS(T ) and JP(T ) for problems where we need to follow the general
change-time model and there is no prior knowledge regarding the change-point
mechanism. Even if we still insist that JL(T ) is overly pessimistic, it has now
become clear that JS(T ) and JP(T ) are not the right alternatives, since they cor-
respond to a drastically different change-time model.

Our previous arguments also suggest a word of caution when evaluating or
comparing performances through Monte Carlo simulations. Selecting the time of
change in an arbitrary way that has no relation with the observation sequence, is
equivalent to adopting the restrictive change-time model with pt = 1. This in turn
is expected to favor tests that rely on this specific selection.

4. Change at observable random times. Let us now attempt a different para-
metrization of the change-time τ . Suppose that in addition to the process {ξt }t>0
we also observe a strictly increasing sequence of random times {τn}, n = 1,2, . . . .

These times correspond to occurrences of random events that can trigger the
change of measures. In other words, we make the assumption that the change can
occur only at the observable time instants {τn}. We would like to emphasize that
we consider the flow of the observation sequence {ξt } to be continuous and not
synchronized in any sense with the random times {τn}. It is, therefore, clear that
detection can be performed at any time instant, that is, even between occurrences.

There are interesting applications that can be modeled with this setup. For ex-
ample, earthquake damage detection in structures, where earthquakes occurring
at (observable) random times can trigger a change (damage), while detection is
performed by continuously acquiring vibration measurements from the structure.
Similar application is the detection of a change in financial data after “major im-
portance events” or, as reported by Rodionov and Overland (2005), detection of
regime shifts in sea ecosystems due to (observable) changes in the climate system.
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Let us now relate our problem to the change-time model introduced in the pre-
vious section. Consider the strictly increasing sequence of occurrence times {τn},
n = 1,2, . . . . Since we assume that observations are available after time 0, it is
clear that τ1 > 0, therefore, we arbitrarily include τ0 = 0 into our sequence. Notice
that τ0 does not necessarily correspond to a real occurrence. This term is needed
to account for the case where the change took place before any observation was
taken. If Nt denotes the number of observed occurrences up to (and including)
time t , that is,

Nt = sup
0≤n

{n : τn ≤ t},

then we can define our filtration {Ft } as Ft = σ {ξs,Ns, 0 < s ≤ t} and F0 to
be the trivial σ -algebra. With this filtration the random times τn are transformed
immediately into s.t. adapted to {Ft } (since by consulting the history Ft we can
directly deduce whether τn ≤ t is true).

The probability πt takes now the special form

πt =
Nt∑

n=0

1{t=τn}π̄n =
∞∑

n=0

1{t=τn}π̄n,

where π̄n is Fτn -measurable. As we can see, the resulting πt is nonzero only if we
have an occurrence at t .

By decomposing π̄n = �̄np̄n with
∑∞

n=0 �̄n = 1 and E∞[p̄n] = 1, we can de-
fine the equivalent of all performance measures introduced in Section 3.1. We limit
our presentation to Lorden’s measure since this is the case we are going to treat in
detail. If we use the last equation for πt in (3.1), we obtain the following form for
our performance measure J(T ):

J(T ) =
∑∞

n=0 �̄nE∞[p̄nE0[(T − τn)
+|Fτn]]∑∞

n=0 �̄nE∞[p̄n1{T >τn}] .(4.1)

Assuming no prior knowledge for {�̄n} and {p̄n}, we have to maximize J(T ) in
(4.1) with respect to the two processes. This leads to the following extended Lorden
measure:

JEL(T ) = sup
{�̄n},{p̄n}

J(T ) = sup
0≤n

essup Eτn[(T − τn)
+|Fτn].(4.2)

The difference with the previous definition of JEL(T ) in (3.10), is that the time
instants τn are now s.t. instead of deterministic times.

4.1. Detection of a change in the constant drift of a Brownian motion. Al-
though it is possible to analyze the problem of detecting a change in the pdf of
i.i.d. observations, we prefer to consider the continuous time alternative of detect-
ing a change in the constant drift of a BM. This is because the corresponding solu-
tion is more elegant, offering formulas for the optimum performance and therefore
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allowing for direct comparison with the classical CUSUM test. Thus, let us assume
that the observation process {ξt } is a BM satisfying ξt = μ(t − τ)+ + wt , where
wt a standard Wiener process and μ a known constant drift. For the change-time τ

we assume that it can be equal to any τn from the observable sequence of s.t. {τn}.
Finally for the occurrence times {τn}, we assume that they are Poisson distributed
with a constant rate λ and independent from the observation process {ξt }.

We recall that the problem of detecting a change in the drift of a BM has
been considered with the classical Lorden measure (where occurrences are not
taken into account, therefore the change is assumed to happen at any time instant)
by Shiryayev (1996) and Beibel (1996) and under a more general framework by
Moustakides (2004).

If we denote with ut the log-likelihood ratio between the two probability mea-
sures, then ut = −0.5μ2t + μξt . Let us consider the following process {mt }:

m0 = 0; mt = m0 ∧
(

inf
1≤n≤Nt

uτn

)
=

(
inf

1≤n≤Nt

uτn

)−
,

where x− = min{x,0}. Notice that mt starts from 0 and becomes the running min-
imum of the process {ut } but updated only at the occurrence times. We can now
define the extended CUSUM (ECUSUM) process as follows:

yt = ut − mt

and the corresponding ECUSUM s.t. with threshold ν ≥ 0 as

Sν = inf
0<t

{t :yt ≥ ν}.
As opposed to the CUSUM process which is always nonnegative, the ECUSUM
process yt can take upon negative values as well.

Figure 1 depicts an example of the paths of {ut } and {mt }. Process {mt } is piece-
wise constant with right continuous paths and can exhibit jumps at the occurrence
instances {τn}. The ECUSUM process {yt }, being the difference of {ut } (which
is continuous) and {mt }, is also right continuous with continuous paths between
occurrences. From Figure 1, we can also deduce that {yt } exhibits a jump at τn

only if yτn− < 0 in which case yτn becomes 0. This can be written as

yτn = (yτn−)+.(4.3)

For technical reason, it is also necessary to introduce a version of ECUSUM
which can start from any value y0 = y (as compared to the regular version which
starts at y0 = 0). For this we simply have to assume that ut = y − 0.5μ2t + μξt ,
while mt, yt and the s.t. are defined as before. To distinguish this new version of
the s.t. from the regular one let us denote it as S̃ν . It is then clear that Sν = S̃ν

for y = 0. Since inter-occurrence times are i.i.d. and independent from the past,
the process {yτn} is Markov and S̃ν given that y0 = y has the same statistics as
(S̃ν − τn)

+ given that yτn = y and S̃ν > τn.
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FIG. 1. Sample paths of ut , mt and stopping of ECUSUM.

4.2. Performance evaluation of the ECUSUM test. In this subsection, we are
going to obtain a formula for the expectation of S̃ν . We first present a lemma that
states an important property for this quantity.

LEMMA 3. Let the occurrences be Poisson distributed with rate λ, then the
average E[S̃ν] is decreasing in y0 = y and for every y we have

E[S̃ν |y0 = y] ≤ 1

λ
+ E[Sν].(4.4)

PROOF. The paths of {yt } are increasing in y0 = y, therefore S̃ν is decreasing
in y and so is E[S̃ν]; consequently for y ≥ 0 we have E[S̃ν |y0 = y] ≤ E[S̃ν |y0 =
0] = E[Sν]. Assume now that y < 0, then since S̃ν ≤ τ1 + (S̃ν − τ1)

+, by taking
expectation we can write

E[S̃ν |y0 = y] ≤ E[τ1] + E[(S̃ν − τ1)
+|y0 = y]

= E[τ1] + E[(S̃ν − τ1)
+|y0 = y, S̃ν > τ1]P[S̃ν > τ1|y0 = y]

≤ E[τ1] + E[(S̃ν − τ1)
+|y0 = y, S̃ν > τ1]

= E[τ1] + E
[
E[(S̃ν − τ1)

+|yτ1, S̃ν > τ1]|y0 = y
]

≤ E[τ1] + sup
z≥0

E[(S̃ν − τ1)
+|yτ1 = z, S̃ν > τ1]

= 1

λ
+ sup

z≥0
E[S̃ν |y0 = z]

= 1

λ
+ E[S̃ν |y0 = 0]
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= 1

λ
+ E[Sν].

Where we have used the property that (S̃ν − τ1)
+ conditioned on the event that

S̃ν > τ1 and yτ1 = y, has the same statistics as S̃ν given y0 = y and, furthermore,
that at an occurrence the ECUSUM statistics is nonnegative. This concludes the
proof. �

From Lemma 3 we deduce that E[S̃ν |y0 = y] is decreasing and uniformly
bounded in y. Let us now proceed with the computation of E[S̃ν |y0 = y]. We
have the following theorem that provides the desired formula.

THEOREM 1. Let ut = y +at +bwt with {wt } a standard Wiener process with
w0 = 0 and a, b �= 0. Define the ECUSUM s.t. S̃ν as above, with the occurrences
being Poisson distributed with rate λ, then for y ≤ ν the expectation of S̃ν is given
by the following expression:

E[S̃ν |y0 = y] =

⎧⎪⎪⎨
⎪⎪⎩

1

a
[−y + ν + A(e−2ya/b2 − e−2ya/b2

)], y ≥ 0,

1

a
[ν + A(1 − e−2ya/b2

)] + 1

λ
[1 − ery], y < 0,

(4.5)

where

r = −a + √
a2 + 2λb2

b2 , A = b2

2a

(
ar

λ
− 1

)
.

PROOF. Denote with f (y) the function in the right-hand side of (4.5) which,
as we can verify, is twice continuously differentiable, strictly decreasing in y and
uniformly bounded for −∞ < y ≤ ν. Consider now the difference f (yt ) − f (y0),
we can then write

f (yt ) − f (y0) = f (yt ) − f (yτNt
) +

Nt∑
n=1

[f (yτn) − f (yτn−1)]

= f (yt ) − f (yτNt
) +

Nt∑
n=1

[f (yτn−) − f (yτn−1)]

+
Nt∑

n=1

[f (yτn) − f (yτn−)],

where we used the fact that {yt } is right continuous. In the time interval [τn−1, τn),
the process yt has continuous paths and mt is constant, therefore using Itô calculus
we can write

f (yτn−) − f (yτn−1) =
∫ τn

τn−1

f ′(ys−)(a ds + b dws) + 0.5b2f ′′(ys−) ds.
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If t is not an occurrence, a similar expression holds for the time interval [τNt , t].
This suggests that

f (yt ) − f (yτNt
) +

Nt∑
n=1

[f (yτn−) − f (yτn−1)]

=
∫ t

0
[af ′(ys−) + 0.5b2f ′′(ys−)]ds +

∫ t

0
bf ′(ys−) dws.

The sum involving the jumps, using (4.3), can be written as
Nt∑

n=1

[f (yτn) − f (yτn−)] =
Nt∑

n=1

[f ((yτn−)+) − f (yτn−)]

=
∫ t

0
[f ((ys−)+) − f (ys−)]dNs .

Combining the two expressions leads to

f (yt ) − f (y0) =
∫ t

0
[af ′(ys−) + 0.5b2f ′′(ys−)]ds +

∫ t

0
bf ′(ys−) dws

(4.6)

+
∫ t

0
[f ((ys−)+) − f (ys−)]dNs .

For any integer n let S̃n
ν = S̃ν ∧ n. Then we know that for a process {ωt } which

is a {Ft }-adapted and uniformly bounded in the sense that |ωt | ≤ c < ∞, we have

from Protter (2004) that E[∫ S̃n
ν

0 ωs− dNs] = E[∫ S̃n
ν

0 ωs−λds] and from Karatzas and

Shreve (1988) that E[∫ S̃n
ν

0 ωs− dws] = 0. Replacing t with the s.t. S̃n
ν in (4.6), taking

expectation and using the fact that f (y+)−f (y) and f ′(y) are uniformly bounded
for y ∈ (−∞, ν], allows us to write

E[f (yS̃n
ν
)] − f (y0)

= E

[∫ S̃n
ν

0
{af ′(yt−) + 0.5b2f ′′(yt−) + λ[f ((yt−)+) − f (yt−)]}dt

]
.

It is straightforward to verify that the function f (y) is a solution to the differential
equation

af ′(y) + 0.5b2f ′′(y) + λ[f (y+) − f (y)] = −1, −∞ < y ≤ ν.(4.7)

This, if substituted in the previous expression, yields

f (y0) − E[f (yS̃n
ν
)] = E[S̃n

ν ].
Letting now n → ∞, we have S̃n

ν → S̃ν monotonically. In the previous equal-
ity, using monotone convergence on the right-hand side and bounded convergence
[since f (y) is uniformly bounded] on the left, we obtain

f (y0) − E[f (yS̃ν
)] = E[S̃ν].
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At the time of stopping the process {yt } hits the threshold ν (see Figure 1), there-
fore, we have yS̃ν

= ν, suggesting that E[f (yS̃ν
)] = f (ν). We can now verify that

f (ν) = 0, which yields f (y0) = E[S̃ν] and completes the proof. �

REMARK 1. One might wonder, why is (4.5) the desired formula and not
any other solution of the differential equation in (4.7) that satisfies the boundary
condition f (ν) = 0? It turns out that among the solutions of (4.7) that are twice
continuously differentiable (property needed to apply Itô calculus) and satisfy the
boundary condition f (ν) = 0, the formula in (4.5) is the unique solution which is
uniformly bounded in (−∞, ν] (property imposed by Lemma 3).

By letting λ → ∞ and setting y = 0 in (4.5), we recover the average run
length of the classical CUSUM test as obtained in Taylor (1975). If we denote
by gν(y), hν(y) the average of S̃ν under P0 and P∞ respectively, then under P0
we have ut = y − 0.5μ2t + μξt = y + 0.5μ2t + μwt , therefore by substituting
a = 0.5μ2, b = μ in (4.5), we can write

gν(y) = E0[S̃ν |y0 = y] =

⎧⎪⎪⎨
⎪⎪⎩

2

μ2 [−y + ν + A0(e
−y − e−ν)], y ≥ 0,

2

μ2 [ν + A0(1 − e−ν)] + 1

λ
[1 − er0y], y < 0,

where

r0 = −1

2
+

√
1

4
+ 2λ

μ2 , A0 = μ2

2λ
r0 − 1.

Similarly substituting a = −0.5μ2, b = μ in (4.5), we obtain

hν(y) = E∞[S̃ν |y0 = y] =

⎧⎪⎪⎨
⎪⎪⎩

2

μ2 [y − ν + A∞(eν − ey)], y ≥ 0,

2

μ2 [−ν + A∞(eν − 1)] + 1

λ
[1 − er∞y], y < 0,

where

r∞ = 1

2
+

√
1

4
+ 2λ

μ2 , A∞ = μ2

2λ
r∞ + 1.

To compute the performance of the regular ECUSUM s.t. Sν we must set y = 0
in the previous formulas. It is then clear that gν(0) expresses the (worst) average
detection delay and hν(0) the average period between false alarms for Sν . Specifi-
cally, after noticing that r0r∞ = 2λ/μ2, we have

gν(0) = E0[Sν] = 2

μ2

{
[ν − 1 + e−ν] + 1

r∞
(1 − e−ν)

}
,(4.8)

hν(0) = E∞[Sν] = 2

μ2

{
[eν − ν − 1] + 1

r0
(eν − 1)

}
,(4.9)
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FIG. 2. Normalized average detection delay of ECUSUM as a function of normalized average false
alarm period, for different values of the parameter μ2/λ.

where the first term in both right hand side expressions corresponds to the perfor-
mance of the classical CUSUM test (obtained by letting λ → ∞).

Figure 2 depicts the normalized average detection delay μ2gν(0)/2 as a function
of the normalized average false alarm period μ2hν(0)/2, for different values of
the ratio μ2/λ. We observe that, in the average, ECUSUM detects the change
faster than CUSUM. Of course this is not surprising since ECUSUM has available
more information than CUSUM (CUSUM does not observe the occurrences). We
can also see that the performance difference between the two schemes, for given
value of μ2/λ, is uniformly bounded by a constant. Finally, we conclude that the
gain obtained by using ECUSUM instead of CUSUM becomes significant only for
large values of the parameter μ2/λ or, equivalently, when the occurrences that can
trigger the change are very infrequent.

5. Optimality of ECUSUM. Using the formula in (4.9) for the average period
between false alarms, we can relate the threshold ν to the false alarm constraint
parameter γ through the equation

hν(0) = 2

μ2

{
[eν − ν − 1] + 1

r0
(eν − 1)

}
= γ.

The left-hand side of the last equality is increasing in ν and for ν = 0 it is equal
to 0, also for ν → ∞ it tends to ∞, we can, therefore, conclude that for given
γ ≥ 0, the last equation has a unique solution which we call ν
. Since ν
 is the
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solution to the previous equation it is clear that

hν
(0) = γ.(5.1)

Using ν
 as threshold we can now define the corresponding ECUSUM s.t. Sν
 .
Our goal in the sequel is to demonstrate that this test is optimum in the extended
Lorden sense. We recall that the occurrence times are Poisson distributed with a
known constant rate λ. Observe however that λ enters only in the correspondence
between the threshold ν
 and the constraint γ without affecting the ECUSUM test
otherwise.

Consider the functions gν
(y), hν
(y) associated with Sν
 . Both functions will
play a key role in our proof of optimality. The next lemma presents an important
property for each function which is an immediate consequence of Theorem 1.

LEMMA 4. If T is a s.t. and Sν the regular ECUSUM s.t. with threshold ν,
define Tν = T ∧ Sν , then

E∞[hν
(0) − hν
(yTν )] = E∞[Tν],(5.2)

Eτn

[{gν
(yτn) − gν
(yTν )}1{Tν>τn}|Fτn

] = Eτn[(Tν − τn)
+|Fτn].(5.3)

With the next theorem we provide a suitable lower bound for the extended Lor-
den measure. First, we introduce a technical lemma.

LEMMA 5. Let T be a s.t. and define Tν = T ∧ Sν , then

E∞[eyTν ] ≥ 1.

PROOF. Following similar steps as in the proof for Theorem 1, if f (y) is a
twice continuously differentiable function with f (y+)−f (y) and f ′(y) uniformly
bounded for y ≤ ν, we have

E∞[f (yTν )] − f (y0)

= E∞
[∫ Tν

0
{−0.5μ2f ′(yt−) + 0.5μ2f ′′(yt−) + λ[f ((yt−)+) − f (yt−)]}dt

]
.

For f (y) = ey and recalling that we treat the regular ECUSUM case with y0 = 0,
we immediately obtain that

E∞[eyTν ] − 1 = E∞
[∫ Tν

0
λ(ey+

s− − eys−) ds

]

= λE∞
[∫ Tν

0
(1 − eys−)+ ds

]
≥ 0.

This concludes the proof. �
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THEOREM 2. For any s.t. T let Tν = T ∧ Sν , then

JEL(T ) ≥ gν
(0) − E∞[gν
(yTν )e
yTν ]

E∞[eyTν ] .(5.4)

PROOF. The proof follows similar steps as in Theorem 2, Moustakides (2004).
Since T ≥ Tν , it is clear that JEL(T ) ≥ JEL(Tν). Also from the definition of JEL(·)
in (4.2) we conclude

JEL(T ) ≥ JEL(Tν) ≥ Eτn[(Tν − τn)
+|Fτn], n = 0,1,2, . . . .(5.5)

Using (5.3) from Lemma 4, the previous inequality for n ≥ 1 can be written as

JEL(T ) ≥ Eτn[(Tν − τn)
+|Fτn]

= Eτn

[{gν
(yτn) − gν
(yTν )}1{Tν>τn}|Fτn

]
= E∞

[
euTν −uτn {gν
(yτn) − gν
(yTν )}1{Tν>τn}|Fτn

]
.

Multiplying both sides with the nonnegative quantity (1−e
mτn−mτn−1 )1{Tν>τn} and

taking expectation with respect to P∞ yields

JEL(T )E∞
[
(1 − e

mτn−mτn−1 )1{Tν>τn}
]

(5.6)
≥ E∞

[
euTν −uτn (1 − e

mτn−mτn−1 ){gν
(yτn) − gν
(yTν )}1{Tν>τn}
]
.

Now notice that 1 − e
mτn−mτn−1 is different from 0, only when there is a jump in

mt at τn, in which case yτn = 0 and mτn = uτn . This means that

E∞
[
euTν −uτn (1 − e

mτn−mτn−1 ){gν
(yτn) − gν
(yTν )}1{Tν>τn}
]

= E∞
[
euTν −mτn (1 − e

mτn−mτn−1 ){gν
(0) − gν
(yTν )}1{Tν>τn}
]

= E∞
[
euTν (e−mτn − e

−mτn−1 ){gν
(0) − gν
(yTν )}1{Tν>τn}
]
.

Furthermore, since E∞[euTν −uτn |Fτn] = 1 we can write

E∞
[
(1 − e

mτn−mτn−1 )1{Tν>τn}
] = E∞

[
euTν −uτn (1 − e

mτn−mτn−1 )1{Tν>τn}
]

= E∞
[
euTν −mτn (1 − e

mτn−mτn−1 )1{Tν>τn}
]

= E∞
[
euTν (e−mτn − e

−mτn−1 )1{Tν>τn}
]
.

Substituting the two equalities in (5.6) and summing over all n ≥ 1 we have

JEL(T )

∞∑
n=1

E∞
[
euTν (e−mτn − e

−mτn−1 )1{Tν>τn}
]

(5.7)

≥
∞∑

n=1

E∞
[
euTν (e−mτn − e

−mτn−1 ){gν
(0) − gν
(yTν )}1{Tν>τn}
]
.
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In the second sum, interchanging summation and expectation, yields
∞∑

n=1

E∞
[
euTν (e−mτn − e

−mτn−1 ){gν
(0) − gν
(yTν )}1{Tν>τn}
]

= E∞
[
{gν
(0) − gν
(yTν )}euTν

NTν∑
n=1

(e−mτn − e
−mτn−1 )

]

= E∞[{gν
(0) − gν
(yTν )}euTν (e−mTν − 1)].
Similarly for the first sum we have

∞∑
n=1

E∞
[
euTν (e−mτn − e

−mτn−1 )1{Tν>τn}
]

= E∞[euTν (e−mTν − 1)].
Substituting the two expressions in (5.7) we obtain

JEL(T )E∞[euTν (e−mTν − 1)]
(5.8)

≥ E∞[{gν
(0) − gν
(yTν )}euTν (e−mTν − 1)].
There is one last inequality we have not used so far from (5.5), namely for n = 0.
Recalling that τ0 = 0, this inequality takes the form

JEL(T ) ≥ E0[Tν].(5.9)

Using (5.3) from Lemma 4, we get

E0[Tν] = E0[gν
(0) − gν
(yTν )]
= E∞[{gν
(0) − gν
(yTν )}euTν ].

Also since E∞[euTν ] = 1, (5.9) is equivalent to

JEL(T )E∞[euTν ] ≥ E∞[{gν
(0) − gν
(yTν )}euTν ].
If this is added to (5.8), we obtain

JEL(T )E∞[euTν −mTν ] ≥ E∞[{gν
(0) − gν
(yTν )}euTν −mTν ],
or

JEL(T )E∞[eyTν ] ≥ gν
(0)E∞[eyTν ] − E∞[gν
(yTν )e
yTν ].(5.10)

Since yTν ≤ ν, thanks also to Lemma 5, we have eν ≥ E∞[eyTν ] ≥ 1. We can thus
divide both sides of (5.10) with E∞[eyTν ] and obtain the desired expression. �

We will base our proof of optimality of Sν
 on Theorem 2. Let us first introduce
an additional technical lemma.
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LEMMA 6. If T is a s.t. and Tν = T ∧ Sν then the function ψ(ν) = E∞[Tν] is
continuous and increasing in ν with ψ(0) = 0 and ψ(∞) = E∞[T ].

PROOF. The proof is exactly similar as in Lemma 3, Moustakides (2004).
Consider κ > ν ≥ 0, then

0 ≤ Tκ − Tν ≤ Sκ − Sν,

from which we obtain

0 ≤ ψ(κ) − ψ(ν) ≤ hκ(0) − hν(0).

From (4.9) we have that the function hν(0) is continuous in ν. If we use this prop-
erty in the previous relation, we deduce that ψ(ν) is also continuous. Finally, we
can directly verify that the two limiting values ψ(0),ψ(∞) are correct. �

An immediate consequence of the previous lemma is the fact that if E∞[T ] > γ

then we can find a threshold ν such that E∞[Tν] = γ . Since JEL(T ) ≥ JEL(Tν)

this suggests that for the proof of optimality of Sν
 we can limit ourselves to s.t.
that satisfy the false alarm constraint with equality.

THEOREM 3. If a s.t. T satisfies E∞[T ] = γ then it possesses an extended
Lorden measure JEL(T ) that is no less than gν
(0) = JEL(Sν
).

PROOF. From E∞[T ] = γ , thanks to Lemma 6, for every ε > 0 we can find a
threshold νε such that for Tνε = T ∧ Sνε we have

γ ≥ E∞[Tνε ] ≥ γ − ε.(5.11)

Using (5.2) from Lemma 4, we can write

E∞[hν
(0) − hν
(yTνε
)] = E∞[Tνε ].

Recalling from (5.1) that hν
(0) = γ and using (5.11) in the previous equality, we
obtain

ε ≥ E∞[hν
(yTνε
)] ≥ 0.(5.12)

Define the function p(y) = eygν
(y) − (r0/r∞)hν
(y) and consider the deriv-
ative p′(y). By direct substitution we can verify that eyg′

ν

(y) = (r0/r∞)h′

ν

(y),

from which we deduce that

p′(y) = eygν
(y).

Since gν
(y) is strictly decreasing in y and also satisfies gν
(ν
) = 0, this sug-
gests that p′(y) has the same sign as ν
 − y, or that p(y) has a global max-
imum at y = ν
. Because p(ν
) = 0 this means that p(y) ≤ 0 which yields
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E∞[p(yTνε
)] ≤ 0. Using this inequality and replacing p(y) by its definition, we

obtain

0 ≥ E∞[p(yTνε
)] = E∞

[
eyTνε gν
(yTνε

) − r0

r∞
hν
(yTνε

)

]

≥ E∞[eyTνε gν
(yTνε
)] − r0

r∞
ε,

where for the last inequality we used (5.12). This yields
r0

r∞
ε ≥ E∞[eyTνε gν
(yTνε

)].(5.13)

From Theorem 2, using (5.13) and Lemma 5, we can now write

JEL(T ) ≥ gν
(0) − E∞[eyTνε gν
(yTνε
)]

E∞[eyTνε ] ≥ gν
(0) − r0

r∞
ε.

Since ε is arbitrary this means that JEL(T ) ≥ gν
(0), thus establishing optimality
of ECUSUM. �
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