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The CUSUM procedure is known to be optimal for detecting a change in distribution
under a minimax scenario, whereas the Shiryaev–Roberts procedure is optimal for
detecting a change that occurs at a distant time horizon. As a simpler alternative
to the conventional Monte Carlo approach, we propose a numerical method for the
systematic comparison of the two detection schemes in both settings, i.e., minimax
and for detecting changes that occur in the distant future. Our goal is accomplished
by deriving a set of exact integral equations for the performance metrics, which
are then solved numerically. We present detailed numerical results for the problem
of detecting a change in the mean of a Gaussian sequence, which show that the
difference between the two procedures is significant only when detecting small
changes.
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1. Introduction

Quickest (sequential) change-point detection deals with detecting changes in
distributions that occur at unknown points in time. The goal is to detect the change
as soon as possible after its occurrence, while maintaining a prescribed false alarm
level. A sequential change-point detection procedure is defined as a stopping time T
(with respect to an observed sequence !Xn"n≥1).
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3226 Moustakides et al.

In this article, we consider the simplest version of the change-point detection
problem where we assume that the observations are independent and identically
distributed (i.i.d.) before the change with a common density f and i.i.d. with a
different density g after the change, both of which are considered known. Our
goal is to provide a comparative study of the main competitors—the Cumulative
Sum (CUSUM) procedure introduced by Page (1954) and the Shiryaev–Roberts
procedure introduced by Shiryaev (1961) for the Brownian motion case and Roberts
(1966) for discrete time.

It is known that both schemes enjoy specific optimality properties under
different optimality criteria. More precisely, it follows from Moustakides (1986) that
the CUSUM procedure is (min-max) optimal with respect to the Lorden (1971)
detection measure

!L#T$ = sup
%≥0

ess sup"%&#T − %$+ #X1' ( ( ( 'X%) (1.1)

in the class *+ = !T , "$&T) ≥ +" of detection procedures for which the average
run length (ARL) to false alarm "$&T) is no smaller than a given number + >
1. Hereafter, "% denotes the operator of expectation when the point of change
is % (% = $ means that there is no change) and y+ stands for the positive part
of y. On the other hand, it follows from Pollak and Tartakovsky (2009) that the
Shiryaev–Roberts procedure is optimal with respect to the relative integral average
detection delay measure

RIADD#T$ =
∑$
%=0 "%&#T − %$+)

"$&T)
' (1.2)

again within the same class *+. This measure is also equivalent to the stationary
average detection delay when detecting changes occurring at a distant time
horizon (see Sec. 2 for further details). These latter performance measures and
their corresponding properties were motivated by similar results obtained for the
Shiryaev–Roberts procedure for the continuous-time Brownian motion model; see
Shiryaev (1963) and Feinberg and Shiryaev (2006). Finally, we should mention that
the two tests are asymptotically optimal as +→ $ (i.e., for low false alarm rate)
with respect to both performance measures !L and RIADD and for a class of
observation processes that is much richer than the simple i.i.d. case (see, e.g., Lai,
1998; Tartakovsky and Veeravalli, 2004).

It is of major practical interest to compare the two popular tests with respect
to the two aforementioned measures, since each performance measure attempts
to capture completely different change-point scenarios. The exact analytical
characterization of the two performance measures was recently made possible by
Moustakides et al. (2009) through a set of integral equations. These equations
were in turn solved numerically using very simple techniques, yielding the final
performance metrics. Due to the corresponding exact optimality properties, it
is expected that CUSUM will outperform the Shiryaev–Roberts procedure with
respect to Lorden’s performance measure !L, while the Shiryaev–Roberts procedure
will be superior with respect to the relative integral average detection delay
RIADD#T$. Our goal is to quantify this difference and assess its importance.

Comparisons of the two tests have been performed in the past. Roberts (1966)
considered a change in the mean of a Gaussian sequence and the two tests were
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Numerical Comparison of CUSUM 3227

compared with respect to their ARL to detection "0&T) value using Monte Carlo
simulations. CUSUM was found to be better and this is not surprising since
"0&T), in both tests, coincides with Lorden’s measure. Pollak and Siegmund (1985)
performed a comprehensive asymptotic study (as +→ $, i.e., for low false alarm
rate) for the problem of detecting a change in the drift of the Brownian motion
and found that CUSUM performs better for changes that occur in the beginning
(i.e., % = 0), while the Shiryaev–Roberts procedure outperforms CUSUM with
respect to the conditional average detection delay "%&T − % #T > %) when %→$.
Srivastava and Wu (1993) also presented an asymptotic analysis (as +→ $) for
Brownian motion but for the stationary average detection delay case. Tartakovsky
and Ivanova (1992) obtained accurate asymptotic approximations for the ARL to
false alarm and the average detection delay for the processes with i.i.d. increments
(in continuous and discrete time) and performed a detailed numerical comparison of
the CUSUM and Shiryaev–Roberts procedures for an exponential model. Finally,
Dragalin (1994) analyzed the CUSUM procedure for the problem of detecting a
change in the mean of the normal distribution in terms of the ARL to false alarm
"$&T) and the ARL to detection "0&T), using a precise numerical technique.

Despite the previously mentioned results, a comprehensive comparison of the
two tests for the discrete-time model in a non-asymptotic setting, i.e., for arbitrary
false alarm rate, is still missing. In the present paper we give a partial answer to
this question by proposing a technique that can perform the desired comparison
numerically, being however of sufficient generality to include any i.i.d. observation
model.

The article is organized as follows. In Sec. 2, we provide a brief overview of
results in change-point detection, introduce our notation, and describe the CUSUM
and Shiryaev–Roberts procedures. In Sec. 3, we derive integral equations for the
performance metrics of interest and provide a simple numerical solution that allows
for efficient computation of the operating characteristics. In Sec. 4, we present the
results of our numerical methodology in the example of detecting a change in the
mean of a Gaussian sequence.

2. Change-Point Detection Procedures

2.1. Notation and Problem Formulation

Let a sequence !Xn"n≥1 of independent random variables be observed sequentially.
Initially, the sequence is “in-control”, i.e., all observations are coming from the same
probability density f#x$. At an unknown time instant % ≥ 0, something happens and
the sequence runs “out of control” by abruptly changing its statistical properties
so that from %+ 1 on the density is g#x$ &≡ f#x$. This change has to be detected as
quickly as possible, while controlling false alarms at a given level.

Given the sequence !Xn"n≥1, a sequential detection procedure is identified with
a stopping time T adapted to the filtration !#n"n≥0, where #n = -#X1' ( ( ( 'Xn$ is the
(smallest) --algebra generated by the observations up to time instant n, with #0
denoting the trivial --algebra. In other words, for n ≥ 0, the set !T ≤ n" belongs
to the --algebra #n. At time instant T the procedure stops and declares that a
change has occurred. The design of quickest change-point detection procedures
involves optimizing a tradeoff between two types of performance metrics, one
being a measure of the detection delay and the other of the rate of false alarms.
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3228 Moustakides et al.

Let us denote with $% and "% the probability and the corresponding expectation
induced by a change occurring at time % ≥ 0. According to this definition $$ ("$)
denotes the probability (expectation) when there is no change, while $0 and "0 the
corresponding quantities when the change takes place before observations become
available.

We are interested in two different mathematical setups. In the first we follow
the minimax approach proposed by Lorden (1971) and expressed through (1.1).
A similar measure, seemingly less pessimistic (for a discussion see Moustakides
2008), was proposed in Pollak (1985) where detection speed is expressed via the
supremum average (conditional) detection delay

SADD#T$ = sup
0≤%<$

"%&T − % #T > %)( (2.1)

As we have mentioned in the Introduction, Lorden (1971) proposed to minimize
the measure defined in (1.1) in the class *+, i.e., subject to the constraint "$&T) ≥ +
imposed on the ARL to false alarm. Following the same principle, Pollak (1985)
suggested a similar constrained optimization problem with Lorden’s measure !L#T$
replaced by SADD#T$. We should emphasize that in the case of the two popular
tests we have !L#T$ = SADD#T$ = "0&T). Consequently, even though we will refer
to SADD#T$ as our first performance measure, one should keep in mind that, at the
same time, we refer to Lorden’s essential supremum measure as well.

The second formulation aims at minimizing the relative integral average
detection delay defined in (1.2) subject to the lower bound on the ARL to false
alarm "$&T) ≥ + (i.e., the class *+). As has been shown by Pollak and Tartakovsky
(2009), this is instrumental in detecting a change that occurs in the distant future
(large %) and is preceded by a stationary flow of false alarms. Specifically, consider
a context in which it is of utmost importance to detect a real change as quickly
as possible even at the expense of raising many false alarms (using a repeated
application of the same stopping rule) before the change occurs. This essentially
means that the change-point % is substantially larger than the ARL to false alarm
+ which, in this case, defines the mean time between (consecutive) false alarms.
Let T1'T2' ( ( ( denote sequential independent repetitions of the stopping time T
and let %j = T1 + T2 + · · · + Tj be the time of the jth alarm. Define I% = min!j ≥
1, %j > %". In other words, %I%

is the time of detection of a true change that occurs
at % after I% − 1 false alarms have been raised. Write

STADD#T$ = lim
%→$

"%&%I%
− %)

for the limiting value of the average detection delay that we will refer to as the
stationary average detection delay (STADD). It follows from Theorem 2 in Pollak
and Tartakovsky (2009) that

STADD#T$ =
∑$

k=0 "k&#T − k$+)

"$&T)
= RIADD#T$( (2.2)

STADD#T$ is the second performance measure we will adopt for our comparisons.
We note that the stationary average detection delay measure STADD#T$ has

been first introduced by Shiryaev (1961, 1963) for the problem of detecting a change
in the drift of a Brownian motion, where also the Shiryaev–Roberts procedure
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Numerical Comparison of CUSUM 3229

has been introduced for the first time and shown to be optimal with respect
to STADD#T$ in the class of procedures with "$&T) = +; see also Feinberg and
Shiryaev (2006).

2.2. CUSUM and Shiryaev–Roberts Procedures

For n ≥ 1, define

.n =
g#Xn$

f#Xn$
'

the “instantaneous” likelihood ratio between the post-change and pre-change
hypotheses. To avoid complications we shall assume that .1 is continuous. Yet,
if need be, the case where .1 is non-arithmetic can also be covered with a certain
additional effort.

Using the previous notation, the Shiryaev–Roberts procedure stops and raises
an alarm at

T SR
A = inf!n ≥ 1, Rn ≥ A"' inf!∅" = $'

where Rn is the Shiryaev–Roberts detection statistic defined as

Rn =
n∑

k=1

n∏

j=k

.j' (2.3)

and A = A+ > 0 is a threshold chosen so that the false alarm constraint "$&T
SR
A ) = +

is met.
It is straightforward to verify from (2.3) that the Shiryaev–Roberts statistic

allows for the following convenient recursive representation:

Rn = #1+ Rn−1$.n' R0 = 0(

Pollak and Tartakovsky (2009) showed that the Shiryaev–Roberts procedure T SR
A+

is exactly optimal in the sense of minimizing the relative integral average detection
delay RIADD#T$ and hence due to (2.2) the stationary average detection delay
STADD#T$ for every + > 1.

The CUSUM test is motivated by the maximum likelihood argument and is
based on the comparison of the maximum likelihood ratio

Vn = max
1≤k≤n

n∏

j=k

.k

with a positive threshold A, i.e., the CUSUM stopping time is defined as

TCS
A = inf!n ≥ 1, Vn ≥ A"' inf!∅" = $( (2.4)

It is easily verified that the statistic Vn can be computed recursively as

Vn = max!1'Vn−1".n' V0 = 1( (2.5)
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3230 Moustakides et al.

Note that conventional Page’s CUSUM statistic is given by

Wn = max!0'Wn−1 + log.n"' W0 = 0( (2.6)

Clearly, the trajectories of this statistic coincide with the trajectories of log Vn on the
positive half plane and, therefore, the CUSUM stopping time defined in (2.4) is
equivalent to familiar Page’s stopping time

T PG
A = inf!n ≥ 1, Wn ≥ logA"

whenever A > 1. Note also that, while not crucial for most practical purposes, the
CUSUM procedure given by (2.4) and (2.5) is more general than the classical Page
rule since it allows for thresholds A ≤ 1 (the classical test with such thresholds stops
in one step).

Threshold A = A+ is chosen in such a way that the ARL to false alarm meets the
constraint "$&T

CS
A+
) = + exactly. While we use the same notation A for the thresholds

in both the CUSUM and Shiryaev–Roberts procedures, to avoid confusion we stress
that the thresholds are in fact fairly different for achieving the same false alarm rate.

In the minimax setting, Lorden (1971) proved that CUSUM is asymptotically
(as +→ $) optimal in the sense of minimizing the !L#T$ over all stopping times
T such that "$&T) ≥ +. This result was later improved by Moustakides (1986) who
showed that CUSUM is exactly optimal for every + > 1 (for a different proof,
see Ritov, 1990).

3. Integral Equations for Performance Metrics
and Numerical Approximations

This section is devoted to our analytical methodology as applied to the
Shiryaev–Roberts and CUSUM procedures. We follow the technique developed in
Moustakides et al. (2009) for the generalized Shiryaev–Roberts procedure which can
be initialized from any point R0 = r ∈ &0'A) and not necessarily from 0 as in the
classical case we adopt here.

We recall the important observation mentioned earlier that for both CUSUM
and the Shiryaev–Roberts procedure Lorden’s essential supremum measure !L#T$
defined in (1.1) and Pollak’s supremum measure SADD#T$ defined in (2.1) are
attained at % = 0, that is,

!L#T
CS
A $ = SADD#TCS

A $ = "0&T
CS
A )' !L#T

SR
A $ = SADD#T SR

A $ = "0&T
SR
A )'

where "0&T) is the average detection delay when the change occurs before
surveillance begins (also known as the ARL to detection). Therefore, in order to
compare these procedures in the worst-case scenario it is sufficient to compute
the ARL to detection. Since the CUSUM procedure is optimal with respect to
Lorden’s measure !L#T$ in the class *+, it is expected that it will perform better
than the Shiryaev–Roberts procedure. On the other hand, since the Shiryaev–
Roberts procedure is optimal with respect to the stationary average detection delay
STADD#T$, it is expected that it will perform better than the CUSUM procedure
when detecting distant changes.
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Numerical Comparison of CUSUM 3231

In order to unify the approach for both tests, consider a sequential scheme
whose stopping time is of the form

TA = inf!n ≥ 1, Sn ≥ A"' inf!∅" = $ (3.1)

with the corresponding Markov detection statistic satisfying

Sn = /#Sn−1$.n ' n = 1' 2' ( ( ( ' (3.2)

where S0 = s ∈ &0'A) is a given (fixed) starting point, A is a positive threshold and
/#s$ is a sufficiently smooth positive-valued (for all s ∈ &0'A)) function.

It is evident that both the CUSUM and Shiryaev–Roberts statistics are of
this form. Indeed, for CUSUM /#S$ = max!1' S" and for the Shiryaev–Roberts
procedure /#S$ = 1+ S. Next, we derive a set of equations for the performance
metrics of the generic detection procedure defined in (3.1) and (3.2), which we can
then easily adapt to the CUSUM and Shiryaev–Roberts procedures by selecting the
appropriate form of /#S$.

For fixed A > 0 and s ∈ &0'A), define 0i#s$ = "i&TA), where i = !$' 0". It is
apparent that 0$#s$ = "$&TA) is the ARL to false alarm and 00#s$ = "0&TA) is
the ARL to detection. For k ≥ 0 and s ∈ &0'A), define 1k#s$ = "k&#TA − k$+) and
let Fi#x$ = $i#.1 ≤ x$ denote the cumulative distribution function of the likelihood
ratio .1 for i = !$' 0".

Using the Markov property of the statistic Sn and the argument of Moustakides
et al. (2009), we obtain

0i#s$ = 1+
∫ A

0
0i#x$

[
2

2x
Fi

(
x

/#s$

)]
dx' (3.3)

and

1k#s$ =
∫ A

0
1k−1#x$

[
2

2x
F$

(
x

/#s$

)]
dx' k ≥ 1 (3.4)

with the initial condition 10#s$ = "0&TA) = 00#s$ and the latter function
satisfying (3.3). The integral equation (3.3) yields the ARL to false alarm "$&TA)
and the ARL to detection "0&TA) while (3.4) recursively computes "k&#TA − k$+) as
functions of the starting point s ∈ &0'A).

In order to compute the stationary average detection delay STADD#TA$
defined in (2.2), we need to evaluate the integral average detection delay 3#s$ =∑$

k=0 "k&#TA − k$+). According to our previous definitions we observe that

3#s$ =
$∑

k=0

1k#s$( (3.5)

To find a more convenient formula for 3#s$, let us introduce a linear operator
associated with the kernel &$#x' y$ = 2

2x
F$

(
x
/#y$

)
' which transforms a given function

4 into a new function 5 as follows:

5#y$ = #& + 4$#y$ =
∫ A

0
4#x$&$#x' y$dx(
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3232 Moustakides et al.

Notice now that 1k#s$, defined in (3.4), can be seen as the repetitive application
of this linear operator onto the function 10#s$. In terms of this operator, Eq. (3.4)
can be rewritten as

1k#s$ =
(
&k

$ + 10
)
#s$ =

∫ A

0
· · ·

∫ A

0︸ ︷︷ ︸
k times

10#x0$&$#x0' x1$dx0 · · ·&$#xk−1' s$dxk−1︸ ︷︷ ︸
k times

with the convention that #&0
$ + 10$#s$ = 10#s$. Consequently, this operator

representation of (3.4) enables one to turn (3.5) into the following Neumann series:

3#s$ =
$∑

k=0

1k#s$ =
$∑

k=0

(
&k

$ + 10
)
#s$'

which by the geometric series convergence theorem leads to the following equation:

3#s$ = 10#s$+
∫ A

0
3#x$

[
2

2x
F$

(
x

/#s$

)]
dx( (3.6)

The geometric series convergence theorem applies since the spectral radius of the
operator &$#x' y$ is strictly less than 1. The proof of the latter fact for the Shiryaev–
Roberts procedure can be found in Moustakides et al. (2009). For the CUSUM
procedure the argument is essentially the same.

Note that functions 0i#s$ = 0/i #s$ and 3#s$ = 3/#s$ depend on /. Taking
/#s$ = max#1' s$ and /#s$ = 1+ s, integral Eqs. (3.3) and (3.6) allow for the
following computation of the stationary average detection delay of the CUSUM and
Shiryaev–Roberts procedures:

STADD#TA$ = 3#0$/0$#0$'

while we recall that the supremum average detection delay SADD#TA$ = 00#0$ is
computed from Eq. (3.3) with /#s$ = max#1' s$ for CUSUM and /#s$ = 1+ s for
the Shiryaev–Roberts procedure.

Observe that both Eqs. (3.3) and (3.6) for i = !$' 0" are Fredholm equations
of the second kind (see, e.g., Kress, 1989; Petrovskii, 1957). It is known that,
provided 1 is not an eigenvalue of the operator associated with the kernel &i#x' y$ =
2
2x
Fi

(
x
/#y$

)
, these equations possess unique solutions. It is also worth emphasizing

that throughout the paper, kernels &i#x' y$ are sufficiently smooth, because the
likelihood ratio is assumed to be continuous.

In general, it is not feasible to obtain analytical solutions since the
corresponding integral equations are difficult to solve. Alternatively, we can attempt
to solve these equations numerically. Efficient numerical schemes are developed in
Kantorovich and Krylov (1958), Petrovskii (1957), and Atkinson and Han (2001).
The most popular approach consists in applying a quadrature rule to approximate
the integral appearing on the right-hand side of (3.3) and (3.6). Specifically,
once the choice of a quadrature rule is made, the interval &0'A) is divided
into a partition 0 = x0 < x1 < · · · < xN = A, and the functions 0i#x$ are sampled
at the breakpoints producing column vectors !i = &0i#x0$' 0i#x1$' ( ( ( ' 0i#xN $)

′.
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Numerical Comparison of CUSUM 3233

The integral is then evaluated using the quadrature rule by the following simple
matrix-vector multiplication:

∫ A

0
&i#x' y$0i#y$dy = K i!̃i + "'

where " is the approximation error, Ki is a matrix that depends on the chosen
quadrature rule and the partition !xi"' !yi", and !̃i = &0̃i#x0$' 0̃1#x1$' ( ( ( ' 0̃i#xN $)

′

with 0̃i#x$ denoting the approximation to 0i#x$. A similar argument applies to the
equation of 3#x$.

Matrices Ki can be found using numerical integration. To this end, we will use
the simplest method sampling the interval &0'A) equidistantly at the points xj = yj =
jh' j = 0' ( ( ( 'N with h = A/N and defining the #n'm$th element of matrices Ki of
size N -by-N as

#Ki$n'm = Fi

(
xn
/#xm$

)
− Fi

(
xn−1

/#xm$

)
' 1 ≤ n'm ≤ N( (3.7)

Beyond the node points, the unknown function 0i#x$ is then evaluated as

0̃i#x$ = 1+
N∑

j=0

&i#x' yj$0̃i#yj$(

Regardless of the specific form of pre and post-change densities, the dominant
eigenvalue 6̃max of the matrix K$ defined by (3.7) for i = $ is strictly less than 1
(and positive). This follows from the following inequality

6̃max ≤ -K$-$(

Combining all previous observations yields

!̃i = J + Ki!̃i' i = !$' 0"' (3.8)

#̃ = !̃0 + K$#̃' (3.9)

where !̃i = &0̃i#0$' 0̃i#h$' ( ( ( ' 0̃i#A$)
′ and #̃ = &3̃#0$' 3̃#h$' ( ( ( ' 3̃#A$)′ with 0̃i#x$

and 3̃#x$ denoting the approximations to 0i#x$ and 3#x$, respectively, and
J = &1' 1' ( ( ( ' 1)′.

Linear matrix Eqs. (3.8) and (3.9) constitute a complete set of approximations
to their corresponding exact integral counterparts. These equations can be solved
either directly or iteratively. Direct methods are known to be more accurate, but
the accuracy comes at the price of considerable memory requirements. Iterative
methods, although less memory demanding, are less accurate. It is evident that the
accuracy of the proposed numerical method strongly depends on the number of
sample points N : the larger it is, the finer the partition and the more accurate the
numerical approximation. Such a conclusion follows from the analysis performed,
e.g., in Kantorovich and Krylov (1958) and Atkinson and Han (2001).

Fredholm equations for the ARL to false alarm "$&T) and the ARL to
detection "0&T), but only for the CUSUM procedure, have been previously
considered in the literature (see, e.g., Dragalin, 1994 and references therein). These
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3234 Moustakides et al.

equations rely on the classical form of CUSUM given in (2.6) and, therefore,
differ from the ones presented in (3.3). The unified approach we propose here,
in addition to the obvious advantage of being applicable to a whole class of
procedures that includes the Shiryaev–Roberts test, CUSUM, and EWMA (not
treated here) as particular cases, also simplifies the computations for CUSUM.
Indeed, note that in the conventional approach usually considered in the literature
(in particular by Dragalin, 1994), the CUSUM statistic is considered as reflected
from the unit barrier1, which generates a non zero probability mass (atom) at 1.
Consequently, point 1 requires special treatment, complicating the corresponding
integral equations. This drawback disappears under the alternative form (2.5) we
adopt here. As we can see, in our approach point 1 has zero probability like any
other point in the interval &0'A), and therefore, Eq. (3.3) is readily applicable.
This in turn produces a non-negligible simplification in the corresponding numerics.
Finally, we should mention that one of the key characteristics of our approach is
its ability to provide integral equations for a multitude of performance measures,
including: (a) the ARL to false alarm and detection; (b) the average detection
delay for any arbitrary change-point point % > 0; and (c) other performance metrics
such as RIADD and STADD. To the best of our knowledge such pluralism of
performance characteristics has never been offered before.

Next, we apply the proposed numerical methodology to the Gaussian example
and compare the performance of the two popular tests, namely the CUSUM
and Shiryaev–Roberts procedures. We note that it is the first time that such
computations are performed for the Shiryaev–Roberts test.

4. An Example

Consider a Gaussian example of detecting a change in the mean value where
observations are i.i.d. ' #0' 1$ pre-change and i.i.d. ' #7' 1$, 7 &= 0 post-change.
Specifically,

f#x$ = 1√
28

exp
{
−x2

2

}
and g#x$ = 1√

28
exp

{
− #x − 7$

2

2

}
(

Recall that we are interested in comparing the operating characteristics of the
CUSUM and Shiryaev–Roberts detection procedures expressed via the stationary
average detection delay STADD#T$ on one hand and the supremum average
detection delay SADD#T$ on the other, both as functions of the ARL to false
alarm "$&T). As we mentioned before, for both procedures SADD#T$ coincides
with Lorden’s essential supremum measure !L#T$ and with ARL to detection "0&T).
We compute the desired performance metrics for values of the ARL to false alarm
ARL#T$ = "$&T) between 1 and 104 and for characteristic values of the post-change
mean 7 = !0(01' 0(1' 0(5' 1(0".

Before continuing with the presentation of our numerical results, it is worth
mentioning that in order to evaluate the ARL to false alarm of the CUSUM and
Shiryaev–Roberts procedures, it is important to obtain preliminary estimates of the

1Here we refer to the exponentially transformed CUSUM statistic eWn , where Wn is
given by the recursion (2.6).
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Figure 1. Operating characteristics of CUSUM and Shiryaev–Roberts procedures for
7= 0(01.

threshold A to narrow the domain of search for satisfying the false alarm constraint
with equality. For CUSUM we used the following first-order approximation:

ARL#TCS
A $ ≈ 2A/#7v2$'

which follows from Tartakovsky (2005), where constant 0 < v < 1 is the subject of
renewal theory. For the Gaussian model considered this constant can be computed
numerically as

v = 2
72

exp
{
−2

$∑

k=1

1
k
9

(
− 7

2

√
k

)}
'

Figure 2. Operating characteristics of CUSUM and Shiryaev–Roberts procedures for
7= 0(1.
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Figure 3. Operating characteristics of CUSUM and Shiryaev–Roberts procedures for
7= 0(5.

where

9#x$ = 1√
28

∫ x

−$
e−t2/2dt

is the standard normal distribution function. Also, for small values of 7 Siegmund’s
corrected Brownian motion approximations are fairly accurate (cf. Siegmund, 1985).
For the Shiryaev–Roberts procedure, we used the following approximation due to
Pollak (1987):

ARL#T SR
A $ ≈ A/v'

which is very accurate even for relatively small threshold values (A ≥ 20).

Figure 4. Operating characteristics of CUSUM and Shiryaev–Roberts procedures for
7= 1(0.
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Table 1
Operating characteristics of CUSUM and Shiryaev–Roberts procedures for

! = 0"01

Test # 50 100 500 1,000 5,000 10,000

CUSUM A 1"06 1"091 1"2263 1"3348 1"861 2"3304
ARL 50"05 100"8 500"37 1000"2 5000"8 10000"12
STADD 40"31 79"14 361"68 682"9 2736"65 4712"65
SADD 47"77 94"38 433"36 818"6 3277"69 5636"54

Shiryaev–Roberts A 49"71 99"42 497"1 994"19 4970"95 9941"91
ARL 50"33 100"29 500"26 1000"25 5000"2 10000"15
STADD 25"62 50"48 246"6 485"06 2186"23 3961"42
SADD 50"21 99"79 488"32 954"57 4126"98 7226"55

Table 2
Operating characteristics of CUSUM and Shiryaev–Roberts procedures for ! = 0"1

Test # 50 100 500 1,000 5,000 10,000

CUSUM A 1"676 2"1 4"575 7"205 26"15 48"964
ARL 50"03 100"2 500"64 1000"8 5000"1 10000"62
STADD 27"81 47"6 140"52 206"4 419"2 531"48
SADD 32"8 56"45 166"34 242"97 482"88 605"15

Shiryaev–Roberts A 47"17 94"34 471"7 943"41 4717"04 9434"08
ARL 50"29 100"28 500"28 1000"28 5000"24 10000"17
STADD 22"43 40"14 128"85 193"5 404"58 516"46
SADD 41"4 72"32 209"44 298"5 557"87 684"17

Table 3
Operating characteristics of CUSUM and Shiryaev–Roberts procedures for ! = 0"5

Test # 50 100 500 1,000 5,000 10,000

CUSUM A 5"35 9"15 37"88 73"2 353"58 703"78
ARL 50"48 100"57 500"42 1000"69 5000"38 10000"21
STADD 9"6 13"05 23"05 27"97 40"1 45"51
SADD 10"93 14"88 25"87 31"09 43"64 49"14

Shiryaev–Roberts A 37"38 74"76 373"81 747"62 3738"08 7476"15
ARL 49"45 99"45 499"45 999"45 4999"45 9999"24
STADD 8"99 12"44 22"44 27"35 39"49 44"9
SADD 12"3 16"6 28"05 33"33 45"96 51"49
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Table 4
Operating characteristics of CUSUM and Shiryaev–Roberts procedures for ! = 1"0

Test # 50 100 500 1,000 5,000 10,000

CUSUM A 9"32 17"33 80"65 159"35 788"0 1574"0
ARL 50"44 100"33 500"5 1000"39 5000"25 10000"38
STADD 4"49 5"59 8"47 9"79 12"93 14"31
SADD 4"9 6"11 9"16 10"52 13"71 15"09

Shiryaev–Roberts A 28"02 56"04 280"19 560"37 2801"85 5603"7
ARL 49"78 99"79 499"79 999"79 5000"93 9999"87
STADD 4"34 5"45 8"32 9"64 12"79 14"17
SADD 4"98 6"22 9"3 10"66 13"86 15"24

Figures 1–4 and Tables 1–4 show the operating characteristics for the
aforementioned set of parameters. As expected, the CUSUM procedure outperforms
the Shiryaev–Roberts procedure in the minimax scenario. The Shiryaev–Roberts
procedure, on the other hand, performs better with respect to the stationary average
detection delay for detecting distant changes using a repeated application of the
same stopping rule. As we can see, the difference is significant only for small
changes, visible for moderate changes, while the two procedures perform equally
well for large changes.

The precision of our numerical approximations was verified by using Monte
Carlo techniques for several parameter values. In all cases, the difference was
negligible. We also note that for the Gaussian example considered in this section,
Dragalin (1994) proposed a different, more accurate but also computationally more
demanding method for computing the ARL to false alarm !!$T

CS
A % and the ARL

to detection !0$T
CS
A % of the CUSUM procedure. Comparing our results with the

outcome of this more complex approach shows that the difference is very small. This
fact is an additional indication that our simple numerical method is of sufficiently
high accuracy.
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