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Abstract: We provide a brief overview of the state-of-the-art in quickest (sequential)
changepoint detection and present some new results on asymptotic and numerical analysis
of main competitors such as the CUSUM, Shiryaev–Roberts, and Shiryaev detection
procedures in a Bayesian context.
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1. INTRODUCTION

Changepoint problems deal with detecting changes in observed stochastic processes.
In a sequential setting, as long as the behavior of the observations is consistent with
the target state, one is content to let the process continue. If the state changes, then
one is interested in detecting the change as rapidly as possible.

When we desire to detect the change quickly, any detection policy gives rise to
frequent false alarms under no change conditions. On the other hand, attempting to
avoid false alarms too strenuously leads to long delays between the time of occurrence
of a real change and its detection. The goal is to develop a detection policy that
minimizes the average delay to detection subject to a fixed false alarm rate.
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126 Tartakovsky and Moustakides

In this paper we provide a brief overview of the state of the art in changepoint
detection as well as present numerical and asymptotic approximations for operating
characteristics (probability of false alarm, average run length to false alarm, and
average detection delay) of a generic changepoint detection procedure mostly in
a Bayesian context. These approximations allow for comparing various detection
strategies, such as CUSUM, the Shiryaev–Roberts procedure, and the optimal
Shiryaev test.

2. CHANGEPOINT MODELS

Changepoint models may differ by the structure of the monitored process (i.i.d.,
nonidentically distributed, dependent, etc.) and/or by the model adopted for
the change point !: an unknown deterministic parameter, a random variable
independent of the observations, or a random variable completely or partially
dependent on the observations.

Let "Xn#n≥1 denote the series of random observations defined on the complete
probability space $%&! &P', ! = ∨

n≥0 !n, where !n = ($X1& ) ) ) &Xn' is the sigma-
algebra generated by the first n observations $!0 = "∅&%#', Let P# and P0 be two
probability measures defined on this probability space. We will assume that these
measures are mutually locally absolutely continuous, i.e., restrictions of measures
P$n'
0 and P$n'

# to sigma-algebras !n& n ≥ 1 are absolutely continuous with respect to
each other. A more general model where both continuous and singular components
may be present can be found in Shiryaev (2009). Let Xn

1 = $X1& ) ) ) &Xn' denote the
vector of the first n observations and let fj$Xn

1', j = #& 0 denote densities of P$n'
j

with respect to a sigma-finite measure *n. Suppose now that the observations "Xn#n≥1
initially follow the measure P# (nominal regime) and at some point in time ! =
0& 1& ) ) ) something happens and they switch to P0 (alternative regime). For a fixed !,
the change induces a new probability measure P! (correspondingly a density f!$Xn

1''
which is a combination of the pre- and post-change densities. To develop the exact
form of the new density, let us use the Bayes rule in order to decompose the original
densities as follows

f#
(
Xn

1

)
= f#

(
X!

1

)
× f#

(
Xn

!+1 %X!
1

)
+ f0

(
Xn

1

)
= f0

(
X!

1

)
× f0

(
Xn

!+1 %X!
1

)
)

We can now combine the first component of the pre-change density with the second
component of the post-change density to produce the final density

f!
(
Xn

1

)
= f#

(
X!

1

)
× f0

(
Xn

!+1 %X!
1

)
) (2.1)

Note that in this general model the observations before the change affect the
observations after the change (because the observations before and after the change
are in general correlated). Furthermore, we stress that hereafter ! is considered as
the last time instant under the nominal regime rather than the first instant under the
alternative regime (the latter is the common practice in the literature). If E! denotes
expectation with respect to the measure P! when the change is at !, then for any
! -measurable random variable Y due to (2.1), we have the following equality

E!,Y- = E#,E0,Y %!!--) (2.2)
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Bayesian Changepoint Detection 127

An alternative decomposition of the joint density that can give rise to a different
changepoint model is the following:

f#
(
Xn

1

)
= f#

(
X!

1

)
× f#

(
Xn

!+1 %X!
1

)
+ f0

(
Xn

1

)
= f0

(
X!

1 %Xn
!+1

)
× f0

(
Xn

!+1

)
)

Combining again the first component of the pre-change density with the second
component of the post-change density results in

f!
(
Xn

1

)
= f#

(
X!

1

)
× f0

(
Xn

!+1

)
) (2.3)

Unlike the first model, here E!,Y- &= E#,E0,Y %!0--. This changepoint model can, for
example, find application in the case where two independent processes evolve in
parallel, with observations coming by sampling, initially, the first process and at
some point in time ! switching to sampling the second.

It should be noted that the same original densities f#$Xn
1' and f0$Xn

1' gave rise
to two different f!$Xn

1'. In order to be able to exploit the convenient formula (2.2),
in the rest of this section we will adopt the first model (2.1). However, all the results
presented in Section 3 are equally valid for the second model (2.3) as well.

Using the Bayes rule, we can write (2.1) in the following equivalent way

f!$X
n
1' =

( !∏

i=1

f#
(
Xi %Xi−1

1

))
×

( n∏

i=!+1

f0
(
Xi %Xi−1

1

))
& (2.4)

where fj$Xn %Xn−1
1 ' denotes the conditional density of Xn given the past information

Xn−1
1 . There are also other more complicated possibilities where the conditional

densities f0$Xi %Xi−1
1 ', i = !+ 1& ) ) ) & n depend on the changepoint ! (certain state-

space models and hidden Markov models fall under this category; see Tartakovsky,
2009). Model (2.4) can cover this case as well, simply by allowing f $!'

0 $Xi %Xi−1
1 ' to

depend on ! for i ≥ !+ 1. Note also that the densities fj$Xi %Xi−1
1 ' may depend on i.

If in (2.4) we replace f0$Xi %Xi−1
1 ' with f0$Xi %Xi−1

!+1' (for i ≥ !+ 1), then
obviously the representation (2.4) also covers the model in (2.3), i.e.,

f!$X
n
1' =

( !∏

i=1

f#
(
Xi %Xi−1

1

))
×

( n∏

i=!+1

f0
(
Xi %Xi−1

!+1

))
&

In the special case where the observations are i.i.d. before the change with a common
pre-change density f#$X' and i.i.d. after the change with a common post-change
density f0$X', the model in (2.4) simplifies to

f!$X
n
1' =

( !∏

i=1

f#$Xi'

)
×

( n∏

i=!+1

f0$Xi'

)
) (2.5)

Under the i.i.d. assumption the two models in (2.1) and (2.3) coincide.
The previous analysis refers to the case where ! is deterministic. Since in the

present paper we are mostly interested in the Bayesian setting, we now analyze the
more general situation where ! is random. This may include ! being a random
variable that is partially or completely dependent on the observations or completely
independent of the observations. To propose a general model that can cover various
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128 Tartakovsky and Moustakides

cases, we will assume that there is a sequence of probabilities ".n#n≥0, where
.0 =P$! ≤ 0' and .n = P$! = n %Xn

1' for n ≥ 1. We observe that the process ".n# is
"!n#-adapted, i.e., the probability whether there is a change at ! = k depends on the
observations Xk

1 accumulated up to time k. This allows for a very general modeling
of the changepoint mechanisms, including the case where ! is a stopping time
adapted to the filtration "!n#n≥1 generated by the observations (see Moustakides,
2008).

Recall that Pk denotes the probability measure and Ek the corresponding
expectation when the change occurs at time ! = k. Consider a sequence "Yn#n≥0 of
nonnegative, ! -measurable random variables. We are interested in computing the
average of the randomly stopped sequence Y!∨0. In other words, whenever ! ≤ 0
the sequence is stopped at 0, that is, we use Y0. Write "# for the indicator of a
set #. Since Y!∨0""!<## = Y0""!≤0# +

∑#
k=1 Y0""!=k#, using (2.2) and the fact that .k is

!k-measurable, we can write

E,Y!∨0""!<##- =
#∑

k=0

Ek,Yk.k- =
#∑

k=0

E#,E0,Yk %!k-.k-) (2.6)

This equation constitutes the basis for deriving a multitude of performance
measures. If, in particular, we select Yn = "#, where # ∈ ! , then we obtain the
probability of the event # induced by the change

P$#' =
#∑

k=0

E#,P0$# %!k'.k-)

A sequential changepoint detection procedure is a stopping time / adapted to
the filtration "!n#n≥0. In other words, "/ ≤ n# ∈ !n, ∀n ≥ 0. Since !0 is the trivial
(-algebra, an "!n#-adapted stopping time satisfies either / > 0 or / = 0 w.p. 1.
Consequently, to avoid the latter degenerate case, from now on we will assume /> 0.

The most popular and practically interesting performance measure for / is the
average detection delay

ADD$/' = E,/− ! % / > !- = E,$/− !'+-

P$/ > !'
)

We observe that for the two sequences of random variables """/>n##n≥0 and
"$/− n'+#n≥0, we can apply (2.6). This yields

E,$/− !'+- =
#∑

k=0

E#,E0,$/− k'+ %!k-.k- (2.7)

P$/ > !' =
#∑

k=0

E#,E0,""/>k# %!k-.k- =
#∑

k=0

E#,""/>k#.k-& (2.8)

with the last equality being a direct consequence of the fact that "/ > k# ∈ !k.
Combining the previous two equations we end up with the following expression for
the average detection delay

ADD$/' =
∑#

k=0 E#,E0,$/− k'+ %!k-.k-∑#
k=0 E#,""/>k#.k-

) (2.9)
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Bayesian Changepoint Detection 129

In the Bayesian approach, the false alarm rate of a detection procedure / is
usually measured by the probability of false alarm PFA$/' = P$/ ≤ !'. Taking into
account that / > 0 and "/ ≤ k# ∈ !k, we obtain

PFA$/' =
#∑

k=1

E#,E0,""/≤k# %!k-.k- =
#∑

k=1

E#,""/≤k#.k-) (2.10)

Unlike the general formula in (2.6), for the computation of the PFA we do not
include the case ! ≤ 0 due to the fact that / > 0.

If the sequence ".n#n≥0 does not depend on the observations, then .0 = P$!≤ 0';
.n = P$! = n', n = 1& 2& ) ) ) is the prior distribution of the changepoint !. This is the
model proposed by Shiryaev (1963). If we assume that the prior distribution ".n#
is unknown and look for the least favorable distribution that produces the worst
possible average detection delay, then we recover Pollak’s performance measure
(cf. Pollak, 1985). Specifically, for ".n# deterministic, we have

$P$/' = sup
".k#

ADD$/' = sup
k≥0

Ek,/− k % / > k-)

Let us now consider the most general model where ".n# is a random sequence
adapted to the filtration "!n#. If we assume again that the sequence is completely
unknown and maximize the average detection delay over this more general class of
changepoint mechanisms, we recover Lorden’s performance measure (cf. Lorden,
1971). More precisely, for ".n# being "!n#-adapted, we have

$L$/' = sup
".k#

ADD$/' = sup
k≥0

ess supEk,$/− k'+ %!k-)

For further details we refer to Moustakides (2008).
From the previous brief discussion we deduce that the most commonly used

criteria pertain to completely different classes of changepoint mechanisms. The
Shiryaev and Pollak speed of detection measures can be applied to cases where the
change is imposed by a mechanism that disregards the observations. On the other
hand, Lorden’s measure considers a much richer class of mechanisms that take into
account the observations when they decide about imposing the change or not. We
must stress that both classes of changepoint mechanisms are equally important with
a wide variety of applications that can fall under the first or the second category.

In the rest of this paper, we are limiting ourselves to the case where ".k#
is deterministic and known beforehand. In other words, we follow the Bayesian
approach proposed by Shiryaev (1963), assuming that ! is a random variable
independent of the observations with a known prior distribution ".k#.

3. BAYESIAN OPTIMALITY CRITERIA AND DETECTION PROCEDURES

3.1. Bayesian Setting and Shiryaev’s Procedure

Assume that the change point ! follows the prior probability distribution
.0 =P$!≤ 0'; .k = P$! = k' for k = 1& 2& ) ) ) $

∑#
k=0 .k = 1'.
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130 Tartakovsky and Moustakides

Using the general formulas (2.10) and (2.9), we obtain the following relations
for the probability of false alarm and the average detection delay:

PFA$/' =
#∑

k=1

.kE#,""/≤k#- =
#∑

k=1

.kP#$/ ≤ k' (3.1)

ADD$/' =
∑#

k=0 .kEk,$/− k'+-
∑#

k=0 .kP#$/ > k'
=

∑#
k=0 .kP#$/ > k'Ek,/− k % / > k-

∑#
k=0 .kP#$/ > k'

& (3.2)

where
∑#

k=0 .kP#$/ > k' = 1− P$/ ≤ !' for any stopping time that is finite with
probability 1 (i.e., P#$/ < #' = 1'.

An optimal Bayesian detection strategy is a procedure for which the ADD
is minimized, whereas the PFA is constrained to be below a given level 0 ∈
$0& 1'. Specifically, define the class of changepoint detection procedures C0 = "/ 1
PFA$/'≤ 0# for which the false alarm probability does not exceed the predefined
value 0. The optimal changepoint detection procedure is then the stopping time

/o = arg inf
/∈C0

ADD$/') (3.3)

Shiryaev (1963) considered the case of ! following a zero-modified geometric
distribution

P$! < 0' = .& P$! = k' = $1− .'p$1− p'k& k ≥ 0) (3.4)

where . ∈ ,0& 1', p ∈ $0& 1'. In terms of our model introduced above, this is
equivalent to selecting .0 = .+ $1− .'p and .k = $1− .'p$1− p'k for k ≥ 1. Note
that when 0 ≥ 1− ., there is a trivial solution to the optimization problem in (3.3),
since we can simply stop at 0. Indeed, this strategy produces ADD = 0 and PFA =
P$! > 0' = 1− ., which satisfies the constraint.

Consider now the i.i.d. case (2.5), 0 < 1− . and / > 0. Shiryaev (1963, 1978)
proved that the optimal Bayesian detection procedure /0 = /s$2' exists and has the
form

/s$2' = inf"n ≥ 1 1 P$! < n %!n' ≥ 2#& (3.5)

where the threshold 2 = 20 must be chosen to satisfy PFA$/s$20'' = 0. We should
note that there seems to be a slight difference in our test statistic as compared to
the statistic P$! ≤ n %!n' originally proposed by Shiryaev. However, this difference
is only notational and it is due to the fact that in our case, ! is the last time instant
under the nominal regime, whereas in Shiryaev’s approach, it is the first instant
under the alternative regime. Actually the two tests are exactly the same, as we
realize next by expressing them in terms of an alternative test statistic.

It turns out that it is more convenient to rewrite the stopping time (3.5) in terms
of the following statistic:

Rn&p =
.

$1− .'p

n∏

i=1

(
3i

1− p

)
+

n∑

k=1

n∏

i=k

(
3i

1− p

)
& (3.6)
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Bayesian Changepoint Detection 131

where 3i = f0$Xi'/f#$Xi' is the likelihood ratio of the ith sample. Indeed, applying
the Bayes rule it is easy to see that

P$! < n %!n' =
Rn&p

Rn&p + p−1
) (3.7)

Hence, the Shiryaev procedure can be rewritten in an equivalent form as

/s$A' = inf"n ≥ 1 1 Rn&p ≥ A#& (3.8)

where A = 2/$1− 2'p > ./$1− .'p and

Rn&p = $1+ Rn−1&p'
3n

1− p
& n ≥ 1& R0&p =

.

$1− .'p
) (3.9)

The stopping time /s expressed with the help of Rn&p coincides exactly with
Shiryaev’s stopping time when it is expressed via the same test statistic.

The interesting point is that relations (3.6)–(3.8) continue to hold under
the geometric prior model even in the general non-i.i.d. case (2.4) (with 3i =
f0$Xi %Xi−1

1 '/f#$Xi %Xi−1
1 ''. But for the validity of (3.9) we need 3i to be independent

of the changepoint !. Although under this more general setting no exact optimality
properties are available (similar to the i.i.d. case), there nevertheless exist a number
of interesting key asymptotic results that we offer in the next subsection.

3.2. Asymptotic Approximations for Operating Characteristics

In the sequel we briefly develop two alternative means for evaluating performance
metrics in the Bayesian changepoint detection problem. The first methodology will
be analytic but asymptotic (i.e., valid for small to very small values of the false
alarm constraint level 0), whereas the second will be numerical and applicable
basically when 0 assumes moderate to small values. Consequently, in a sense, the
two methodologies are complementary. We start with the asymptotic approach,
while we postpone the more detailed presentation of the numerics for Section 4.

Let I = E0,log31- be the Kullback–Leibler information number and define

Sn =
n∑

i=1

log3i& Sp
n = Sn − n log$1− p'

(3.10)
4pa = inf"n 1 Sp

n ≥ a#& 5p = lim
a→#

E0,exp"−
(
Sp

4pa
− a

)
#-)

Note that the constant 5p defined in (3.10) is the subject of renewal theory (see,
e.g., Woodroofe, 1982). It can be computed either exactly or numerically for
particular models. The following theorem describes the state-of-the-art in Bayesian
changepoint detection for i.i.d. data models.

Theorem 3.1. Assume the i.i.d. model (2.5) and the geometric prior distribution (3.4).

(i) Let 0 < I < #. Then for all m ≥ 1

E,$/s$A'− !'m % /s$A' > !- ∼
(

logA
I + %log$1− p'%

)m

as A → #) (3.11)
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132 Tartakovsky and Moustakides

(ii) If, in addition, log31 is non-arithmetic, then

PFA$/s$A'' =
5p
Ap

$1+ o$1'' as A → #& (3.12)

so that A = A0 = 5p/$p0' implies PFA$/s$A0'' = 0$1+ o$1'' as 0 → 0. With this
threshold for all m ≥ 1 have

inf
/∈C0

E,$/− !'m % / > !- ∼ E,$/s$A0'− !'m % /s$A0' > !-

∼
( % log 0%
I + % log$1− p'%

)m

as 0 → 0& (3.13)

i.e., Shiryaev’s procedure minimizes asymptotically all positive moments of the
detection delay.

Proof. (i) follows from Theorem 4 and (ii) from Theorem 5(i) of Tartakovsky and
Veeravalli (2005). !

For non-i.i.d. models and/or non-geometric prior distributions an optimal
solution is not available. However, we can offer asymptotically optimum results. Let
us define the exponential rate of convergence d of the prior distribution,

d = − lim
k→#

logP$! > k'

k
& d ≥ 0& (3.14)

assuming that the corresponding limit exists. If d > 0, then the prior distribution has
(asymptotically) exponential right tail. If on the other hand d = 0, then this amounts
to a heavy tailed distribution. For the geometric distribution (3.4) it is easily seen
that d = − log$1− p'.

The log-likelihood ratio for testing the hypothesis that the change occurred at
the point ! = k against ! = # (no change) is

Zk
n =

n∑

i=k+1

log
f0$Xi %Xi−1'

f#$Xi %Xi−1'
& k < n) (3.15)

Assuming, for every k > 0, the validity of a strong law of large numbers,
i.e., convergence of n−1Zk

k+n to a constant q > 0 as n → #, with a suitable rate,
Tartakovsky and Veeravalli (2005) proved that the Shiryaev procedure (3.5) with
threshold 2 = 1− 0 is (as 0 → 0) first-order asymptotically optimal. More precisely,
we have the following theorem (cf. Theorem 3 in Tartakovsky and Veeravalli, 2005).

Theorem 3.2. Assume condition (3.14) is satisfied. Furthermore, let the following
condition

#∑

k=0

[
.k

#∑

n=1

nr−1Pk

(
%Zk

k+n − q% > n6
)]

< # (3.16)

hold for all 6 > 0 and some q > 0 and r ≥ 1. If 2 = 1− 0, then the detection procedure
/s$2' defined in (3.5) belongs to the class C0 and for all m ≤ r,

inf
/∈C0

E,$/− !'m % / > !- ∼ E,$/s − !'m % /s > !- ∼
( % log 0%
q + d

)m

as 0 → 0) (3.17)

i.e., Shiryaev’s procedure minimizes asymptotically moments of the detection delay of
order m ≤ r.
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Bayesian Changepoint Detection 133

From Theorem 3.2 we conclude that the Shiryaev procedure is asymptotically
optimal (with respect to positive moments of the detection delay) for a wide class of
prior distributions and non-i.i.d. models under very general conditions. Baron and
Tartakovsky (2006) established similar results for general continuous time models.
Note that q can be treated as the effective local Kullback–Leibler information
number coinciding, in the i.i.d. case, with I = E0,log31-, the classical Kullback–
Leibler information number.

Let us now consider the Shiryaev–Roberts and CUSUM procedures in the
Bayesian context. We recall that these two popular tests are minimax optimal
regardless of the knowledge of a prior distribution for the changepoint !. It is
clear that, under the Bayesian setup, both detection procedures exhibit performance
which is inferior to the (asymptotically) optimal Shiryaev’s test. What we would like
to examine next is whether this loss in performance is in fact essential as 0 → 0, that
is, when the false alarm probability is small.

The Shiryaev–Roberts (SR) statistic Rn =
∑n

k=1
∏n

i=k 3i is the limiting form of
Shiryaev’s statistic Rn&p when we select .= 0 and let p→ 0. It can be computed
recursively

Rn = $1+ Rn−1'3n& n ≥ 1& R0 = 0) (3.18)

The corresponding stopping time is defined as

/sr$A' = inf"n ≥ 1 1 Rn ≥ A#& A > 0) (3.19)

In contrast to the SR statistic, which is based on averaging, the CUSUM
procedure is motivated by the maximum likelihood argument, i.e., Un =
max1≤k≤n

∏n
j=k 3j . The CUSUM stopping time is defined as

/cs$A' = inf"n ≥ 1 1 Un ≥ A#& A > 0) (3.20)

The statistic Un can be computed recursively

Un = max"1&Un−1#3n& n ≥ 1& U0 = 1) (3.21)

It is worth pointing out that the two recursions in (3.18) and (3.21) developed for the
i.i.d. case are also applicable in the general non-i.i.d. case as long as the likelihood
ratio 3n = f0$Xn %Xn−1'/f#$Xn %Xn−1' does not depend on the changepoint !.

Regarding comparison of the SR and CUSUM tests against the optimum
performance delivered by the Shiryaev procedure, there exists a strong evidence that
the two tests are asymptotically inferior under the Bayesian setup, unless d = 0, that
is, unless the prior distribution is heavy-tailed. It follows from the proof of Theorem
6 in Tartakovsky and Veeravalli (2005) that as long as condition (3.16) is satisfied
for some / ≥ 1, the following asymptotic approximations hold:

E,$/sr$A'− !'m % /sr$A' > !- ∼ E,$/cs$A'− !'m % /cs$A' > !-

∼
(
logA
q

)m

as A → # (3.22)

for m ≤ r .
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134 Tartakovsky and Moustakides

In order to be able to compare the asymptotic performance of the SR and
CUSUM tests with the optimum performance given in (3.13) and (3.17), we need
a good estimate of the PFA of each test versus the corresponding threshold A
(similar to (3.12) for Shiryaev’s procedure). Unfortunately, no such estimate is
currently available. In particular, the upper bound PFA$/sr' ≤ O$1'/A suggested
in Tartakovsky and Veeravalli (2005), which can be easily derived from Doob’s
submartingale inequality, is not accurate unless d/q is small. We conjecture that the
asymptotically (as A → #) accurate relations are of the form

PFA$/sr$A'' ∼
O$1'
As$d'

& PFA$/cs$A'' ∼
O$1'
As$d'

(3.23)

(with different constants O$1'', where s$d' > 1 and s$d' → 1 as d → 0. Although
we are unable to prove this conjecture at the moment, it is justified in the Brownian
motion case (detection of a change in the drift from 0 to 7) and an exponential prior
distribution with parameter 8 (i.e., P$! > t' = e−8t'. Then it is possible to obtain
exact formulas showing that the asymptotic approximations (3.23) are valid with
s$d' = 0)5,1+ $1+ 4d/q'1/2-, q = 72/2 and d = 8.

From (3.23) setting PFA = 0 and solving for A, then substituting in (3.22)
produces

E,$/sr − !'m % /sr > !- ∼ E,$/cs − !'m % /cs > !- ∼
( % log 0%

qs$d'

)m

as 0 → 0)

Comparing with (3.17) shows that the asymptotic relative efficiency of the
asymptotically optimal Shiryaev procedure compared to the SR and CUSUM
tests is given by ,qs$d'/$q + d'-m. Because q + d corresponds to the optimum
performance, we certainly have q + d ≥ qs$d'. The question is whether this
inequality is in fact strict. Again we conjecture that this is indeed the case, provided
that d > 0. When d = 0 or tends to 0, then s$d' → 1 and the asymptotic relative
efficiency is 1, i.e., the SR and CUSUM procedures are asymptotically optimal. This
claim is supported by our numerical computations presented in Section 4.2 and from
the Brownian motion example where q + d = 72/2+ 8, which is strictly greater than
qs$8' = 72$1+

√
1+ 88/72'/4, as one can easily verify. However, if 8/72 → 0, then

the ratio qs$8'/$q + 8' approaches 1.
Finally, consider the i.i.d. case and a likelihood-based version of the well-

celebrated Shewhart chart, which is given by the stopping time

/sw$A' = inf"n ≥ 1 1 3n ≥ A#& (3.24)

where 3n = f0$Xn'/f#$Xn'. In other words, this procedure raises an alarm the first
time the instantaneous likelihood ratio 3n exceeds a threshold A > 0.

Note that whenever A ≤ 1 the CUSUM procedure (3.20) coincides with the
Shewhart test (3.24). Therefore, by Moustakides (1986), Shewhart’s procedure is
optimal with respect to Lorden’s worst-case metric $L$/' = supk ess supEk,$/−
k'+ %!k- subject to the constraint on the mean time to false alarm E#,/- ≥ T > 1 for
the range of values of T that correspond to threshold values in the interval $0& 1-.
This range of false alarm values can be significant when we detect large changes.
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Bayesian Changepoint Detection 135

Evidently, the distribution of the Shewhart stopping time is geometric under P#
and Pk for any k ≥ 0, which immediately implies that

E#,/sw- =
1

P#$31 > A'
+ PFA$/sw' =

$1− .'$1− p'P#$31 > A'

p+ $1− p'P#$31 > A'

ADD$/sw' = Ek,/sw − k % /sw > k- = E0,/sw- =
1

P0$31 > A'
&

where for PFA$/sw' we assumed the geometric prior distribution (3.4).
Assume now that instead of minimizing the average delay to detection we are

interested in maximizing the instantaneous probability of detection P$/ = !', i.e.,
we wish to find a stopping time that delivers sup/ P$/ = !', where the supremum is
taken over all "$n#-adapted stopping times. It follows from Bojdecki (1979) that in
the i.i.d. case and for the geometric prior distribution the Shewhart stopping time
(3.24) is optimal.

3.3. Optimality of the Shiryaev–Roberts Procedure
in a Generalized Bayesian Setting

Let us return to the i.i.d. case (2.5) and the geometric prior distribution (3.4) with
. = 0. Recall that the Shiryaev rule is given by (3.8) and (3.9). Note first that, as
p → 0, i.e., when the prior distribution becomes improper uniform, then Rn&p tends
to the SR statistic Rn defined in (3.18). It can be easily shown that, for any stopping
time /,

P$/ > !'

p
−→
p→0

E#,/-&
E,$/− !'+-

p
−→
p→0

#∑

k=0

Ek,$/− k'+-)

Thus, one may conjecture that the SR test defined in (3.19) minimizes the integral
average detection delay

%$/' =
∑#

k=0 Ek,$/− k'+-

E#,/-
(3.25)

over all detection procedures with E#,/- ≥ T , i.e., over all stopping times in the class
CT = "/ 1 E#,/- ≥ T# for which the average run length (ARL) to false alarm is no
less than T > 1.

The exact result is given in the next theorem, which also provides an asymptotic
approximation for the integral average delay to detection for large threshold values.
Before stating the desired theorem we need to introduce some additional notation.
Recall that Sn =

∑n
i=1 log3i; define the one-sided test 4a = inf"n ≥ 1 1 Sn ≥ a# and

the average (limiting) overshoot κ = lima→# E0,S4a
− a-. Define also the random

variable Vn =
∑n

i=1 e
−Si and the constant

C =
∫ #

0

∫ #

0
log$1+ y + x'dQ#$x'dQ0$y' (3.26)

where Q#$x' = limn→# P#$Rn ≤ x' is the P#-stationary distribution of the SR
statistic Rn and Q0$y' = limn→# P0$Vn ≤ y' is the P0-stationary distribution for Vn.
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136 Tartakovsky and Moustakides

The constant κ is the subject of renewal theory and can be computed
either exactly or numerically (see, e.g., Woodroofe, 1982). The constant C can be
computed either by Monte Carlo or numerically (see Section 4).

Theorem 3.3. Let AT be chosen so that E#,/sr$AT '- = T . Then the Shiryaev–Roberts
procedure defined by (3.18) and (3.19) minimizes %$/' over all stopping times / that
satisfy E#,/- ≥ T , i.e.,

inf
/∈CT

%$/' = %$/sr$AT '' for every T > 1) (3.27)

If E0,$log31'
2- < # and 31 is non-arithmetic, then

%$/sr$A'' =
1
I
$logA+ κ − C'+ o$1' as A → #) (3.28)

Proof. Optimality of the SR procedure, that is, (3.27) follows from Theorem 1
of Pollak and Tartakovsky (2009). Although the asymptotic approximation (3.28)
is intuitively appealing, the proof is highly nontrivial and fairly long and will be
presented elsewhere. !

Feinberg and Shiryaev (2006) obtained the same result as (3.27) for the
Brownian motion model (for detecting a change in the constant drift). They
refer to this problem as “A Generalized Bayesian Setting.” It is interesting that
the generalized Bayesian setting is closely related to another, completely different
problem where the changepoint ! is assumed to be an unknown deterministic
number and the change occurs at a far time horizon and has to be detected by
applying a repeated sequential procedure that starts from scratch after each alarm
(cf. Pollak and Tartakovsky, 2009; Shiryaev, 1961, 1963).

Finally, we would like to mention that for . > 0, the statistic Rn&p defined in
(3.6) and (3.9) is initialized not from zero but from the point R0&p = ./,$1− .'p-.
Selecting . = rp and then letting p → 0, we arrive at the generalization of the SR
statistic that starts not necessarily from zero but from any point r ≥ 0:

Rr
n = $1+ Rr

n−1'3n& n ≥ 1& Rr
0 = r)

This test (called the SR−r test) has been recently introduced by Moustakides
et al. (2010) and shown to have certain interesting minimax properties (see also
Polunchenko and Tartakovsky, 2010).

4. NUMERICAL PERFORMANCE EVALUATION

4.1. Integral Equations for Operating Characteristics

In this section, we provide integral equations for the operating characteristics of
the changepoint detection procedures considered in the previous sections. Using
numerical techniques one can then obtain efficient numerical approximations. The
proposed approach borrows ideas from Moustakides et al. (2009, 2010).
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Bayesian Changepoint Detection 137

Note that all aforementioned stopping times are particular cases of the
following generic stopping time

/rA = inf"n ≥ 1 1 & r
n ≥ A#& A > 0& (4.1)

where & r
n is a Markov statistic satisfying the recursion

& r
n = 9$& r

n−1'3n& n ≥ 1& & r
0 = r ≥ 0& (4.2)

and 9$& ' is a positive-valued function. Indeed, for the Shiryaev procedure we have
9$& ' = $1+& '/$1− p' (see (3.9)), for CUSUM 9$& ' = max"1&&# (see (3.21))
and for the SR procedure 9$& ' = 1+& (see (3.18)).

We now derive a set of equations for the performance metrics of the generic
detection procedure given by (4.1) and (4.2), which can then be easily adapted
to all aforementioned special cases by substituting the proper function 9$& '. For
simplicity we assume that the likelihood ratio 31 is continuous and let Fi$x' =
Pi$31 ≤ x' denote the distribution function of 31 for i = "#& 0#.

We begin with the performance evaluation of the generic stopping time within
the Bayesian context and for the geometric prior model defined in (3.4). The two
quantities that need to be computed are the false alarm probability PFA$/rA' from
(3.1) and the average detection delay ADD$/rA' from (3.2). For k ≥ 0, let :k$r' =
Ek,$/

r
A − k'+- and 7k$r' = P#$/

r
A > k'$7r

0 = 1'.
We observe that for the PFA we can write

PFA$/rA' = $1− .'p
#∑

k=1

$1− p'kP#$/
r
A ≤ k'

= $1− .'

{
1− p

#∑

k=0

$1− p'k7k$r'

}
) (4.3)

Similarly for the numerator N$/rA' and the denominator D$/rA' of ADD$/rA', we have

N$/rA' = ,.+ $1− .'p-E0,/
r
A-+ $1− .'p

#∑

k=1

$1− p'kEk,$/
r
A − k'+-

= .:0$r'+ $1− .'p
#∑

k=0

$1− p'k:k$r' (4.4)

D$/rA' = 1− PFA$/rA' = .+ $1− .'p
#∑

k=0

$1− p'k7k$r') (4.5)

From (4.3)–(4.5) we realize that we need to find suitable equations for the
evaluation of the two series

;p$r' =
#∑

k=0

$1− p'k:k$r' and <p$r' =
#∑

k=0

$1− p'k7k$r'&

as well as for the average run length to detection :0$r'. Using the Markov property
of the statistic & r

n , it is readily seen that :0$r'& ;p$r', and <p$r' satisfy the following
integral equations

:0$r' = 1+
∫ A

0
:0$x'

[
=

=x
F0

(
x

9$r'

)]
dx (4.6)
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138 Tartakovsky and Moustakides

;p$r' = :0$r'+ $1− p'
∫ A

0
;p$x'

[
=

=x
F#

(
x

9$r'

)]
dx (4.7)

<p$r' = 1+ $1− p'
∫ A

0
<p$x'

[
=

=x
F#

(
x

9$r'

)]
dx) (4.8)

Using the solutions of equations (4.6)–(4.8), we can compute the two quantities of
interest as follows:

PFA$/rA' = $1− .'"1− p<p$r'# and ADD$/rA' =
.:0$r'+ $1− .'p;p$r'

.+ $1− .'p<p$r'
)

Next, in order to compute the integral average detection delay %$/rA' given in
(3.25), we have to compute the ARL to false alarm <0$r' = E#,/

r
A- and the series

;0$r' =
∑#

k=0 :k$r'. These two functions satisfy the integral equations

<0$r' = 1+
∫ A

0
<0$x'

[
=

=x
F#

(
x

9$r'

)]
dx

;0$r' = :0$r'+
∫ A

0
;0$x'

[
=

=x
F#

(
x

9$r'

)]
dx

that constitute special cases of (4.7) and (4.8) with p = 0. The integral average
detection delay is then computed as %$/ra' = ;0$r'/<0$r'.

In addition, we may be interested in computing the conditional average
detection delays Ek,/

r
A − k % /rA > k- = :k$r'/7k$r' for any k ≥ 1. The functions :k$r'

and 7k$r' can be computed recursively (cf. Moustakides et al., 2009, 2010).
In order to implement the asymptotic approximations for the integral average

detection delay (3.28), we should be able to compute the constant C defined in
(3.26). For this computation we need the two densities q#$x' = dQ#$x'/dx and
q0$x' = dQ0$x'/dx. Let R# and V# be the limiting (as n → #) random variables of
Rn and Vn, respectively, which have densities q#$x' and q0$x'. To find the desired
densities, observe that, by recursion (3.18), R# and $1+ R#'31 have the same
density q#$x' under P#. Similarly V# and $1+ V#'3

−1
1 have the same density q0$x'

under P0. To see this, note that, by the i.i.d. property of the data, Vn has the same
P0-distribution as the random variable Ṽn =

∑n
i=1

∏n
j=i 3

−1
i that follows the recursion

Ṽn = $1+ Ṽn−1'3
−1
n . Consequently, we have the following integral equations:

q#$x' =
∫ #

0
q#$y'

[
=

=x
F#

(
x

1+ y

)]
dy+

q0$x' = −
∫ #

0
q0$y'

[
=

=x
F0

(
1+ y

x

)]
dy)

Thus, q#$x' and q0$x' are the eigenfunctions corresponding to the unit eigenvalues
of the linear operators defined, respectively, with the following kernels:

'#$x& y' =
=

=x
F#

(
x

1+ y

)
& '0$x& y' = − =

=x
F0

(
1+ y

x

)
)

The constant C is then found by numerical integration.
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This completes our presentation of the equations that are necessary for the
computation of the metrics we introduced in the previous sections. We observe
that the totality of these equations are Fredholm equations of the second kind.
Since generally no analytical solutions are possible, we must resort to numerical
techniques. A simple numerical scheme using a quadrature rule with N . 1
breakpoints to approximate the integrals can be used to provide an approximate
solution. The resulting systems of linear equations can be solved either directly or
iteratively. The accuracy of such numerical schemes is directly related to the number
N of breakpoints we use, and one expects accuracy to improve with increasing
number of points. Clearly, when the false alarm constraint becomes very stringent,
i.e., threshold A takes large values, this will require exceedingly large number of
points resulting in unrealistic processing times. This is why these techniques can
be used for moderate to small values of the false alarm constraint, as we have
mentioned earlier.

4.2. Example

Consider an i.i.d. exponential example with a mean before the change equal to 1
and after the change equal to 1+ >,

f#$x' = e−x""x≥0#& f0$x' = $1+ >'−1e−x/$1+>'""x≥0#& > > 0)

In Figure 1 we depict the operating characteristics of the SR, CUSUM, and
Shiryaev tests in terms of ADD versus PFA for p = 0)1 and > = 2 and 0.5. These
operating characteristics were computed by solving numerically the corresponding
integral equations presented in the previous subsection. Note that for the exponential
case, the Kullback–Leibler information number is equal to I = >− log$1+ >'. It is
seen fromFigure 1(a) that for > = 2 (i.e., when I . % log$1− p'%', the SR test performs
as good as Shiryaev’s test (the difference in performance is negligible), as expected.
The CUSUM test performs somewhat worse but the difference is not dramatic. On the
other hand, for > = 0)5 (i.e., when the values of I and % log$1− p'% are comparable),
Shiryaev’s test performs much better, also as expected.

In Figure 2 we present the false alarm probability PFA of the Shiryaev test as a
function of the threshold A) Solid curves correspond to the numerical computation
of the probability using integral equations and dashed ones using the asymptotic
formula (3.12), i.e., PFA$/s' ≈ 5p/$Ap'. For the exponential case 5p can be computed
analytically as 5p = 1/$1+ >'; consequently, PFA$/s' ≈ ,Ap$1+ >'-−1. As we can
see, the asymptotic formula provides a very efficient approximation as long as
PFA$/s' ≤ 0)1. Since for most practical applications larger values of the false alarm
probability are of no interest, we can conclude that the approximation (3.12)
provides an excellent fit.

Figure 3 depicts the ADD as a function of PFA of the SR procedure. We can
see that the slope of the ADD depends on p, which, according to our conjecture,
comes from the exponent s$p' in approximations (3.23). This is particularly visible
for > = 0)5.

Finally, in Figure 4 we test the correctness of the asymptotic formula (3.11) for
the average detection delay of Shiryaev’s procedure

ADD$/s' ≈
log$A$PFA''

>− log$1+ >'− log$1− p'
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140 Tartakovsky and Moustakides

Figure 1. Operating characteristics of the three tests for p = 0)1 and (a) > = 2, (b) > = 0)5.
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Bayesian Changepoint Detection 141

Figure 2. The probability of false alarm of Shiryaev’s test as a function of the threshold
A for p = 0)01& 0)05 and (a) > = 2)0, (b) > = 0)5.
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142 Tartakovsky and Moustakides

Figure 3. Operating characteristics of the SR test for various p and (a) > = 2)0, (b) > = 0)5.
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Bayesian Changepoint Detection 143

Figure 4. Operating characteristics of the Shiryaev test computed numerically and using
the asymptotic formula for various p and (a) > = 2, (b) > = 0)5.
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144 Tartakovsky and Moustakides

with threshold A$PFA' related to the false alarm probability PFA by the asymptotic
formula (3.12), i.e., A$PFA' = 1/,p$1+ >'PFA-. Recall that according to Figure 2,
the latter formula is fairly accurate. As we can see, the slopes exhibit a very good
match between the numerical and the analytical values for different values of p& >.
There is, however, a constant shift (especially for > = 0)5) that can be explained by
the fact that first order approximations neglect constants. The difference increases
when the Kullback–Leibler number decreases. These constants seem to be difficult
(if at all possible) to compute either analytically or numerically. Therefore, the
integral equations and the numerical techniques proposed in subsection 4.1 are
valuable tools for achieving accurate performance evaluation. Similar graphs are
observed for the SR and CUSUM tests.
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