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Abstract: We analyze the article by Han and Tsung (2009) “The Optimal Stopping Time for
Detecting Changes in Discrete Time Markov Processes,” and demonstrate that it is seriously
flawed.
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1. INTRODUCTION

Han and Tsung (2009) consider Markov observations X1! X2! " " " with two possible
stationary transition probabilities Pr#Xn = y !Xn−1 = x$ = pi#x! y$, i = 0! 1. Up to
some point in time t the samples follow p0#x! y$ and after t they switch to p1#x! y$.
The goal is to detect the change as soon as possible.

As a possible detection procedure, the authors propose the CUSUM stopping
time Tp, which is defined with the help of the CUSUM statistic

Vn = max%Vn−1! 1&l#Xn−1 !Xn$' l#Xn−1 !Xn$ =
p1#Xn−1! Xn$

p0#Xn−1! Xn$
' V0 = 1!
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as Tp = inf%n ≥ 1 ( Vn ≥ )&. We emphasize that the threshold ), as in the case of
the classical CUSUM, is considered constant and selected to satisfy the false alarm
constraint E0*Tp+ = L, where L > 1 is some pre-specified constant.

As a performance measure, the authors use the Lorden (1971) criterion

D#T$ = sup
m≥1

ess sup E#m$*#T −m+ 1$ !X1! " " " ! Xm−1+"

In fact the definition of the Lorden measure given by the authors in Lemma 2.1
is incomplete, since it is missing the first supremum over m ≥ 1. The goal is to
minimize D#T$ over all stopping times T that satisfy the false alarm constraint
E0*T+ ≥ L.

Following Moustakides (1986), the authors show in Lemma 2.1 that a lower
bound can be found, namely

D#T$ ≥
E0

[∑T−1
n=0 max%Vn! 1&

]

E0

[∑T−1
n=0 #1− Vn$+

] = $D#T$! (1)

and then instead of optimizing D#T$ over the class of stopping times E0*T+ ≥ L,
they optimize the lower bound $D#T$ by minimizing the numerator and maximizing
the denominator of $D#T$ with the help of Theorem 2.1. In order for this double
optimization to lead to the minimization of $D#T$, it is clear that the same
(optimal) stopping time should be a solution to both optimization problems (for the
numerator and the denominator).

2. DISCUSSION OF THE PROOF OF THEOREM 2.1

Theorem 2.1 in Han and Tsung (2009) claims optimality of CUSUM for the general
constrained optimization problem

sup
T

E0

[
T−1∑

n=0

,#Vn$

]

= E0

[
Tp−1∑

n=0

,#Vn$

]

(2)

for all T that satisfy E0*T+ = L, where ,#x$ is a continuous nonincreasing function.
This theorem is a key result for demonstrating the optimality of CUSUM in the
sense of Lorden.

Consider the optimization problem in (2), which can be solved using the
Optimal Stopping Theory in Shiryaev (1978). Note that in order to apply Shiryaev’s
results the decision statistic has to be a Markov process, and for the CUSUM
procedure (with a constant threshold) to be optimal the CUSUM statistic %Vn&n≥1
should be a homogeneous Markov process, as in the i.i.d. case. However, for the
Markov model considered the CUSUM statistic is NOT Markov. In order to obtain
a Markov process we need to combine Vn with the observation Xn. In other words,
the two-dimensional process %#Vn! Xn$&n≥1 has the desired Markov property.

To optimize (2) we reduce it into an unconstrained problem and consider

U#v! x$ = sup
T

E0

[
T−1∑

n=0

%,#Vn$− -&

]
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where V0 = v!X0 = x. The optimum cost function U#v! x$ depends, of course, on the
initial state of the Markov process %#Vn! Xn$&. By Theorem 2.23 of Shiryaev (1978),
U#v! x$ satisfies the following equation

U#v! x$ = max%0! ,#v$− -+ E0*U#V1! X1$ !V0 = v!X0 = x+&"

It is clear that E0*U#V1! X1$ !V0 = v!X0 = x+ = $U#v! x$ is a function of both
quantities v! x. Consequently, finding the optimum stopping boundary requires
solving the equation ,#v$− -+ $U#v! x$ = 0, which has a solution of the form
v = )#x$, but by no means a constant boundary v = ). In other words, the optimal
threshold is a function of x, and the CUSUM test needs to be modified as
Tp = inf%n ( Vn ≥ )#Xn$&. Let us call this CUSUM test the #V!X$−CUSUM,
to emphasize the difference with the traditional CUSUM.

One might suggest that we can simply adopt this modification for the CUSUM
procedure, i.e., introduce a variable threshold, and this will be sufficient to guarantee
the desired optimality. However, we note that the threshold )#x$ depends in general
on the form of the function ,#x$. Since Theorem 2.1 is used to optimize, separately,
the numerator and the denominator in $D#T$ defined in (1), there is absolutely
no guarantee that the optimum threshold will turn out to be the same in both
optimization problems.

Let us disregard even this latter complication and assume that there exists a
unique variable threshold )#x$ for CUSUM that optimizes the lower bound $D#T$.
Does this necessarily imply optimization of the original Lorden measure D#T$ as in
the case of i.i.d. observations?

3. DISCUSSION OF THE OPTIMIZATION OF LORDEN’S MEASURE

Note from (1) that the Lorden measure D#T$ is lower-bounded by $D#T$. By
our previous assumption, there exists a variable threshold CUSUM version Tp

that optimizes $D#T$. In order for this to also imply optimization of the original
Lorden measure D#T$, the equality D#Tp$ = $D#Tp$ should hold. In other words,
for #V!X$−CUSUM, Lorden’s measure and the lower bound must coincide. Indeed,
if this were the case, then from (1), by minimizing over T both sides, we could argue
that infT D#T$ ≥ infT $D#T$ = $D#Tp$ = D#Tp$. This would also imply infT D#T$ ≥
D#Tp$, i.e., optimality of the #V!X$−CUSUM procedure in Lorden’s sense. It is
therefore imperative to show that for #V!X$−CUSUM D#Tp$ and $D#Tp$ are equal.
Unfortunately this is not the case, as we briefly explain next.

Note that due to the Markov structure of the sequence %#Vn! Xn$&n≥1

E#m$
[
#Tp −m+ 1$+ !X0! " " " ! Xm−1

]
= .#Vm−1! Xm−1$

for some suitable function .#v! x$; where, we recall, E#m$*·+ denotes expectation
with respect to the probability measure induced by the change occurring at time
m. Since for a given Xm−1 the statistic Vn! n ≥ m! is path-wise increasing in Vm−1,
we conclude that the detection delay .#Vm−1! Xm−1$ is decreasing in Vm−1, implying
that .#Vm−1! Xm−1$ ≤ .#1! Xm−1$. In other words, for a given Xm−1 the conditional
expectation is maximized when we restart the CUSUM process. Unlike the i.i.d. case
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.#1! Xm−1$ does not correspond to the worst performance of CUSUM, since we
need to further maximize over Xm−1. Indeed, note that

ess sup E#m$
[
#Tp −m+ 1$+ !X0! " " " ! Xm−1

]
= ess sup .#Vm−1! Xm−1$ = sup

x
.#1! x$"

This has a grave consequence on the relationship between D#Tp$ and $D#Tp$. The
lower bound $D#Tp$ is obtained by summing the following quantities (see Lemma 3
in Moustakides, 1986)

E0

[
E#m$*#Tp −m+ 1$+ !X0! " " " ! Xm−1+#1− Vm−1$

+] = E0*.#Vm−1! Xm−1$#1− Vm−1$
++

= E0*.#1! Xm−1$#1− Vm−1$
++

≤
{
sup
x
.#1! x$

}
E0*#1− Vm−1$

++"

The second equality is true because every time Vn ≤ 1 the CUSUM process restarts
from 1. Note now that the last inequality is strict whenever .#1! x$ is not a
constant. While equality holds for i.i.d. observations (since .#V! x$ = .#V$), the
same property is NOT valid for Markov observations. Thus the previous inequality
is strict yielding the strict inequality D#Tp$ > $D#Tp$ between Lorden’s measure and
its lower bound. Consequently, even if the #V!X$−CUSUM test optimizes $D#T$,
this does not necessarily imply that it optimizes the original Lorden measure D#T$.

4. CONCLUSION

Although we are sure that the conventional CUSUM is not optimal in the Markov
case, we would like to stress that in this note we did not rigorously prove that Han
and Tsung’s claim regarding optimality of CUSUM is wrong. Rather we showed
that crucial parts of their proof are problematic. We believe that finding the optimal
detection procedure in the Markov case requires fresh ideas that go far beyond
immediate extensions of existing methodologies. Furthermore, if a CUSUM-like
procedure turns out to be optimal, we believe that not only the stopping threshold,
but also the restarting barrier (which is 1 in the classical case) will be functions of
the current observation Xn.
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