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Abstract: Quickest detection is a fascinating area of sequential analysis that spans across
various branches of science and engineering. It is a pleasure to welcome Professor Albert
Shiryaev’s article, which provides a comprehensive overview (both scientific and historic) of
this area. In this discussion, we expand on some of the issues raised in the article that we
believe require further elaboration.
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1. OPTIMALITY PROPERTIES OF THE SHIRYAEV–ROBERTS
PROCEDURE

Shiryayev (1963) was the first to propose the “multi-cycle” problem of detecting
a change that takes place in a distant future and is preceded by a stationary
flow of false alarms. The analysis of the problem for the Brownian Motion
(BM) case, which is presented in Sections 5 and 6 of the review article, led to
the natural definition of the Stationary Average Delay to Detection (STADD) as
the appropriate performance measure. This criterion was then optimized within the
class !" # E!" ≥ T$ of procedures for which the average run length (ARL) between
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Discussion 387

false alarms is forced to exceed some prescribed value T > 0. The optimization
gave rise to one of the two most popular change detection strategies, known as
the Shiryaev–Roberts (SR) procedure (see Roberts, 1966, for the discrete-time case).
The SR procedure and related optimality results are presented in a very lucid
and detailed way in the review article. In particular, Theorem 5.1 establishes the
optimality of the multi-cycle SR procedure in detecting a change in the drift of the
Brownian motion that occurs in a distant time-horizon, provided that the procedure
starts anew after each false alarm.

Prof. Shiryaev also relates the STADD to the generalized Bayesian problem,
namely the minimization of the relative integral average delay T−1

∫ !
0 E%&"− %'+d%

over procedures that satisfy E!" = T . Observing that the two objectives in the
generalized Bayesian problem and in the multi-cycle detection actually coincide
allows for the immediate conclusion that the SR procedure is optimal not only for
the latter but also for the former problem.

Prof. Shiryaev details the important applied problem of sequentially detecting
an abruptly appearing target with the help of a radar system. This problem
is clearly one application area where this mathematical formulation is relevant.
Many surveillance applications where an “intruder” must be detected as soon as
possible exhibit very similar features. Indeed, an intrusion is usually preceded
by a long interval of surveillance with multiple false alarms. This scenario of
course presumes a low cost of false alarms and, therefore, the existence of an
additional (higher level) mechanism capable of distinguishing between false alarms
and true detections. A modern and challenging application where such ideas can
find fertile grounds is the problem of network security—rapid detection of computer
attacks based on real-time analysis of network traffic. Change-point detection
methods are very efficient in providing small detection delays if detection thresholds
can be lowered. However, this will unavoidably lead to an intense flow of false
alarms. False detections can then be filtered by an independent algorithm, e.g.,
by spectral analysis. The implication of Shiryaev’s results is that one has reason
to prefer the multi-cycle SR procedure over other multi-cycle surveillance schemes,
including CUSUM.

Continuous-time/Gaussian analysis presents definite mathematical advantages
and, most of the time, offers fascinating results. However, in the majority of
applications, observations are obtained discretely with a certain sampling rate;
furthermore, the Gaussian assumption does not necessarily apply. It is fortunate
that results similar to the ones obtained for the BM, also apply in the general
discrete-time model case. This fact has been recently established by Pollak and
Tartakovsky (2009). Specifically, the discrete-time version of the SR procedure
minimizes the integral average delay to detection &E!"'

−1 ∑!
%=0 E%&"− %'+ in the

class of procedures with E!" ≥ T , where T > 1. As in continuous-time, the integral
average detection delay is equivalent to the STADD (the limit as % → ! of
the average delay to detection of a repeated detection procedure). Consequently,
the aforementioned double optimality property of the SR procedure for continuous
time is also valid in discrete time.

The multi-cycle formulation of the change detection problem is definitely
interesting, mathematically appealing and useful in a multitude of applications. We
would like to point out that it relies on a particular assumption that the change
will take place at an unknown time in the distant future. The resulting optimization
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388 Tartakovsky and Moustakides

criterion and the optimal procedure (i.e., the SR procedure) are clearly tailored to
this specific assumption.

A different point of view is proposed in the single-run Bayesian formulation
of the problem in Section 6. We note that due to the exponential decay of the
prior distribution the change is more likely to occur in the near rather than in
the far future as long as the parameter of the exponential prior ( is not very
small. Consequently, the emphasis may be placed on changes that occur relatively
soon after surveillance begins. In fact, by appropriately selecting the exponential
decay rate ( of the prior distribution, we can control the expected value of the
changepoint. In addition, we note that a multi-cycle setting can also be considered
in a Bayesian context, in which case a multi-cycle Bayesian Shiryaev procedure
is optimal in the sense of minimizing the average detection delay for a given
average number of false alarms. As ( → 0, this Bayesian procedure converges to the
multi-cycle SR procedure.

Both approaches are based on specific prior assumptions (a change occurring
in a distant future and a low cost of false alarms for the multi-cycle setup with
no prior distribution or knowledge of the prior distribution in the single-run
Bayesian approach). If such knowledge is available, one should certainly use
the corresponding optimal procedures. However, when no a priori information
regarding the time of change exists or when the change can occur at any time instant
with no emphasis on any particular time interval, clearly, both procedures lose their
optimality properties. In this case one should resort to detection strategies that
can respond efficiently to all possible changes. The minimax formulations (Variants
C and D), mentioned in Sections 8 and 9 of the review article, are capable of
handling such possibilities. The most popular detection strategy of this type is the
CUSUM procedure, which is exactly optimal in the sense described by Variant D.
Regarding the SR procedure; interestingly, one can find simple modifications that
affect only the initialization of the SR statistic, which exhibit a very strong asymptotic
minimax property in the sense of Variant C. In Section 3 we briefly describe two
such modifications proposed by Pollak (1985) and Moustakides et al. (2011).

In conclusion, it is evident from the previous discussion that the SR procedure
possesses great versatility. Furthermore, changing the initialization of the SR
statistic from zero (standard SR) to a specially designed point allows us to vary
the desired performance, e.g., to achieve a fast initial response to changes occurring
soon after surveillance begins or to get the best possible performance in worst-case
scenarios (cf. Moustakides et al., 2011; Pollak, 1985). In other words, depending on
the available prior knowledge about the time of change, it is possible to come up
with a version of the SR procedure that can respond to the change in a very effective
way. Similar flexibility is not encountered in other detection structures.

1.1. Comparison of CUSUM and Shiryaev–Roberts Procedures

When comparing the operating characteristics of the optimal SR procedure with
a similar multi-cycle CUSUM, Prof. Shiryaev assumes (for the sake of simplicity)
that the “signal-to-noise ratio” q = r2/2)2 = 1, in which case the difference between
the stationary average delays to detection, for the same ARL to false alarm T ,
is approximately equal to C− 0*5 ≈ 0*077 for large T , i.e., it is negligible. If
q &= 1, the difference becomes &C− 0*5'/q ≈ 0*077/q, which can take non-negligible
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Discussion 389

values for small values of q corresponding to low-contrast changes. Note that
the relative difference (asymptotic efficiency) is 0*077/ log T , i.e., both procedures
perform almost identically.

On the other hand, CUSUM is minimax with respect to Lorden’s essential
supremum criterion and, therefore, it outperforms the SR procedure for % = 0 (the
worst point for both procedures in terms of the conditional average delays E%&"−
% ' " ≥ %'). In this case it is assumed that there is only a single run. The difference
between E0" for CUSUM and SR for large T is approximately equal to &1− C'/q ≈
0*427/q, and again the relative efficiency is 0*427/ log T , i.e., negligible.

1.2. Comparison of the Shiryaev–Roberts
and Neyman–Pearson Multi-Cycle Procedures

In Section 3 of the review article, Prof. Shiryaev analyzes the multi-cycle, multi-stage
Neyman–Pearson (NP) procedure with a fixed batch size m and shows that if
m ∼ log T , where T is the ARL to false alarm constraint value, then with a certain
optimal selection of the threshold the average detection delay of this procedure
is asymptotically equal to 3

2 log T as T → !. This suggests that the average delay
is 1.5 times larger than the corresponding stationary average delay to detection of
the CUSUM and SR procedures. This result, however, is true on the average after
imposing a uniform prior distribution on the time of change in the interval +0,m-.
Specifically, m−1

∫ m

0 E%&"NP − % ' "NP ≥ %'d% ∼ 1*5q−1 log T as T → !, where "NP
denotes the stopping time of the NP procedure.

One may be interested in evaluating the conditional average detection
delay E%&"NP − % ' "NP ≥ %' for all % ∈ +0,m- and identifying the least favorable
changepoint that maximizes E%&"NP − % ' "NP ≥ %'. Intuitively, if the change occurs
close to the beginning or the end of the interval +&k− 1'm, km-, then the NP
procedure will detect it with an average delay of q−1 log T . If it occurs in the vicinity
of the mid-point of the batch, then it will take an average number of 1*5q−1 log T
observations to detect the change. Therefore, we expect that the NP procedure will
perform as well as the CUSUM or SR procedures (to a first order in T as T → !)
when the change takes place at the beginning or at the end of a batch, but it
will perform 1*5 times worse if the change appears near the mid-point of a batch.
However, the mid-point is not the worst point for the NP procedure at which the
conditional average detection delay E%&"NP − % ' "NP ≥ %' attains maximum.

A detailed analysis of the behavior of the conditional average detection delay
E%&"NP − % ' "NP ≥ %' of the NP procedure has been performed by Tartakovsky
(1992) for the multi-channel detection problem. It follows from this work that,
asymptotically as T → !, the optimal batch size is m ∼ q−1 log&qT' (for any point
of change) and the worst point that maximizes the average detection delay is %∗ =
%∗T = q−1&2 log T log log T'1/2 delivering

sup
%∈+0,m-

E%&"NP − % ' "NP ≥ %' ∼ E%∗&"NP − %∗ ' "NP ≥ %∗' ∼ 2q−1 log T, T → !*

Comparing the worst performance of the NP procedure to the optimum (which is
attained by the CUSUM and SR procedures)

inf
"#E!"≥T

sup
0≤%<!

E%&"− % ' " ≥ %' = q−1 log T + O&1', T → !,
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390 Tartakovsky and Moustakides

we realize that the NP procedure exhibits a 100% increase in the worst average
detection delay when compared to the optimal procedure. Similar asymptotic results
hold in the discrete-time Gaussian case when detecting a change in the mean.

Improvement in performance can be obtained when the window of size m is
advanced continuously (sliding window) with every new observation. In this case
one achieves optimal performance to a first order in T (cf. Lai, 1998; Tartakovsky,
2005). This latter procedure presents an advantage over CUSUM and the SR
procedures because it also allows for the efficient control of the local false alarm
probability (in the window of size m) in addition to the usual ARL to false alarm.

2. MODIFICATIONS OF THE SHIRYAEV–ROBERTS PROCEDURE

When there is no prior knowledge about the change time, a natural way to tackle
the change detection problem is through a minimax formulation. Prof. Shiryaev
recalls the two approaches that are currently available in the literature (Variants C
and D). As we mentioned previously, for the i.i.d. (and the BM) case, the CUSUM
procedure is optimal in Variant D (i.e., with respect to Lorden’s essential supremum
average detection delay). Unfortunately, similar exact optimality results for Variant
C (i.e., with respect to Pollak’s supremum average detection delay) are still lacking.
However, there are two simple modifications of the SR procedure that solve Variant
C asymptotically in a very strong sense.

In Section 7 of the review article, Prof. Shiryaev is treating the BM case.
The statistic .t of the SR procedure is defined according to the following SDE:
d.t = dt + &r/)2'.tdXt, .0 = 0. The equivalent formula for i.i.d. observations in
discrete time has the form Rn = &1+ Rn−1'&f

0&Xn'/f
!&Xn'', R0 = 0. As we can see,

the classical version of the SR statistic starts from 0. The two modifications that we
introduce below simply suggest a different initialization strategy, while keeping the
recursion formulas intact.

Pollak (1985) considered the discrete-time case and introduced a very specific
randomized initialization of the SR statistic where R0 is sampled from the
quasi-stationary distribution of the SR statistic. By letting the false alarm constraint
parameter T → ! the performance of the proposed modification and the unknown
optimum tend to ! at a rate O&log T', whereas their difference tends to 0. In other
words, the performance of the modified SR procedure is equal to the optimum
plus a term o&1' that tends to 0 as T → !. This form of asymptotic optimality is
clearly very strong since it assures that the randomly initialized SR procedure is
almost optimal.

For a number of years, this interesting result could not be practically
appreciated due to lack of a proper technique that could compute the
quasi-stationary distribution. Moustakides et al. (2011), for the first time, developed
a simple numerical method capable of achieving this goal. In the same article,
an alternative deterministic initialization strategy was proposed, i.e., starting the
SR statistic Rn off R0 = r , where r > 0 is a specially designed point depending on
the ARL to false alarm constraint T . The numerical methods for computing the
performance of the SR procedure with an arbitrary deterministic initialization have
been also developed. This methodology was applied to several particular examples
(mostly Gaussian and exponentially distributed observations). By using a proper
deterministic initialization R0 = r > 0 of the SR statistic, it was possible to obtain

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
0
2
:
3
9
 
1
6
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Discussion 391

performance comparable and even (slightly) better than Pollak’s randomized
modification. This fact naturally raised the conjecture that there exist deterministic
initializations of the SR procedure that enjoy the same strong asymptotic optimality
property as Pollak’s randomized counterpart. Recently, Tartakovsky et al. (2010)
provided an analytic proof of this fact.

An extension of the aforementioned discrete-time results to the continuous-time
BM case is currently under development. As far as the deterministic initialization is
concerned, the goal is to provide an analytic formula for the appropriate initializing
value .0 > 0 of the SR statistic !.t$ that will assure a similar strong asymptotic
optimality property in Variant C, as in the discrete-time case.

3. GENERAL STOCHASTIC MODELS

In Section 10, Prof. Shiryaev tackles the case of non-i.i.d. observations. This is a
rather delicate subject that is susceptible to different interpretations and approaches.
We believe that the key point in analyzing the general case is the specification of the
probability measure induced by a change occurring at a deterministic time instant %.
For simplicity, we will assume that all probability measures are mutually absolutely
continuous and can be expressed through densities. Let f/&X1, * * * , Xn', / = !, 0
be the pre- and post-change densities of the observed data X1, * * * , Xn. To define
the pdf f%&X1, * * * , Xn' induced by a change occurring at time % ≥ 0 note that when
n < % the observations are under the pre-change regime, so that f%&X1, * * * , Xn' =
f!&X1, * * * , Xn'. When, however, % ≤ n there are different possibilities. One way is

f%&X1, * * * , Xn' = f!&X1, * * * , X%−1'× f 0&X%, * * * , Xn 'X1, * * * , X%−1', (3.1)

according to which the observations before the change affect the observations after
the change through the conditional post-change pdf. We stress that in (3.1) the form
of the conditional post-change pdf is assumed to be independent of the changepoint %.

The change model introduced in (3.1) is very appealing because conventional
statistics, such as CUSUM and SR, can be updated recursively analogously to the
i.i.d. case. Indeed, we only need to replace the likelihood ratio f 0&Xn'/f

!&Xn' of the
i.i.d. case with the conditional likelihood ratio

f 0&Xn 'X1, * * * , Xn−1'/f
!&Xn 'X1, * * * , Xn−1'

in order to cover the dependent data case. Characteristic examples are presented in
Section 10 of the review article. Although it is not very apparent, Prof. Shiryaev
actually adopts the change model defined in (3.1), which leads to the recursion
formulas (10.13), (10.14), (10.15), and (10.18).

The model in (3.1) is undoubtedly intriguing but, unfortunately, fails to cover
several classical data models. Consider, for example, a sequence !&Xn, Zn'$ of
random pairs where !Xn$ is the observed component and !Zn$ is an unobservable
hidden component. Let f/&X1, * * * , Xn, Z1, * * * , Zn', / = !, 0, denote the pre- and
post-change joint density. According to (3.1) the joint density induced by a change
occurring at time % is

f%&X1, * * * , Xn, Z1, * * * , Zn'=f!&X1, * * * , X%−1, Z1, * * * , Z%−1'

× f 0&X%, * * *, Xn, Z%, * * *, Zn 'X1, * * *, X%−1, Z1, * * *, Z%−1'*
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392 Tartakovsky and Moustakides

Using the joint pdf (3.2) we can now compute f%&X1, * * * , Xn', the pdf of the
observations induced by the change, by simply integrating out the hidden variables
Z1, * * * , Zn. Unfortunately, the resulting pdf does not conform with (3.1) even
though the original joint pdf was selected to satisfy this model. The reason
is that after integration over hidden states the conditional post-change pdf
f 0
% &X%, * * * , Xn 'X1, * * * , X%−1' depends on the changepoint %. Note that in this case the
pre-change model also affects the post-change distribution.

Clearly, in such cases the recursive updating formulas introduced in the review
article are not valid. A classical example is the case of i.i.d. observations whose pdf
is controlled by a HMM. Even if the transition matrix of the HMM stays the same
before and after the change, the observation pdf f%&X1, * * * , Xn' does not satisfy
(3.1), as can be easily verified.

In fact, the most general model that covers all imaginable scenarios, including
hidden models (Markov and non-Markov) is

f%&X1, * * * , Xn' =
%−1∏

i=1

f!&Xi 'X1, * * * , Xi−1'×
n∏

i=%

f 0
% &Xi 'X1, * * * , Xi−1',

where f!&Xi 'X1, * * * , Xi−1' and f 0
% &Xi 'X1, * * * , Xi−1' are the conditional pre- and

post-change densities. The latter may depend on the changepoint % and may
also be affected by the pre-change distribution, which is usually true for HMMs
(cf., e.g., Tartakovsky, 2009; Tartakovsky and Veeravalli, 2005). In such cases
implementation of standard detection procedures, such as CUSUM and SR,
becomes burdensome due to the time-consuming computations that need to be
performed in real time. Window-limited versions of the CUSUM and SR procedures
with an optimally selected window length may constitute a practical alternative.
Indeed, such variations are computationally feasible and at the same time enjoy
certain asymptotic optimality properties (cf. Lai, 1998).
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