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Decentralized Sequential Hypothesis Testing
Using Asynchronous Communication
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Abstract—An asymptotically optimum test for the problem
of decentralized sequential hypothesis testing is presented. The
induced communication between sensors and fusion center is
asynchronous and limited to 1-bit data. When the sensors observe
continuously stochastic processes with continuous paths, the
proposed test is order-2 asymptotically optimal, in the sense that
its inflicted performance loss is bounded. When the sensors take
discrete time observations, the proposed test achieves order-1
asymptotic optimality, i.e., the ratio of its performance over the
optimal performance tends to 1. Moreover, we show theoretically
and corroborate with simulations that the performance of the sug-
gested test in discrete time can be significantly improved when the
sensors sample their underlying continuous time processes more
frequently, a property which is not enjoyed by other centralized
or decentralized tests in the literature.

Index Terms—Decentralized detection, sequential hypothesis
testing, Sequential Probability Ratio Test (SPRT).

I. INTRODUCTION

S EQUENTIAL hypothesis testing, first introduced by Wald
[1], is one of the most classical and well-studied problems

of sequential analysis, with applications in areas such as indus-
trial quality control, signal detection, design of clinical trials,
etc [2], [3]. In the last two decades, there has been an intense in-
terest in the decentralized formulation of the problem [4]–[13].
In this setup, the sequentially acquired information for decision
making is distributed across a number of sensors and is trans-
mitted to a global decision maker (fusion center), which is re-
sponsible for making the final decision. The main difference in
the decentralized version of the problem is that the sensors are
required to quantize their observations before transmitting them
to the fusion center, in other words, the sensors must send to
the fusion center messages that belong to a finite alphabet [4].
This requirement is imposed by the need for data compression,
smaller communication bandwidth and robustness of the sensor
network, which are crucial issues in application areas such as
signal processing, mobile and wireless communication, multi-
sensor data fusion, internet security, robot networks and others.
For a review of decentralized nonsequential testing we refer to
[5].

Manuscript received August 30, 2009; revised August 07, 2010; accepted Au-
gust 18, 2010. Date of current version December 27, 2010. This work was sup-
ported (in part) by the AFOSR under Grant FA9550-08-1-0376.

G. Fellouris is with the Statistics Department, Columbia University, New
York, NY 10027 USA (e-mail: gaf2106@columbia.edu).

G.V. Moustakides is with the Department of Electrical and Computer En-
gineering, University of Patras, 26500 Rion, Greece (e-mail: moustaki@upa-
tras.gr).

Communicated by M. Lops, Associate Editor for Detection and Estimation.
Digital Object Identifier 10.1109/TIT.2010.2090249

Depending on the local memory that the sensors possess and
whether there exists feedback from the fusion center, Veeravalli
et al. [6] proposed five different configurations for the sensor
network. In the same work, the authors found the optimal decen-
tralized sequential test, under a Bayesian setting, in the case of
full feedback and local memory restricted to past decisions. Also
under a Bayesian setting, the case of no feedback and no local
memory was treated in [7] and the case of full local memory
with no feedback in [8], [9]. However, in the last two cases no
exactly optimal decentralized sequential test has been discov-
ered. For a review of decentralized sequential testing we refer
to [10].

Our work here differs from other articles in the literature of
decentralized detection in a number of ways. First of all, we in-
troduce the configuration of partial local memory, thus we as-
sume that at each time instant each sensor has access to the value
of a summary statistic—that summarizes its previous observa-
tions—and uses this value, together with its current observation,
in order to send a quantized signal to the fusion center. Under
this configuration, an asymptotically optimal scheme was sug-
gested by Mei in [11] under a Bayesian setting.

Moreover, instead of restricting ourselves to a discrete time
framework, we also consider a continuous time setup. The latter
is of course an idealization, since the sensors in practice cannot
record their observations continuously; however, it allows us
to isolate the performance loss due to discrete sampling at the
sensors and provides us with insight that leads to more efficient
schemes in discrete time.

Finally, unlike most decentralized schemes that require
synchronous communication of the sensors with the fusion
center, we suggest that the sensors transmit their messages
asynchronously and at random times (see [12] for a different
asynchronous scheme). In particular, we suggest that the com-
munication times of sensor should be stopping times with
respect to the observed filtration at sensor . We call this type
of communication adapted.

A special case of adapted communication is Lebesgue (or
level-triggered) sampling, which induces naturally a 1-bit com-
munication between sensors and fusion center. Lebesgue sam-
pling, combined with a Sequential Probability Ratio Test at the
fusion center, gives rise to a detection structure which is known
as Decentralized Sequential Probability Ratio Test (D-SPRT)
and was introduced by Hussain [13] in a discrete time context.
However, Hussain did not provide any theoretical support for
this test.

Our main contributions are that we define D-SPRT in more
detail and prove its asymptotic optimality both in discrete and
continuous time. More specifically, we prove that if the sensors
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observe continuously the paths of independent Itô processes,
D-SPRT is order-2 asymptotically optimal, since its associated
performance loss remains bounded. When the sensors take
discrete time (independent and identically distributed) obser-
vations, we prove that D-SPRT achieves order-1 asymptotic
optimality, i.e., the ratio of its performance over the optimal
centralized performance tends to 1 as long as the communica-
tion between sensors and fusion center is not very frequent, but
reasonably infrequent. Moreover, we show that the performance
of the discrete time D-SPRT can be significantly improved,
approaching the performance of the continuous time scheme, if
the sensors sample their underlying continuous time processes
more frequently. Finally, we present simulation experiments
which corroborate our theoretical findings and show that the
continuous time D-SPRT is more efficient than the discrete
time centralized SPRT, whereas the discrete time D-SPRT is
more efficient than the decentralized scheme presented in [11].

This paper is organized as follows: Section I contains the In-
troduction. In Section II, we formulate the sequential hypothesis
testing problem for the discrete and continuous time case under
a centralized and decentralized setup. Moreover, we introduce
the concept of adapted sampling and emphasize on Lebesgue
sampling and D-SPRT. In Section III, we recall the main opti-
mality results for the centralized formulation, since these tests
serve as a point of reference for their decentralized counter-
parts. Section IV presents the asymptotic optimality properties
of D-SPRT in the context of continuous time and continuous
path observations, while in Section V, we develop the analo-
gous results, at the expense of a more involved analysis, for the
discrete time case. In this section we also examine the notion
of oversampling, which reconciles the behavior of D-SPRT in
discrete and continuous time and provides some important de-
sign guidelines. Finally, in Section VI, we conclude and discuss
generalizations of our work.

II. CENTRALIZED VERSUS DECENTRALIZED

SEQUENTIAL TESTING

Suppose we have a sensor network consisting of sensors as
depicted in Fig. 1. Each sensor observes sequentially a realiza-
tion of a stochastic process with distribution . We as-
sume that the processes are independent and we
denote by the filtration generated by . We also
denote with the probability measure of
and by the filtration generated by this vector process.
From the assumption of independence across sensors, we have

.
Consider now the following two hypotheses for the proba-

bility measure

(1)

where , and
are known probability measures. Thus, are two

simple hypotheses. For simplicity, we assume that the measures
are locally equivalent, therefore we can define the local

log-likelihood ratio process at each sensor and for each time
instant as

Fig. 1. Schematic representation of a decentralized sensor network.

(2)

Moreover, due to the independence of observations across sen-
sors, we can write the global log-likelihood ratio in the
sensor network as the sum of its local counterparts, i.e.,

(3)

Since the sensors can communicate information to the fusion
center only at a sequence of discrete times, we assume that the
fusion center receives sequentially from each sensor the data

at a strictly increasing sequence of time instants .
Each is an -adapted stopping time with and

and . We call
this communication scheme adapted sampling (or communica-
tion) and we refer to the stopping times as the sampling (or
communication) times in sensor . Each constitutes a sum-
mary of the acquired information up to time and,
as we mentioned in the Introduction, it takes values in a finite
alphabet. Here, we are going to assume that this set is binary.
We should also emphasize that we do not consider any feedback
scheme from the fusion center towards the sensors.

Adapted sampling clearly implies asynchronous communica-
tion between the sensors and the fusion center at random time
instants. Thus, the number of messages sent from sensor to the
fusion center up to (and including) any time instant is in gen-
eral random, different for each sensor and will be denoted by

.
We should mention that adapted sampling is a general frame-

work that can incorporate various sampling mechanisms already
used in the literature, in particular:

• When , adapted sampling re-
duces to canonical deterministic sampling with constant
sampling period , common to all sensors.

• When is a sequence of i.i.d. random
variables, independent of the observation process ,
adapted sampling becomes independent random sam-
pling, as long as we properly enlarge the local filtration
at each sensor. Notice that if the intersampling periods
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are independent and exponentially dis-
tributed with the same mean, we recover the sampling
scheme suggested in [12].

• When the sampling times depend on the observed sequence
and are given by the following recursion:

(4)

where are proper thresholds, then we call the
resulting scheme Lebesgue (or level-triggered) sampling.

Although not evident at first, we should emphasize that the fu-
sion center is the recipient not only of the data sequences
but also of the sampling times , that may carry information
relevant to the hypothesis testing problem.

In parallel to the communication activity, the fusion center
uses the received data in order to decide whether to continue or
stop receiving additional observations from the sensors. In the
latter case it proceeds to make a final decision between the two
hypotheses.

Under a decentralized setup, the fusion center has access to
the filtration , where

is the -algebra generated by all pairs
received up to time . Thus, the fusion center must use an

-adapted stopping time to decide about stopping or
continuing sampling and, after stopping, an -measurable
decision function to select one of the two hy-
potheses.

Under the centralized setup, at any time the fusion center
gains access to the entire information acquired by the sensors
up to this time, which is described by the -algebra

. Thus, the fusion center can use
an -adapted stopping time and an -measurable
decision function to stop sampling and provide a
decision between the two hypotheses.

Our intention is to define the pair optimally under
both the centralized and the decentralized formulation. Fol-
lowing Wald [1], for any we define the class of
sequential tests for which the type-I and type-II error probabil-
ities are below the two levels , respectively, that is

(5)

We can now define the following constrained optimization
problem.

Problem 1: Given such that , find a
sequential test so that

(6)

where we denote with the expectation under hypothesis
. If we seek the test among the -adapted

schemes, we refer to the optimum centralized version, whereas
if we limit ourselves to -adapted sequential tests, then we

obtain the optimum decentralized procedure. Note that we at-
tempt to find a single test that simultaneously minimizes two
different criteria (the expected decision delay under the two hy-
potheses). It was Wald’s remarkable insight that led him first to
conjecture [1], and then prove [14], that a test with such an ex-
traordinary optimality property indeed exists.

Let us also introduce a second problem, proposed by Liptser
and Shiryaev [15], which constitutes a slight variant of Problem
1.

Problem 2: Given such that , find a
sequential test , so that

(7)

Recalling that is the running log-likelihood ratio of the
two probability measures, it is clear that the two expectations

and give rise to nonnegative and increasing func-
tions of time. These two time functions constitute, in Infor-
mation Theory, a popular divergence measure known as the
Kullback-Leibler (K-L) divergence. This interesting informa-
tion theoretic criterion reduces to the usual average detection
delay when the signals are i.i.d. (in discrete time) or Brownian
motions with constant drift (in continuous time).

It is clear that the performance of any decentralized scheme
is inferior than that of the optimum centralized test. This is true
for two major reasons. First, because a decentralized test has
access to less information ( being a summary of ), but
also because of loss in time resolution ( being a sampled
version of the actual time ). The main goal of this work is to
find decentralized schemes where this performance loss can be
quantified and propose methods for controlling it.

Regarding the decentralized version of Problems 1 and 2,
we must emphasize that, the way they are stated, it is assumed
that the sampling/quantization policy, namely the mechanism
by which the pairs are generated from the observa-
tion sequence , is already specified. Of course, one might
extend both problems by including an additional minimization
over the sampling/quantization policy, thus optimizing all parts
of the decentralized test. Finding however optimum, per se, de-
centralized tests that solve the extended version of the two prob-
lems turns out to be an extremely challenging task. For example,
even if we fix the sampling policy and require all sensors to
communicate every time they take an observation, the resulting
extended optimization problem is in general intractable from a
dynamic programming point of view [10]. For this reason, we
focus on suboptimum procedures.

To assess the quality of any decentralized test, since the op-
timum decentralized test is not available, we can compare it
against the centralized optimum scheme, which is known in sev-
eral important cases. We are in particular interested in asymp-
totically optimum tests. If denotes the stopping time corre-
sponding to the optimum centralized test that solves Problem 1
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or 2 and the stopping time of a decentralized (or even central-
ized) competitor, then we distinguish the following degrees of
asymptotic optimality1:

We will say that a test is asymptotically optimal of order-1, if
for and as , we have

(8)

for Problems 1 and 2, respectively.
We will say that a test is asymptotically optimal of order-2, if

for and as , we have

(9)

for Problems 1 and 2, respectively.
It is clear that order-2 asymptotic optimality is stronger than

order-1, since expected delays and K-L divergences increase
without bound as . These definitions provide an intu-
itive classification of asymptotically optimal behavior, since the
average run length (ARL) curve of an order-1 asymptotically
scheme may diverge from the optimal ARL curve, whereas in
the case of an order-2 asymptotically optimal scheme the two
curves will have a bounded distance.

Before establishing any form of asymptotic optimality, we
need to recall the major results of the optimum centralized
theory.

III. OPTIMUM CENTRALIZED SEQUENTIAL TESTING

The optimization problems defined in (6) and (7) are asso-
ciated with the celebrated Sequential Probability Ratio Test
(SPRT) proposed by Wald [1], which is defined as follows

(10)

where are two thresholds and is the first time
the global log-likelihood ratio process leaves the open in-
terval . The decision function is an -measur-
able random variable, according to which is accepted
if the lower (upper) threshold is first crossed. In continuous
time, Shiryaev [16] considered the following hypothesis testing
problem:

(11)

where is a -dimensional Wiener
process and are constant drifts with

. The local log-likelihood ratio is equal to
and by summing the local components we

can compute and apply the SPRT. The SPRT was shown in
[16] to be optimum in the sense of Problem 1 and Problem 2 as
long as the thresholds are chosen so that the error proba-

1We recall the difference between the notations �� � �� �� � � and �� � �. If
� is a parameter that tends to 0 or � and ��������� functions of � then
���� � ������� means that ������������� is uniformly bounded away
from 0 and������ � ������� that the same ratio is bounded away from�
and ���� � ������� that ������������ � � as � tends to 0 or �.

bility constraints in (5) are satisfied with equalities. Moreover,
we have the following exact formulas for the optimum perfor-
mance:

(12)

where , whereas the
optimal thresholds that guarantee that the two error probability
constraints are satisfied with equality are given by

(13)

Liptser and Shiryaev [15] considered the following signifi-
cantly richer class of hypothesis testing problems:

(14)

where as before is a -dimensional
Wiener process and is a -dimen-
sional -adapted process satisfying2

(15)

for all . The local log-likelihood ratio takes
the form

(16)

which again allows for the computation of and the application
of SPRT. Moreover, the K-L divergence can be written in the
following form:

(17)

which reveals the nonnegative and time increasing nature of this
alternative criterion.

The SPRT is optimum in the sense of Problem 2 in the case
of Itô processes [15], but also for general continuous-path pro-
cesses [18], yielding the following optimal performance:

(18)

with the thresholds given by (13) in order to satisfy the
two constraints in (5) with equality.

In discrete time, it is known that when the vector sequence
with is i.i.d. with independent compo-

nents under both hypotheses, SPRT is optimum in the sense of

2The last condition in (15) is known as the Novikov condition and assures
that �� � is a -martingale and �� � a -martingale. Alternative, more
relaxed conditions that guarantee the martingale property can be found in [17,
p. 199].
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Problem 1 and Problem 2. In particular, suppose that under the
two hypotheses we have

(19)

where denotes the common cumulative distribution func-
tion (cdf) of the data acquired by sensor when hypothesis
is true and “ ” means “distributed according to”. For this case,
the local log-likelihood ratio at time takes the form

(20)

and by summing over we can compute the global log-likeli-
hood ratio and apply the SPRT. The proof of optimality of
SPRT was first given by Wald and Wolfowitz in [14]. In fact, this
proof constitutes the first optimality result of Sequential Anal-
ysis.

We can now make the following remarks.
• The SPRT has also been proven to be optimal in the case

where the are independent homogeneous Poisson pro-
cesses [19]. This problem however is not particularly in-
teresting under the decentralized setup, since an arrival at
a sensor can be signaled to the fusion center using simply
one bit of information.

• In discrete time, SPRT is known to be optimum only in the
i.i.d. case. Unfortunately, no analog to the Itô class result
for Problem 2 has been developed so far.

From the optimum centralized theory, we conclude that in
order to apply the SPRT we need the global log-likelihood ratio

or more precisely its local components coming from
the sensors. Our goal in the next sections will be to propose
efficient approximations for these processes that will replace
them in the definition of SPRT and give rise to a decentralized
SPRT-like test. The efficiency of this test will then be compared
against the optimum SPRT in order to establish its asymptotic
optimality.

IV. DECENTRALIZED SEQUENTIAL TESTING

IN CONTINUOUS TIME

Since we are in the continuous time case, is real, taking
values in . Let us assume, but without for the moment
explaining how, that the fusion center is capable of reproducing
exactly the local log-likelihood ratio at the sampling instants

by using only the received information from sensor
. It then makes sense to approximate between sampling times

with its most recently reproduced value. In order to write this
more formally, we recall that denotes the number of mes-
sages transmitted by sensor up to time . Thus, at time is

the most recent communication time for sensor and the

most recently reproduced log-likelihood ratio value. Our sug-
gestion is to approximate with .

We emphasize that we have exact equality between and
at , because we assume that the fusion center is capable

of reproducing exactly the corresponding log-likelihood ratio at
the sampling times . Then, the fusion center can produce
an approximation for the global log-likelihood ratio by
summing the available local approximations

(21)

Unlike the local approximation , which is exact at the times
, the global approximation can be exactly equal to

at a sampling instant only if all sensors transmit synchronously,
otherwise and will be different.

Replacing now with in the definition of SPRT in
(10), we obtain an SPRT-like test of the form

(22)

where again the thresholds are selected to satisfy the
error probability constraints in (5) with equality. The test we
just described constitutes the fusion center policy we propose
under the decentralized setup. Let us now explain how the fu-
sion center can make an exact reproduction of the local log-like-
lihood ratios.

A. Lebesgue Sampling as a Quantization Strategy

Of course, the simplest way the fusion center can reproduce
the log-likelihood ratio is by receiving the corresponding value
directly from the sensor. However, this would require a commu-
nication protocol that is not limited to 1-bit information. The in-
teresting point is that, after careful consideration, the 1-bit com-
munication constraint can be satisfied in the case of Lebesgue
sampling.

Recalling that denotes the sequence of communication
times for sensor , we have that the local log-likelihood ratio at
time can be written as

(23)

suggesting that the fusion center only needs the increments
in order to recover the exact value at the

sampling instant . But when has continuous paths and
we adopt the Lebesgue sampling scheme (4), each of these
increments can take only two values. Indeed, due to path
continuity, the process will hit at time one of

the two thresholds, or . By assuming that the values
are selected before hand and are made available to the

fusion center, it then becomes easy to communicate the exact
value of the increment by simply transmitting the

following 1-bit information

(24)

Using the sequence and (23), the fusion center can repro-
duce exactly at the sampling times and then form ,
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which is required in the SPRT-like test defined in (22). Actu-
ally, with this particular communication protocol it is possible
to update directly the test statistic , without passing through
the local statistics . Indeed, every time the fusion center re-
ceives the 1-bit information from sensor , it must simply
add to the existing either or depending on being
0 or 1, respectively. This observation suggests that the process

is piecewise constant exhibiting jumps every time the fu-
sion center receives information from one or more sensors.

Lebesgue sampling in conjunction with the stopping and de-
cision mechanism defined in (22) gives rise to the Decentralized
Sequential Probability Ratio Test. This is in fact the continuous
time version of the scheme suggested in [13] and constitutes the
decentralized sequential test that will be in the center of our at-
tention. We emphasize that the D-SPRT is a valid decentralized
scheme, since the communication activity it requires is limited
to 1-bit data. Before examining the optimality characteristics of
the D-SPRT, let us identify certain important properties of this
detection structure.

• Lebesgue sampling at each sensor can be seen as a local
repeated SPRT with thresholds . Using (13), one can
also prove that for every

(25)

Consequently, for the update of the estimate , the fusion
center uses the log-likelihood ratio of the received bits .

• The local thresholds control the average inter-
sampling period, which is an increasing function of these
two parameters. Recalling that we have two different
hypotheses, we understand that the average intersampling
period will depend on the true hypothesis. If we require
the two average periods to have specific prescribed values,
then we can uniquely identify the local thresholds for the
Brownian motion or the Itô process case, using (12) (or
(18) if we want to specify the K-L divergence) and (13).
In other data models, the two thresholds can be specified
using simulations.

• From the definition of the Lebesgue sampling scheme it is
easy to see that , suggesting that

(26)

Thus, at any time , the “approximate” log-likelihood ratio
differs from the “true” log-likelihood ratio at most by

the constant .
• As we argued above, is piecewise constant. Assuming

it is right continuous with left limits, the difference
expresses the possible jump in the process at time .

The largest in absolute value jump occurs when all sensors
communicate at the same time and transmit data of the
same sign. It is easy to verify that the maximal jump can
also be bounded by the parameter that was defined in
(26), i.e.,

(27)

• We recall that, in addition to the data sequence ,
each sensor transmits indirectly to the fusion center the
sequence of communication times. As we argued
before, the pairs constitute the complete set of
information received by the fusion center generating the
filtration . It is also evident that the statistics of

differ under each hypothesis suggesting that both
components of the pair may carry information about the
true hypothesis. We realize however that D-SPRT makes
use only of the data ignoring completely . Drop-
ping this amount of information may inflict a performance
loss, however it turns out to be practically advantageous.
Indeed, any efficient use of the pair would require
the knowledge (or computation) of the corresponding
joint pdf under the two hypotheses. Unfortunately, this is
possible only for the Brownian motion model [17] and,
even in this case, it is in the form of a complicated series
expansion.

B. Asymptotic Optimality of the D-SPRT

Let us now establish a strong asymptotic optimality property
for D-SPRT in continuous time. This is the goal of our next
theorem.

Theorem 1: Suppose that is the D-SPRT test defined

in (22), with thresholds selected to satisfy the error prob-
ability constraints in (5) with equality. Then

(28)

Furthermore, D-SPRT is asymptotically optimum of order-2 in
the case of Problem 1 and Problem 2 with Brownian motion
signals with constant drifts and in the case of Problem 2 with
Itô processes.

Proof: To prove (28), we apply a change of measures and
use (26), this yields

(29)

which proves the first inequality in (28). Similarly, we can show
the second inequality.

Regarding the order-2 asymptotic optimality, we are going
to prove only the case of Itô processes and Problem 2, since
this reduces to Problem 1 in the case of Brownian motions with
constant drifts. According to the second relation in (9), under
hypothesis we need to prove that

(30)

Note that the left-hand side in (30) is always nonnegative since
the SPRT, by being optimum, delivers the smallest K-L diver-
gence. Consequently, what is left to show is that the difference
can be upper bounded by a constant.

Recall that is piecewise constant, therefore stopping can
occur only with a jump. According to (27) the jumps of this
process cannot exceed the bound defined in (26). Since before
stopping the process takes values in the interval ,
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Fig. 2. Relative performance of centralized and decentralized schemes in continuous time with� � � sensors and testing between � Brownian motions with
drift 0 and � Brownian motions with drift 1.

after stopping we have . Using this observation,
(26) and (28), we can write

(31)

From (18), we have that the performance of the SPRT satisfies
as . Normally,

and are selected to have the same order of magnitude yielding
, however for the validity of our theorem we

can even tolerate cases where , that is, cases
where and are of drastically different orders of magnitudes
(e.g., ). Consequently, assuming that and

converge to 0 so that , we can
replace with the optimal SPRT performance
in (31) and prove (30) under . Adopting similar arguments
for the upper threshold , we can prove (9) under . This
concludes the proof.

C. Simulation Experiments

We now present a simulation experiment in the context of
Problem 1 with continuous time observations defined as in (11).
Specifically, each sensor observes a standard Brownian motion
under and a Brownian motion with a constant drift under .
We consider the case of sensors with the two constant
drifts under to have the values .

We compare D-SPRT against the continuous time (central-
ized) SPRT, the discrete time (centralized) SPRT and Mei’s
[11] decentralized test. Unlike D-SPRT, the last two tests are
based on synchronous communication between sensors and fu-
sion center. Thus, in order to implement these schemes, we as-
sume that each sensor observes its underlying process at the
times and communicates with the fusion center

at all these times, where is a known positive constant. In the
case of centralized discrete time SPRT, the sensors transmit the
exact values that they observe, whereas in the case of Mei’s
scheme they send quantized signals using an alphabet of size
3.

For the comparison to be fair, we must equate the average
intersampling periods of Lebesgue sampling with the constant
communication period of canonical deterministic sampling.
Selecting the local thresholds to have values
gives , which must become the value
for the period of deterministic sampling, namely .
In Fig. 2 we can see that the distance between the D-SPRT and
the optimal performance remains bounded, which agrees with
the order-2 asymptotic optimality result of Theorem 1. Mei’s
scheme [11] on the other hand, known to be order-1 asymptoti-
cally optimum, exhibits performance that slowly diverges from
the optimum.

The other important conclusion that we can draw from our
graph is that D-SPRT exhibits a distinct performance improve-
ment over the discrete time centralized SPRT, which is based on
canonical deterministic sampling. We recall that this algorithm
is optimum in discrete time, but under the continuous time setup
it is asymptotically optimum of order-2. As we argued in the In-
troduction, Lebesgue sampling is preferable to canonical deter-
ministic sampling from a practical point of view since it does
not require synchronization. Motivated by our simulations we
conjecture that, even under the centralized setup, this form of
sampling achieves better performance than canonical determin-
istic sampling.

V. DECENTRALIZED SEQUENTIAL TESTING IN DISCRETE TIME

We consider the same formulation as in Section IV, only
now time is discrete with . At each sensor is
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a sequence of independent observations under each hypothesis
with common cumulative distribution functions
. Denoting with the log-likeli-

hood ratio of the sample , we assume that , in
other words that the two densities are not equal with probability
1. We then have that the global log-likelihood ratio is given
by

(32)

The corresponding SPRT is optimum in the sense of Problem 1
and 2 [14], provided that the two thresholds are selected to
satisfy the probability constraints in (5) with equality. We recall
that, in discrete time there is no other data model for which we
know the solution for either Problem 1 or Problem 2 (i.e., there
is no equivalent to the Itô processes case).

Since the centralized SPRT will again become the point of
reference for any decentralized test, it is necessary to quantify its
performance. Unfortunately, in discrete time there are no exact
expressions as in continuous time and we therefore need to re-
sort to asymptotic formulas and bounds. For the performance of
SPRT we have the following lower bounds [2, p. 21]:

(33)

which replace the exact equalities of the continuous time and
continuous path case depicted in (18).

Our intention is to apply the same D-SPRT scheme we
introduced in the continuous time case, namely Lebesgue sam-
pling combined with an SPRT-like test, where we approximate
properly the global log-likelihood ratio . Unfortunately, this
transfer from continuous to discrete time is not as straight-
forward as one might expect. The main reason is that with
Lebesgue sampling we are no longer able to reproduce exactly
the local log-likelihood ratios at the corresponding sampling
times, because of the overshoot effect occurring at the local
SPRTs. This rather unfortunate difference is responsible for
a substantial complication in the corresponding discrete time
analysis.

For simplicity, we will limit ourselves to the case where the
two error levels decrease to 0 at the same rate, meaning
that the ratio is uniformly bounded away from 0 and (or
according to our definition ).

A. Lebesgue Sampling and D-SPRT in Discrete Time

In each sensor , the Lebesgue sampling scheme (4) produces

a sequence of -adapted stopping times, only now,
due to the overshoot effect, the local SPRT statistic

does not necessarily hit the two thresholds, and , at time
. Consequently, the information sent over the channel can

express only the side by which the statistic exits

the interval . More precisely

(34)

which is the equivalent of (24).
The question that now arises is how the fusion center should

utilize the sequence of messages . We recall that in the
continuous time and continuous path case the fusion center, in
view of (25), uses the log-likelihood ratio of the received bits

to update the estimate . Consequently, it is natural to use
the same idea here (as was also originally suggested in [13]) and
define the following two quantities for each sensor:

(35)

Both values can be precomputed (e.g., by simulations)
and made known to the fusion center.

As we argued above, we are interested in the sequence of
overshoots , where

(36)

The maximal expected overshoot is a parameter that will play a
very important role in our analysis. We define it as follows:

(37)

and we know [20] that it is finite if
.

In the continuous time and continuous path case, since there is
no overshoot, the thresholds coincide with the quantities

. In discrete time, this is no longer true. The next lemma
quantifies their relative size.

Lemma 1: Let denote the thresholds for the local
SPRT and be defined as in (35, then

(38)

(39)

Proof: The proof is presented in the Appendix.

The fusion center, every time it receives an information bit
, it updates its existing statistic by either adding when

or when . Recalling that denotes the
number of bits transmitted by sensor up to time , we can write
for the D-SPRT statistic that where

(40)

The K-L information numbers of the sequence also play an
important role in our analysis. We have the following estimates
depicted in the next lemma.

Lemma 2: For the K-L information numbers of the sequence
we can write
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(41)

Additionally, if are either of the size of a constant
bounded away from 0, or tend to in such a way that
is bounded away from 0 and (i.e., ), the
previous expressions simplify to

(42)

Proof: The proof is presented in the Appendix.
The analysis of the classical SPRT algorithm relies on Wald’s

(second) identity. In order to be able to analyze D-SPRT, it turns
out that we need an equivalent result. The next lemma introduces
a version of Wald’s second identity that is suitable for our needs.

Lemma 3: Let denote the sequence of sampling times
in sensor generated by the Lebesgue sampling scheme (4).
Consider a sequence of i.i.d. random variables where
each is a function of the samples acquired

by the sensor during the th intersampling period and assume
. If denotes any -adapted stopping time

with finite -expectation and is the number of sampling
times occurred up to and including time , then for ,
we have

(43)

As an immediate consequence we can obtain the following two
estimates.

i) For , we have

(44)

ii) If is a sequence with for all , then

(45)

Proof: The proof is presented in the Appendix.

One might wonder why it is necessary to set the upper limit
in (43) to instead of the classical we encounter
in Wald’s original identity. Unfortunately, if the upper limit
is replaced by , then in the proof (specifically in (62)) the
random variable will be combined with instead of

. As it turns out, these two quantities are not nec-
essarily independent as is the case between and
and therefore Wald’s identity cannot be assured.

Unlike in continuous time, due to the overshoot effect, there
is now an accumulation of errors which results in the difference

being unbounded and no longer limited by a constant.
However, by properly selecting the local thresholds, we will see
that we can force this difference to grow at a much slower pace
than each of its components . In turn, this possibility will
allow us to prove interesting asymptotic optimality properties

for the discrete time D-SPRT. Since the difference of the two
statistics plays a crucial role in our analysis, with the next lemma
we obtain an estimate of its size.

Lemma 4: For any -adapted -integrable stopping
time we have for

(46)

where and is the
maximal expected overshoot defined in (37).

Proof: The proof makes use of Lemma 3 and is presented
in the Appendix.

B. Asymptotic Optimality

We have concluded the presentation of the background ma-
terial that is necessary for establishing our main result. Before
going to the next theorem that introduces a key estimate for the
performance of D-SPRT, we introduce an additional quantity
that expresses the order of magnitude of the local thresholds.
We will assume that there exists a quantity such that for all
, we have and . This is necessary

because in order to establish the desired asymptotic optimality
property, at some point we require the local thresholds to tend
to infinity. With this assumption all local thresholds increase at
the same rate. After this clarification, we can now state the next
key theorem.

Theorem 2: Let denote the stopping times for the cen-
tralized SPRT and D-SPRT, respectively. We then have the fol-
lowing estimates for the thresholds of D-SPRT:

(47)

Additionally, for , we can write

(48)

Proof: The proof is presented in the Appendix.

We note that (47) is the analog of (28) in discrete time. In fact,
it constitutes a better approximation than (28) but at the expense
of a more involved proof. Inequality (48) refers to the difference
of the K-L divergences between the SPRT stopping time and

the D-SPRT stopping time . Since we are in the i.i.d. case, we
know that the K-L divergence is proportional to the expected
delay and the proportionality factor is simply the K-L informa-
tion number. The inequalities in (48) reflect the trade-off that
underlies the choice of the local thresholds . Indeed, overly
small local thresholds will induce frequent communication with
the fusion center, thus resulting in rapid error accumulation due
to the overshoot effect. This is captured by the first term in the
right-hand side of (48). If, on the other hand, we use overly large
local thresholds, then this will generate long decision delays due
to infrequent communication with the fusion center and coarse
time resolution. This part is captured by the second term in (48).
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Clearly, there is a compromising value for the local threshold
size that can optimize the performance of the test.

If we consider the ratio

(49)

and let become a function of such that
, then the right-hand side of (49) tends

to 0 establishing order-1 asymptotic optimality. After some
simple reasoning, we can deduce that the best choice is

, which equates the two terms in (49),
yielding

(50)

The optimal value we obtained for is the optimum local
threshold size, expressed in an “order of magnitude” form.
Observe also that the convergence rate to 0 of the right-hand
side in the previous expression is of the same order as the one
obtained in [11], for every constant value of .

C. Oversampling

From (48), we can see that if we also select to tend to 0 with
as and we use the optimum value for

(which turns out to be bounded), then the inflicted performance
loss of the discrete-time D-SPRT is asymptotically bounded as

and we recover our continuous time result. Of course,
for this observation to be of practical interest, we need to be able
to control the maximum expected overshoot . This is in general
possible if the observations at the sensors come from sampling
continuous time process with continuous paths.

Suppose for example that the underlying sensor process at
each sensor is a standard Brownian motion under and a
Brownian motion with drift under . Moreover, suppose
that these underlying continuous time processes are sampled
using canonical deterministic sampling with a sampling period

. Thus, each sensor observes the increments , which
are independent and identically distributed with
under and under . The corresponding
log-likelihood ratio is .

In this case, we can show that is determined by the sam-
pling period , which can be controlled by the designer of the
scheme. In particular, we will show that . In order
to prove this claim, it suffices to show that is of the order

for each and since our
processes are stationary it suffices to consider only .

Indeed, recalling that , we have

(51)

Note now that we can write , where

(52)

Using these definitions, the overshoot takes the form

(53)

from which we can easily deduce that

(54)

From [20, Theorem 3] and Lyapunov’s inequality, we have for
any that

(55)

If we set , then the upper bound turns out to be ,
which proves our claim.

In order to illustrate the relevance of this result for the design
of D-SPRT in practice, we perform simulation experiments in
this framework with and we have selected two
values for the sampling period, namely and and two
values for the local thresholds, specifically
and . We compare the discrete time D-SPRT with the (optimal)
discrete time centralized SPRT and also with the decentralized
test suggested by Mei in [11], which is also asymptotically op-
timal of order-1.

Fig. 3 depicts the K-L divergence of the competing schemes.
We recall that in this case the K-L divergence is proportional to
the expected detection delay. We decided to present the former
measure instead of the latter, because the K-L divergence is in-
dependent of the size of the samples, while the decision delay
varies drastically with this quantity (smaller samples tend to
need more time to reach the same threshold).

We observe that D-SPRT exhibits a notable performance im-
provement when we go from the value to .
This is in complete accordance with our previous analysis, since

generates likelihood ratios and overshoots of smaller
size than . The optimum SPRT on the other hand and
Mei’s scheme are relatively insensitive to this change of size in
the samples. For D-SPRT, it is basically the overshoot accumu-
lation reflected in the first term of the right-hand side in (48)
that is reduced when we use smaller , incurring an overall per-
formance improvement. It is also worth emphasizing that for
the D-SPRT the communication frequency (expressed in con-
tinuous time) between the sensors and the fusion center stays
relatively unchanged under both values of , while in the two
other schemes it increases by a factor of ten.
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Finally, in Fig. 3 we can also observe that the D-SPRT per-
formance is not monotone with respect to the value of the local
threshold . Indeed, case is better than

for smaller values of . Additionally, the error probability
values where prevails are increasing with the size of the
samples. This performance can be explained by our analysis.
We recall that the optimum local threshold is
suggesting that the error probability where any specific is op-
timum is roughly . Consequently, a larger
threshold yields better performance at a smaller error proba-
bility and this value is an increasing function of , the maximal
expected overshoot defined in (37).

VI. CONCLUSIONS AND GENERALIZATIONS

We have presented and rigorously analyzed a decentralized
scheme for sequential hypothesis testing. The detection struc-
ture relies on local SPRTs, which are implemented repeatedly
at each sensor and used for random sampling of the observed
data stream. This sampling scheme naturally induces an asyn-
chronous, 1-bit communication protocol between sensors and
fusion center, a practically desirable characteristic. By per-
forming a detailed analysis we were able to prove interesting
asymptotic optimality properties for the proposed test. In
particular, we established its asymptotic optimality of order-2
in continuous time and of order-1 in discrete time. Moreover,
we emphasized theoretically, as well as through simulations,
the ability of the suggested scheme to improve significantly
its performance when the sensors oversample their underlying
Brownian motions, a property which is not enjoyed by other de-
centralized or centralized schemes. Overall, our decentralized
detection method exhibits performance very close to that of the
optimum centralized test and outperforms other decentralized
tests in the literature.

We have assumed throughout this paper that the sensor pro-
cesses are independent under each hypothesis. However, this
is not always necessary for the implementation and proof of
asymptotic optimality of the suggested scheme. Indeed, when
the sensors observe continuously the paths of correlated drifted
Brownian motions under each hypothesis, the suggested scheme
can be implemented with a slight modification and its order-2
asymptotic optimality property remains valid [21]. In general,
though, when the sensors observe correlated processes, finding
an asymptotically optimum decentralized sequential scheme is
a much more challenging task and remains an open problem.

APPENDIX

Proof of Lemma 1: To prove the lemma, note that

(56)

Since

(57)

this proves (38). For (39), using Jensen’s inequality in (56), we
can write

(58)

where

(59)

where in the last inequality, we used the fact that the numerator
is an overshoot and therefore bounded by and in the denomi-
nator we used Wald’s approximation (which provides an upper
bound) for the error probability of the local SPRT exiting from
the wrong side. Replacing the bound for in (58), taking the
logarithm and recalling (38), we conclude

(60)

Assuming that is bounded away from 0, the previous right-
hand side becomes and proves the lemma.

Proof of Lemma 2: Let us prove the first inequality in (41).
Note that

(61)

By direct differentiation we can verify that the function
is mono-

tonically increasing in both its arguments, when .
Consequently, from (38), namely that exceed re-
spectively, we immediately deduce the final inequality. Proving
(42) is straightforward.

Proof of Lemma 3: For simplicity, we drop the subscript
that refers to the true hypothesis. We observe that

(62)

Note that . By recalling that

is an -adapted stopping time, this suggests that it is also
-adapted. Because of the latter observation we can as-

sess that the event is -measurable (since

is -measurable, this being true even if is an
-adapted stopping time). Consequently, is independent

of . Using this observation and interchanging sum-
mation and expectation in (62), we have
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Fig. 3. Relative performance of centralized and decentralized tests in discrete time with � � � sensors and testing between � Normal � ��� �� and �
Normal � ��� �� random variables with (a) � � ��� and (b) � � ���.

(63)

which is what we wanted to prove.
Notice that interchanging summation and expectation is

straightforward when the ’s are positive random variables.
In the general case we can write

. The result then follows if we assume
and or equiva-

lently , which is exactly what we have assumed.
Proof of Lemma 4: To prove (46), note that

. Using (40) we observe that we can write
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(64)

From the definition of the Lebesgue sampling we have
. Now note that if exits from the

lower end, then

, with the last inequality coming

from (38). Similarly, if exits from the upper end,

then .

In both cases, we see that , with

the overshoot defined in (36). Consequently, we can further
upper bound (64) using the overshoot. Replacing with then
taking expectation and using (44), we obtain

(65)

Summing over and recalling the definition of in (44), we
obtain

(66)

Using now (40), we can write

(67)

where for the last inequality, we used (45) and the fact that
. Since by definition is the K-L in-

formation number for the random sequence , we strengthen
the inequality by minimizing over . Summing the result over
yields

(68)

Solving for the sum and replacing in (66) yields the desired
inequality under . Similar proof applies under .

Proof of Theorem 2: The most important part of the proof
is demonstrating the validity of the estimates in (47). For this
task, we need to introduce some additional notation; thus, we
denote by the th binary message that arrives at the fusion
center irrespectively of the sensor which sent it and by the
identity of the sensor which transmitted the th message. The
flow of information at the fusion center is then described by the
filtration , where . In order
to avoid technical complications we assume that at any given
time the fusion center receives at most one message from the

sensors. The extension to the general case is merely technical
and we refer to [21] for details.

The fusion center likelihood under after the arrival of the
first messages is

(69)

The first equality uses simply the definition of conditional prob-
ability. The second equality is based on the fact that (the value
of the th transmitted message at the fusion center) is indepen-
dent of all other messages conditionally on

(the identity of the sensor from which the th message was
transmitted). For the third equality, we simply used our notation
that the probability measure of a sample coming from sensor
is denoted as , where refers to the true hypothesis.

The likelihood ratio after the arrival of the th message is

(70)

where—recalling the definition of the log-likelihood ratios
—we define

(71)

The process is of course closely related to the process ,
we defined in (21). Note that is expressed in terms of the
global time whereas in terms of the number of messages
received by the fusion center. To explicitly specify their depen-
dence, let be the increasing sequence of communication
times between any sensor and the fusion center, where is the
time instant (in global time) that the fusion center receives its

th message. Then the two processes are related through the
equality .

The fusion center policy defined in (22) can also be expressed
in terms of number of messages at the fusion center as

(72)

and we clearly have and . Now, is a
-stopping time which represents the number of messages

that are collected by the fusion center until a decision is reached
by D-SPRT, whereas is -measurable random variable
which represents the D-SPRT decision rule. Since

, with a change of measure we have
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TABLE I
NOTATION FOR LEBESGUE SAMPLING IN DISCRETE TIME

(73)

and taking logarithms in both sides, we obtain
, thus it suffices to show that . But

is a likelihood ratio, thus it is a -martingale with
-expectation equal to 1. Therefore, it suffices to show that

we can apply optional sampling theorem. This is indeed pos-

sible due to the special form of the -stopping time .

Since is -a.s. finite, it suffices to show that
and . Since is a -measurable

random variable and , from a change of mea-
sure, we obtain

(74)

as . Notice that the inequality is due to the fact that
for , whereas for the limit we have used

the fact that is -a.s. finite.
Similarly, we have

(75)

Therefore, we can apply the optional sampling theorem and ob-
tain , which proves the first inequality in (47). The
second inequality can be shown in an analogous way.

To prove the second part of the theorem, namely (48), we
return to the global time and we consider the inequality under

. Note that

(76)

Using (46) from Lemma 4, the inequality becomes

(77)

where . As in the continuous time case,
we have and using (47) we can write

which also implies .
Replacing the latter in (77) results in

(78)

If we replace, in the left-hand side of the previous inequality,
with the optimum performance , because of

(33), we strengthen the inequality obtaining

(79)

Note now that and for the overshoot we have
. In our analysis we consider to be, ei-

ther of the order of a constant or to tend to infinity and to
be either of the order of a constant or to tend to 0. Because of
this assumption and Lemma 1, we have that are
meaning that . Because of Lemma 2, we conclude
that , consequently . Substi-
tuting these order of magnitudes in (79) yields

(80)

Finally, due to the relative size of and , we can also conclude
that which proves the desired
version of the inequality. Similar steps can be applied to prove
the theorem under hypothesis .
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