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Abstract—We propose a new framework for cooperative spec-
trum sensing in cognitive radio networks, that is based on a novel
class of nonuniform samplers, called the event-triggered samplers,
and sequential detection. In the proposed scheme, each secondary
user (SU) computes its local sensing decision statistic based on its
own channel output; and whenever such decision statistic crosses
certain predefined threshold values, the secondary user will send
one (or several) bit of information to the fusion center (FC). The
FC asynchronously receives the bits from different SUs and up-
dates the global sensing decision statistic to perform a sequential
probability ratio test (SPRT), to reach a sensing decision. We pro-
vide an asymptotic analysis for the above scheme, and under dif-
ferent conditions, we compare it against the cooperative sensing
scheme that is based on traditional uniform sampling and sequen-
tial detection. Simulation results show that the proposed scheme,
using even 1 bit, can outperform its uniform sampling counterpart
that uses infinite number of bits under changing target error prob-
abilities, SNR values, and number of SUs.

Index Terms—Asymptotic optimality, cognitive radio, de-
centralized detection, event-triggered sampling, randomized
quantization, sequential probability ratio test (SPRT).

I. INTRODUCTION

S PECTRUM sensing is one of the most important function-
alities in a cognitive radio system [1], by which the sec-

ondary users (SU) decide whether or not the spectrum is being
used by the primary users. Various spectrum sensing methods
have been developed based on exploiting different features of
the primary user’s signal [2]. On the other hand, cooperative
sensing, where multiple secondary users monitor the spectrum
band of interest simultaneously and cooperate to make a sensing
decision, is an effective way to achieve fast and reliable spec-
trum sensing [3]–[7].
In cooperative sensing, each secondary user collects its own

local channel statistic, and sends it to a fusion center (FC), which
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then combines all local statistics received from the secondary
users to make a final sensing decision. The decision mecha-
nism at the FC can be either sequential or fixed sample size.
In other words, the FC can either try to make a decision every
time it receives new information or it can wait to collect a spe-
cific number of samples and then make a final decision using
them. It is known that sequential methods are much more ef-
fective in minimizing the decision delay than their fixed sample
size counterparts. In particular, the sequential probability ratio
test (SPRT) is the dual of the fixed sample size Neyman–Pearson
test, and it is optimal among all sequential tests in terms of mini-
mizing the average sample number (decision delay) for i.i.d. ob-
servations [8], [9]. Sequential approaches to spectrum sensing
have been proposed in a number of recent works [10]–[15].
The majority of existing works on cooperative and sequential

sensing assume that the SUs synchronously communicate to the
FC. This implies the existence of a global clock according to
which SUs sample their local test statistics using conventional
uniform sampling. There are a few works allowing for asyn-
chrony among SUs (e.g., [13] and [14]), but none of them pro-
vides an analytical discussion on the optimality or the efficiency
of the proposed schemes. In this paper, we develop a new frame-
work for cooperative sensing based on a class of nonuniform
samplers called the event-triggered samplers, in which the sam-
pling times are determined in a dynamic way by the signal to be
sampled. Such a sampling scheme naturally outputs low-rate in-
formation (e.g., 1 bit per sample) without performing any quan-
tization, and permits asynchronous communication between the
SUs and the FC [16]. Both features are ideally suited for co-
operative sensing in cognitive radio systems since the control
channel for transmitting local statistics has a low bandwidth
and it is difficult to maintain synchrony among the SUs. More-
over, we will show that by properly designing the operations
at the SUs and FC, the cooperative sensing scheme based on
event-triggered sampling can outperform the one based on the
conventional uniform sampling.
The remainder of the paper is organized as follows. In

Section II, we describe the cooperative spectrum sensing
problem, in both centralized and decentralized form and we
outline three spectrum detectors. In Section III, we intro-
duce the decentralized spectrum sensing approach based on
event-triggered sampling and discuss the operations at both the
SUs and the FC. In Section IV, we perform a comprehensive
asymptotic performance analysis on the proposed spectrum
sensing method, and the one based on conventional uniform
sampling. Simulation results are provided in Section V. Finally,
Section VI concludes the paper.

1053-587X/$31.00 © 2012 IEEE
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II. PROBLEM FORMULATION AND BACKGROUND

A. Spectrum Sensing via SPRT
Consider a cognitive radio network where there are sec-

ondary users performing spectrum sensing and dynamic spec-
trum access. Let , be the Nyquist-rate sampled dis-
crete-time signal observed by the th SU, which processes it
and transmits some form of local information to a fusion center.
Using the information received at the fusion center from the
SUs, we are interested in deciding between two hypotheses,
and , for the SU signals: i.e., whether the primary user (PU)
is present or not . Specifically, every time the fusion
center receives new information, it performs a test and either
1) stops accepting more data and decides between the two hy-
potheses; or 2) postpones its decision until a new data sample
arrives from the SUs. When the fusion center stops and selects
between the two hypotheses, the whole process is terminated.
Note that the decision mechanism utilizes the received data

sequentially as they arrive at the fusion center. This type of test
is called sequential as opposed to the conventional fixed sample
size test in which one waits until a specific number of samples
has been accumulated and then uses them to make the final hy-
pothesis selection. Since the pioneering work of Wald [8], it has
been observed that sequential methods require, on average, ap-
proximately four times [17, p. 109] less samples (for Gaussian
signals) to reach a decision than their fixed sample size coun-
terparts, for the same level of confidence. Consequently, when-
ever possible, it is always preferable to use sequential over fixed
sample size approaches.
Assuming independence across the signals observed by dif-

ferent SUs, we can cast our problem of interest as the following
binary hypothesis testing problem

(1)

where denotes “distributed according to” and and are
the joint probability density functions of the received signal by
the th SU, under and , respectively. Since we assume in-
dependence across different SUs the log-likelihood ratio (LLR)
of all the signals received up to time , which is a sufficient

statistic for our problem, can be split as

(2)

where represents the local LLR of the signal received by the
th SU, namely

(3)

Hence, each SU can compute its own LLR based on its corre-
sponding observed signal, and send it to the fusion center which
collects them and computes the global cumulative LLR using
(2). Note that the local LLRs can be obtained recursively. That
is, at each time , the new observation gives rise to an LLR

increment , and the local cumulative LLR can then be updated
as

(4)

where

(5)

and denotes the conditional pdf of
given the past (local) signal samples under hypothesis . Of
course, when the samples of the received signal in each SU are
also i.i.d., that is, we have independence across time, then the
previous expression simplifies considerably, and we can write

, where now represents the pdf of a single
sample in the th SU under hypothesis .
As we mentioned, the fusion center collects the local LLRs

and at each time instant is faced with a decision, namely to
wait for more data to come, or to stop receiving more data and
select one of the two hypotheses and . In other words, the
sequential test consists of a pair where is a stopping
time that decides when to stop (receiving more data) and a
selection rule that selects one of the two hypotheses based on
the information available up to the time of stopping .
Of course the goal is to make a decision as soon as possible

which means that we would like to minimize the delay , on
average, that is,

and/or (6)

At the same time, we would also like to assure the satisfactory
performance of the decision mechanism through suitable con-
straints on the Type-I and Type-II error probabilities, namely

and (7)

where denote probability and the corre-
sponding expectation under hypothesis . Levels
are parameters specified by the designer.
Actually, minimizing in (6) each over the pairs

that satisfy the two constraints in (7) defines two sep-
arate constrained optimization problems. However, Wald first
suggested [8] and then proved [9] that the SPRT solves both
problems simultaneously. SPRT consists of the pair ,
which is defined as follows:

if
if . (8)

In other words, at every time instant , we compare the run-
ning LLR with two thresholds , where . As
long as stays within the interval , we continue taking
more data and update ; the first time exits we stop
(accepting more data), and we use the already accumulated in-
formation to decide between the two hypotheses and . If
we call the time of stopping (which is clearly random, since
it depends on the received data), then when , we decide
in favor of , whereas if , we decide in favor of .
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The two thresholds and are selected through simulations
so that SPRT satisfies the two constraints in (7) with equality.
This is always possible, provided that . In the op-
posite case, there is a trivial randomized test that can meet the
two constraints without taking any samples (delay equal to 0).
Note that these simulations to find proper values for are
performed once offline, i.e., before the scheme starts, for each
sensing environment.
The popularity of SPRT is due to its simplicity, but primarily

to its very unique optimality properties. Regarding the latter, we
must say that optimality in the sense of (6) and (7) is assured
only in the case of i.i.d. observations. For more complex data
models, SPRT is known to be only asymptotically optimum.
SPRT, when employed in our problem of interest, exhibits

two serious practical weaknesses. First the SUs need to send
their local LLRs to the fusion center at the Nyquist-rate of the
signal; and secondly, the local LLR is a real number which
needs infinite (practically large) number of bits to be repre-
sented. These two problems imply that a substantial commu-
nication overhead between the SUs and the fusion center is in-
curred. In this work, we are interested in decentralized schemes
by which we mean that the SUs transmit low-rate information
to the fusion center.

B. Decentralized Q-SPRT Scheme

A straightforward way to achieve low-rate transmission is to
let each SU transmit its local cumulative LLR at a lower rate,
say at time instants , where is the
period ; and to quantize the local cumulative LLRs using a finite
number of quantization levels. Specifically, during time instants

, each SU computes its incremental LLR
of the observations , to

obtain

(9)

where is the LLR of observation , defined in (5). It then
quantizes into using a finite number of quantization
levels. Although there are several ways to perform quantization,
here we are going to analyze the simplest strategy, namely uni-
form quantization.We will also make the following assumption:

(10)

stating that the LLRs of all observations are uniformly bounded
by a finite constant across time and across SUs.
From (9) and (10), we can immediately conclude that

. For our quantization scheme, we can now divide
the interval uniformly into subintervals and
assign the mid-value of each subinterval as the corresponding
quantized value. Specifically, we define

(11)

These quantized values are then transmitted to the FC. Of
course, the SU does not need to send the actual value but only
its index which can be encoded with bits.
The FC receives the quantized information from all SUs, syn-

chronously, and updates the approximation of the global run-
ning LLR based on the information received, i.e.,

(12)

Mimicking the SPRT introduced above, we can then define the
following sequential scheme , where

if
if

(13)

Again, the two thresholds are selected to satisfy the two
error probability constraints with equality. We call this scheme
the Quantized-SPRT (Q-SPRT).
As we will see in our analysis, the performance of Q-SPRT is

directly related to the quantization error of each SU. Since we
considered the simple uniform quantization, it is clear that

(14)

We next consider three popular spectrum sensing methods
and give the corresponding local LLR expressions.

C. Examples—Spectrum Sensing Methods

Energy Detector: The energy detector performs spectrum
sensing by detecting the primary user’s signal energy. We as-
sume that when the primary user is present, the received signal
at the th SU is , where is the received primary
user signal, and is the additive white Gaussian
noise. Define then the received signal-to-noise

ratio (SNR) at the th SU is . Also define

. The energy detector is based on the following hypothesis
testing formulation [2]

(15)

where denotes a central chi-squared distribution with 2 de-
grees of freedom; and denotes a noncentral chi-squared
distribution with 2 degrees of freedom and noncentrality param-
eter .
Using the pdfs of central and noncentral chi-squared distribu-

tions, we write the local LLR, , of the observations as follows:

(16)
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where is the modified Bessel function of the first kind and
zeroth order.
Spectral Shape Detector: A certain class of primary user

signals, such as the television broadcasting signals, exhibit
strong spectral correlation that can be exploited by the spec-
trum sensing algorithm [18]. The corresponding hypothesis
testing then consists in discriminating between the channel’s
white Gaussian noise, and the correlated primary user signal.
The spectral shape of the primary user signal is assumed known
a priori, which can be approximated by a th order autoregres-
sive (AR) model. Hence, the hypothesis testing problem can be
written as

(17)

where are i.i.d. sequences with
and , while are the AR model coef-
ficients.
Using the Gaussian pdf the likelihoods under and can

be easily derived. Then, accordingly the local LLR of the sample
received at time at the th SU can be written as

(18)

Gaussian Detector: In general, when the primary user is
present, the received signal by the th SU can be written as

, where is the fading channel
response between the primary user and the th secondary
user; is the digitally modulated signal of the primary user
drawn from a certain modulation, with ; and

is the additive white Gaussian noise. It is
shown in [19] that under both fast fading and slow fading
conditions, spectrum sensing can be performed based on the
following hypothesis testing between two Gaussian signals:

(19)

Then, using the Gaussian pdf the local incremental LLR is
derived as

(20)

III. DECENTRALIZED SPECTRUM SENSING VIA
LEVEL-TRIGGERED SAMPLING

In this article, we achieve the low-rate transmission required
by the decentralized SPRT by adopting event-triggered sam-

pling, that is, a sampling strategy in which the sampling times
are dictated by the actual signal to be sampled, in a dynamic
way and as the signal evolves in time. One could suggest to
find the optimum possible combination of event-triggered sam-
pling and sequential detection scheme by directly solving the
double optimization problem defined in (6) and (7) over the
triplet sampling, stopping time, and decision function. Unfortu-
nately, the resulting optimization turns out to be extremely dif-
ficult not accepting a simple solution. We therefore adopt an
indirect path. In particular, we propose a decentralized spec-
trum sensing approach based on a simple form of event-trig-
gered sampling, namely, the uniform level-triggered sampling.
Then we show that the performance loss incurred by adopting
this scheme as compared to the centralized optimum SPRT is
insignificant. This clearly suggests that solving the more chal-
lenging optimization problem we mentioned before produces
only minor performance gains.

A. Uniform Level-Triggered Sampling at Each SU
Using uniform level-triggered sampling, each SU samples its

local cumulative LLR process at a sequence of random
times , which is particular to each SU. In other words, we do
not assume any type of synchronization in sampling and there-
fore communication. The corresponding sequence of samples is

with the sequence of sampling times recursively defined
as follows:

(21)

where is a constant. As we realize from (21), the sampling
times depend on the actual realization of the observed LLR
process and are therefore, as we pointed out, random. Param-
eter can be selected to control the average sampling periods

. In principle, we would like the two av-
erage periods to coincide to some prescribed value . For sim-
plicity, we will assume that the LLR of each observation is sym-
metric around its mean under the two hypotheses. This guaran-
tees that the two average periods under the two hypotheses are
the same. However, we are not going to assume that the ob-
servations have the same densities across SUs. This, of course,
will make it impossible to assure that all SUs will communicate
with the FC with the same average period if we use the same
at each SU, a property that is practically very desirable. In

Section IV-B, we propose a practically meaningful method to
set this design parameter in a way that assures a fair compar-
ison of our method with the classical decentralized scheme, that
is, Q-SPRT.
What is interesting with this sampling mechanism is that it is

not necessary to know the exact sampled value but only whether
the incremental LLR crossed the upper or the lower
threshold. This information can be represented by using a single
bit. Denote with the sequence of these bits, where

means that the LLR increment crossed the upper boundary
while the lower. In fact, we can also define this bit as

, where .

We can now approximate the local incremental LLR as
, and since , we conclude that we can ap-
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proximate the local LLR at the sampling times using the fol-
lowing equation:

(22)

Note that we have exact recovery, i.e., , if the dif-
ference , at the times of sampling, hits exactly one
of the two boundaries . This is for example the case when

is a continuous-time process with continuous paths.
The advantage of the level-triggered approach manifests it-

self if we desire to communicate the sampled information, as
is the case of decentralized spectrum sensing. Indeed note that
with classical sampling we need to transmit, every units of
time, the real numbers (or their digitized versionwith fixed
number of bits). On the other hand, in the level-triggered case,
transmission is performed at the random time instants and
at each we simply transmit the 1-bit value . This prop-
erty of 1-bit communication induces significant savings in band-
width and transmission power, which is especially valuable for
the cognitive radio applications, where low-rate and low-power
signaling among the secondary users is a key issue for main-
taining normal operating conditions for the primary users.
We observe that by using (4), we have

, where, we recall, is the (conditional) LLR of
the observation at time at the th SU defined in (5). Hence
(21) can be rewritten as

(23)

The level-triggered sampling procedure at each secondary user
is summarized in Algorithm 1. Until the fusion center terminates
it, the algorithm produces the bit stream based on the local
cumulative LLR values at time instants , and sends these
bits to the fusion center instantaneously as they are generated.

Algorithm 1: The uniform level-triggered sampling
procedure at the th SU

1: Initialization:
2:
3: while do
4:
5: Compute [cf. Section II-C]
6:
7: end while
8:
9:
10: Send to the fusion center at time instant
11: Stop if the fusion center instructs so; otherwise go to

line 2.

Remarks:
• Note that the level-triggered sampling naturally censors
unreliable local information gathered at SUs, and allows
only informative LLRs to be sent to the FC.

• Note also that each SU essentially performs a local SPRT
with thresholds . The stopping times of the local SPRT
are the inter-sampling intervals and the corresponding de-
cisions are the bits where and
favor and respectively.

B. Proposed Decentralized Scheme

The bit streams from different SUs arrive at the FC
asynchronously. Using (2) and (22), the global running LLR at
any time is approximated by

(24)

In other words, the FC adds all the received bits transmitted
by all SUs up to time and then normalizes the result with .
Actually, the update of is even simpler. If denotes the
sequence of communication instants of the FC with any SU, and

the corresponding sequence of received bits, then
while the global running LLR is kept constant

between transmissions. In case the FC receives more than one
bit simultaneously (possible in discrete time), it processes each
bit separately, as we described, following any random or fixed
ordering of the SUs.
Every time the global process is updated at the FC it will

be used in an SPRT-like test to decide whether to stop or con-
tinue (receiving more information from the SUs) and in the case
of stopping to choose between the two hypotheses. Specifically,
the corresponding sequential test is defined, similarly to
the centralized SPRT and Q-SPRT, as

if
if .

(25)

counts in physical time units, whereas in number of mes-
sages transmitted from the SUs to the FC. Clearly (25) is the
equivalent of (13) in the case of Q-SPRT and expresses the re-
duction in communication rate as compared to the rate by which
observations are acquired. In Q-SPRT the reduction is deter-
ministic since the SUs communicate once every unit times,
whereas here it is random and dictated by the local level trig-
gered sampling mechanism at each SU. The thresholds , as
before, are selected so that satisfies the two error proba-
bility constraints with equality. The operations performed at the
FC are also summarized in Algorithm 2.

Algorithm 2: The SPRT-like procedure at the fusion center

1: Initialization:
2: while do
3:
4: Listen to the SUs and wait to receive the next bit
at time from some SU

5:
6: end while
7: Stop at time
8: if then
9: —the primary user is present
10: else
11: —the primary user is not present
12: end if
13: Inform all SUs the spectrum sensing result

C. Enhancement

A very important source of performance degradation in our
proposed scheme is the difference between the exact value of
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and its approximation (see [16]). In fact, the more ac-
curately we approximate the better the performance of the
corresponding SPRT-like scheme is going to be. In what fol-
lows, we discuss an enhancement to the decentralized spectrum
sensing method described above at the SU and FC, respectively.
Specifically, for the SU, we consider using more than one bit
to quantize the local incremental LLR values, while at the FC,
we are going to use this extra information in a specific recon-
struction method that will improve the approximation and,
consequently, the approximation of the global running LLR.We
anticipate that this enhancement will induce a significant im-
provement in the overall performance of the proposed scheme
by using only a small number of additional bits. Finally, we
should stress that there is no need for extra bits in the case of
continuous-time and continuous-path signals since, as we men-
tioned, in this case and coincide.
Overshoot Quantization at the SU: Recall that for the con-

tinuous-time case, at each sampling instant, either the upper or
the lower boundary can be hit exactly by the local LLR, and
therefore the information transmitted to the fusion center was
simply a 1-bit sequence and this is sufficient to recover com-
pletely the sampled LLR using (22). In the discrete-time case, at
the time of sampling, the LLR is no longer necessarily equal to
the boundary since, due to the discontinuity of the discrete-time
signal, we can overshoot the upper boundary or undershoot the
lower boundary. The over(under)shoot phenomenon introduces
a discrepancy in the whole system, resulting in an additional
information loss (besides the loss in time resolution due to sam-
pling). Here, we consider the simple idea of allowing the trans-
mission of more than one bit, which could help approximate
more accurately the local LLR and consequently reduce the per-
formance loss due to the over(under)shoot phenomenon.
Bit informs whether the difference

overshoots the upper threshold or undershoots the lower
threshold . Consequently the difference ,
corresponds to the absolute value of the over(under)shoot. It
is exactly this value we intend to further quantize at each SU.
Note that cannot exceed in absolute value the last observed
LLR increment, namely . To simplify our analysis, we will
assume that for all as in (10). In other words,
the LLR of each observation is uniformly bounded across time
and SUs.
Since for the amplitude of the over(under)shoot we have

, this means that . Let us now di-
vide the interval , uniformly, into the following subin-
tervals . Whenever falls into
one such subinterval, the corresponding SU must transmit a
quantized value to the FC. Instead of adopting some de-

terministic strategy and always transmitting the same value for
each subinterval, we propose the simple randomized quantiza-
tion rule shown in (26) at the bottom of the page. Simply said,
if , then we quantize either with the
lower or the upper end of the subinterval by selecting randomly
between the two values. The quantized value that needs to
be transmitted to the FC clearly depends on the outcome of a
random game and is not necessarily the same every time that
falls into the same subinterval. Regarding the randomization

probability , the reason it has the specific value depicted in (26)
will become apparent in Lemma 1.
If we have subintervals, then we transmit different

messages corresponding to the values . Com-
bining them with the sign bit that also needs to be commu-
nicated to the FC yields a total of possible messages
requiring bits for transmitting
this information. It is clear that each SU needs to transmit only
an index value since we assume that the FC knows the list of all

quantized values.
Modified Update at the FC: Let us now turn to the FC

and see how it is going to use this additional information.
Note that the th SU, every time it samples, transmits the
pair where, we recall, the sign bit informs whether
we overshoot the upper threshold or undershoot the lower
threshold and the quantized version of the absolute
value of the over(under)shoot. Consequently since we have

it is only natural to approximate the differ-
ence as follows:

(27)

which leads to the following update of the local running LLR:

(28)

This should be compared with the simplified version (22), where
the term is missing. It is exactly this additional term that in-
creases the accuracy of our approximation and contributes to a
significant performance improvement in our scheme. Of course,
the update of the global running LLR is much simpler. Specif-
ically, if the FC receives at time information from
some SU, then it will update its approximation of the global
running LLR as follows:

(29)

The updated value will be held constant until the next arrival of
information from some SU.

with probability

with probability

(26)
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For the SU operations given in Algorithm 1, only line 10
should be modified when multiple bits are used at each sam-
pling instant, as follows:

10: Quantize as in (26) and send to the fusion
center at time .

On the other hand, for the FC operations given in
Algorithm 2, lines 4 and 5, should be modified as follows:

4: Listen to the SUs and wait to receive the next message
from some SU.

5: .

With the proposed modification at each SU and at the FC,
we have in fact altered the communication protocol between
the SUs and the FC and also the way the FC approximates the
global running LLR. The final sequential test , however,
is exactly the same as in (25). We are going to call our de-
centralized test randomized level triggered SPRT and denote it
as RLT-SPRT.1 As we will demonstrate theoretically and also
through simulations, the employment of extra bits in the com-
munication between SUs and FC will improve, considerably,
the performance of our test, practically matching that of the op-
timum.
Let us now state a lemma that presents an important property

of the proposed quantization scheme.
Lemma 1: Let be the -level quantization scheme

defined in (26) for the overshoot , then

(30)

where denotes expectation with respect to the randomiza-
tion probabilities.

Proof: For given takes the two values defined in
(26) with probability and respectively. Define ,
that is, the common length of the subintervals. Suppose that

; then takes the two
end values with probabilities , respectively, but let us
consider unspecified for the moment. We would like to select
so that

(31)

Since is a sign bit this is equivalent to solving the inequality

(32)

from which we conclude that

(33)

It is straightforward to verify that the second ratio is the smallest
of the two; consequently, we define to have this value, which
is the one depicted in (26).
1In [16], the corresponding decentralized D-SPRT test that uses level trig-

gered sampling at the sensors (that play the role of the SUs) is based only on
1-bit communication.

Note that the approximation in the incremental LLR
induces an equivalent approximation for the incremental

LR, . The randomization is selected so that the
latter, in average (over the randomization), does not exceed the
exact incremental LR. One could instead select so that the av-
erage of the approximation of the incremental LLR matches the
exact LLR value. Even though this seems as the most sensible
selection, unfortunately, it leads to severe analytical complica-
tions which are impossible to overcome. The proposed defini-
tion of , as we will see in the next section, does not have such
problems.

IV. PERFORMANCE ANALYSIS
In this section, we provide an asymptotic analysis on the stop-

ping time of the decentralized spectrum sensing method based
on the level-triggered sampling scheme proposed in Section III
and compare it with the centralized SPRT procedure given by
(8). A similar comparison is performed for the conventional de-
centralized approach that uses uniform sampling and quantiza-
tion [cf. (9) and (12)]. For our comparisons, we will be con-
cerned with the notion of asymptotic optimality for which we
distinguish different levels [16], [20].
Definition 1: Consider any sequential scheme with

stopping time and decision function satisfying the two
error probability constraints and

. If denotes the optimum SPRT that satisfies the two
error probability constraints with equality then, as the Type-I
and Type-II error probabilities , the sequential scheme

is said to be order-1 asymptotically optimal if2

(34)

order-2 asymptotically optimal if

(35)

and finally order-3, if

(36)

where and denote probability and the corresponding
expectation under hypothesis .
Remark: In our definitions, the left-hand side inequalities

are automatically satisfied because is the optimum test. Note
that order-2 asymptotic optimality implies order-1 because

as ; the opposite is not necessarily
true. Order-1 is the most frequent form of asymptotic optimality
encountered in the literature but it is also the weakest. This is
because it is possible to diverge from the optimum
without bound and still have a ratio that tends to 1. Order-2
optimality clearly limits the difference to bounded values, it is
2A quick reminder for the definitions of the notations and

if grows with a lower rate than
if grows with a rate that is no larger than the rate of ; and

if grows with exactly the same rate as . Thus represents
a term that tends to 0. Particularly for this case we will write to indicate a
quantity that becomes negligible with and to indicate a quantity that
becomes negligible either with or with or with both.
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therefore stronger than order-1. Finally, the best would be the
difference to become arbitrarily small, as the two error proba-
bilities tend to 0, which is the order-3 asymptotic optimality.
This latter form of asymptotic optimality is extremely rare in
the Sequential Analysis literature and corresponds to schemes
which, for all practical purposes, are considered as optimum
per se.
Next, we study the three sequential tests of interest, namely

the optimum centralized SPRT, the Q-SPRT and the RLT-SPRT,
and compare the last two with the optimum in order to draw
conclusions about their asymptotic optimality. We start by re-
calling from the literature the basic results concerning the tests
of interest in continuous time. Then, we continue with a detailed
presentation of the discrete-time case where we analyze the per-
formance of Q-SPRT and RLT-SPRT when the corresponding
quantization schemes have a number of quantization levels that
depends on the error probabilities.

A. Analysis of Centralized SPRT, Q-SPRT and RLT-SPRT

With continuous-time and continuous-path observations at
the SUs, it is known that RLT-SPRT, using only 1-bit achieves
order-2 asymptotic optimality [16], whereas Q-SPRT cannot
enjoy any type of optimality by using fixed number of bits [21].
In discrete time the corresponding analysis of the three se-

quential schemes of interest becomes more involved, basically
due to the over(under)shoot effect. This is particularly apparent
in RLT-SPRT where because of the over(under)shoots, 1-bit
communication is no longer capable of assuring order-2 asymp-
totic optimality as in the continuous-time and continuous-path
case. In order to recover this important characteristic in discrete
time, we are going to use the enhanced quantization/communi-
cation scheme proposed in Section III-C. Let us now consider
in detail each test of interest separately.
In discrete time, for the optimum centralized SPRT, we have

the following lemma that provides the necessary information for
the performance of the test.
Lemma 2: Assuming that the two error probabilities
at the same rate, the centralized SPRT, , satisfies

(37)

where ; and
are the average Kullback–Leibler

information numbers of the process under the two hy-
potheses.

Proof: It should be noted that these inequalities become
equalities in the continuous-time continuous-path case. The
proof can be found in [22, p. 21].
Let us now turn our attention to the two decentralized

schemes, namely the classical Q-SPRT and the proposed
RLT-SPRT. We have the following theorem that captures the
performance of Q-SPRT.

Theorem 1: Assuming that the two error probabilities
at the same rate, and that the number of quantization levels

increases with , then the performance of Q-SPRT, , as
compared to the optimum centralized SPRT, , satisfies

(38)

Proof: The proof can be found in Appendix A.
As with the classical scheme, let us now examine the behavior

of the proposed test when the number of quantization levels in-
creases as a function of the two error probabilities .We have
the next theorem that summarizes the behavior of RLT-SPRT.
Theorem 2: Assuming that the two error probabilities
at the same rate, and that the number of quantization levels

increases with , then the performance of RLT-SPRT, , as
compared to the optimum centralized SPRT, , satisfies

(39)

Proof: The proof is presented in Appendix B.

B. Comparisons

In order to make fair comparisons, the two decentralized
schemes need to satisfy the same communication constraints.
First, each SU is allowed to use at most bits per communi-
cation. This means that the number of quantization levels in
Q-SPRT must satisfy , while for RLT-SPRT, we have

, suggesting that .
The second parameter that needs to be specified is the in-

formation flow from the SUs to the FC. Since receiving more
messages per unit time increases the capability of the FC to
make a faster decision, it makes sense to use the average rate
of received messages by the FC as a measure of the information
flow. In Q-SPRT, every units of time the FC receives, syn-
chronously, messages (from all SUs); therefore, the average
message rate is . Computing the corresponding quantity for
RLT-SPRT is less straightforward. Consider the time interval

and denote with the total number of messages received
by the FC until . We clearly have , where
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is the number of messages sent by the th SU. We are interested
in computing the following limit:

(40)

where we recall that is the sequence of sampling times at
the th SU, and for the last equality, we used the Law of Large
Numbers since when we also have . Conse-
quently, we need to select so that . To obtain
a convenient formula, we are going to become slightly unfair
for RLT-SPRT. From (65) in Lemma 7, we have that

, which means that . There-
fore, if we set or, equivalently,
, the average message rate of RLT-SPRT becomes slightly

smaller than the corresponding of Q-SPRT. Note that the av-
erage Kullback–Leibler information numbers, , can
be once computed offline via simulations.
Under the previous parameter specifications, we have the fol-

lowing final form for the performance of the two schemes. For
Q-SPRT

(41)

while for RLT-SPRT

(42)

Comparing (41) with (42), there is a definite resemblance be-
tween the two cases. However, in RLT-SPRT, we observe the
factor in the first term of the right hand side which, as we will
immediately see, produces significant performance gains. Since
is the communication period, and we are in discrete time,

we have . Actually, for the practical problem of interest,

we have suggesting that the first term in RLT-SPRT is
smaller by a factor , which can be large.
For fixed and , none of the two schemes is asymptotically

optimum even of order-1. However, in RLT-SPRT, we can have
order-1 asymptotic optimality when we fix the number of bits
and impose large communication periods. Indeed, using (37) of
Lemma 2, we obtain

(43)

consequently, selecting but , we assure
order-1 optimality. It is easy to verify that the best speed of con-
vergence towards 1 of the previous right-hand side expression
is achieved when .
We should emphasize that similar order-1 optimality result,

just by controlling the period , cannot be obtained in Q-SPRT,
and this is due to themissing factor in (41). Consequently, this
is an additional indication (besides the continuous-time case)
that the proposed scheme is more efficient than the classical
decentralized Q-SPRT.
Let us now examine how the asymptotic optimality proper-

ties of the two methods improve when we allow the number of
bits to grow with , while keeping constant. Note that, in
the case of Q-SPRT, selecting or, equivalently,

assures order-2 asymptotic optimality. For
RLT-SPRT, using for simplicity the approximation

, the same computation yields .
Of course, the two expressions are of the same order of magni-
tude; however in RLT-SPRT, the additional term , for
all practical purposes, can be quite important resulting in a need
of significantly less bits than Q-SPRT to assure order-2 asymp-
totic optimality. The conclusions obtained through our analysis,
as we will see in the next section, are also corroborated by our
simulations.

V. SIMULATION RESULTS
In this section, we provide simulation results to evaluate the

performance of the proposed cooperative spectrum sensing
technique based on level-triggered sampling and that based on
conventional uniform sampling, and how the two tests compare
with the optimum centralized scheme. In the simulations, the
sampling period of the uniform sampling is set as .
For the level triggered sampling, we adjust the local threshold
so that the average rate of received messages by the FC

matches that of uniform sampling, i.e., (see
Section IV-B). The upper-bound for overshoot values is set
as the quantile of the LLR of a single observation
which is computed once offline via simulations. We mainly
consider a cognitive radio system with two SUs, i.e., ,
but the effect of increasing user diversity is also analyzed.
All results are obtained by averaging trials and using
importance sampling to compute probabilities of rare events.
We primarily focus on the energy detector since it is the most
widely used spectrum sensing method. The results for the spec-
tral shape detector and the Gaussian detector are quite similar.
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Fig. 1. Average detection delay versus error probabilities for optimum centralized and Q-SPRT, RLT-SPRT with 1,2,3, number of bits.

In the subsequent figures average sensing delay performances
are plotted under .
Fixed SNR and , varying : We first verify the theo-

retical findings presented in Section IV on the asymptotic opti-
mality properties of the decentralized schemes. We assume two
SUs operate in the system, i.e., . For the energy detector,
we set the receiver SNR for each SU to 5 dB and vary the error
probabilities and together between and .
Fig. 1 illustrates asymptotic performances of the decentral-

ized schemes using 1, 2, 3 and number of bits. Our first in-
teresting result is the fact that by using a finite number of bits we
can only achieve a discrete number of error rates. Specifically,
if a finite number of bits is used to represent local incremental
LLR packages, then there is a finite number of possible values
to update the approximate global running LLR (e.g., for one bit
we have ). Hence, the approximate global running LLR,
which is our global test statistic, can assume only a discrete
number of possible values. This suggests that any threshold be-
tween two consecutive approximate LLR values will produce
the same error probability. Consequently, only a discrete set of

error probabilities are achievable. Increasing the number
of bits clearly increases the number of available error proba-
bilities. With infinite number of bits any error probability can
be achieved. The case of infinite number of bits corresponds to
the best achievable performance for Q-SPRT and RLT-SPRT.
Having their performance curves parallel to that of the optimum
centralized scheme, the -bit case for both Q-SPRT and RLT-
SPRT exhibits order-2 asymptotic optimality. Recall that both
schemes can enjoy order-2 optimality if the number of bits tends
to infinity with a rate of .
It is notable that the performance of RLT-SPRT with a small

number of bits is very close to that of -bit RLT-SPRT at
achievable error rates. For instance, the performance of 1-bit
case coincides with that of -bit case, but only at a discrete set
of points as can be seen in Fig. 1(b). However, we do not ob-
serve this feature for Q-SPRT. Q-SPRT with a small number of
bits (especially one bit) performs significantly worse than -bit
case Q-SPRT as well as its RLT-SPRT counterpart. In order to
achieve a target error probability that is not in the achievable set
of a specific finite bit case, one should use the thresholds corre-
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Fig. 2. Average detection delay normalized by the optimum centralized perfor-
mance versus error probabilities for Q-SPRT and RLT-SPRT with 2 bits
and communication period either or .

sponding to the closest smaller error probability. This incurs a
delay penalty in addition to the delay of the -bit case for the
target error probability, demonstrating the advantage of using
more bits. Moreover, it is a striking result that 1-bit RLT-SPRT
is superior to -bit Q-SPRT at its achievable error rates, which
can be seen in Fig. 1(c).
Fig. 2 corroborates the theoretical result related to order-1

asymptotic optimality that is obtained in (43). Using a fixed
a number of bits, , the performance of RLT-SPRT im-
proves and achieves order-1 asymptotic optimality, i.e.,

, as the communication period tends to infinity,
. Conversely, the performance of Q-SPRT deterio-

rates under the same conditions. Although in both cases Q-SPRT
converges to the same performance level, its convergence speed
is significantly smaller in the increasing case, which can be
obtained theoretically by applying the derivation in (43) to (41).
This important advantage of RLT-SPRT over Q-SPRT is due to
the fact that the quantization error (overshoot error) observed by
SUs at each communication time in RLT-SPRT depends only
on the LLR of a single observation, but not on the communica-
tion period, whereas that in Q-SPRT increases with increasing
communication period. Consequently, quantization error accu-
mulated at the FC becomes smaller in RLT-SPRT, but larger in
Q-SPRT when compared to the fixed case.
Note in Fig. 2 that, as noted before, only a discrete number of
error rates are achievable since two bits are used. Here, we pre-
ferred to linearly combine the achievable points to emphasize
the changes in the asymptotic performances of RLT-SPRT and
Q-SPRT although the true performance curves of the 2-bit case
should be stepwise as expressed in Fig. 1.
Fixed , and , varying SNR: Next, we consider the

sensing delay performances of Q-SPRT and RLT-SPRT under
different SNR conditions with fixed and .
In Fig. 3, it is clearly seen that at low SNR values there is a huge
difference between Q-SPRT and RLT-SPRT when we use one
bit, which is the most important case in practice. This remark-
able difference stems from the fact that the one bit RLT-SPRT

Fig. 3. Average detection delay versus SNR for optimum centralized and
Q-SPRT, RLT-SPRT with 1, number of bits.

transmits the most part of the sampled LLR information (except
the overshoot), whereas Q-SPRT fails to transmit sufficient in-
formation by quantizing the LLR information. Moreover, as we
can see the performance of the 1-bit RLT-SPRT is very close to
that of the infinite bit case and the optimum centralized scheme.
At high SNR values depicted in Fig. 3(b), schemes all behave
similarly, but again RLT-SPRT is superior to Q-SPRT. This is
because the sensing delay of Q-SPRT cannot go below the sam-
pling interval , whereas RLT-SPRT is not bounded by this
limit due to the asynchronous communication it implements.
Fixed SNR, and , varying : We, then, analyze the

case where the user diversity increases. In Fig. 4, it is seen
that with increasing number of SUs, the average sensing delays
of all schemes decay with the same rate of as shown in
Section IV (cf. (37), (38), and (39)). The decay is more notable
for the 1-bit case because the overshoot accumulation is more
intense, but very quickly becomes less pronounced as we in-
crease the number of SUs. It is again interesting to see that the
1-bit RLT-SPRT is superior to the -bit Q-SPRT for values of
greater than 3.
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Fig. 4. Average detection delay versus number of SUs for optimum cen-
tralized and Q-SPRT, RLT-SPRT with 1, number of bits.

Fixed SNR, and , varying and : Finally,
following [23], we plot the operating characteristics of various
schemes for fixed dB, and . Specifi-
cally, the false alarm and misdetection probabilities
of the schemes under consideration are shown in Fig. 5 when
they have exactly the same average delay pairs, .
For example, with the delay values (47, 29) the error proba-
bility pairs of the optimum centralized, -bit Q-SPRT, -bit
RLT-SPRT and 1-bit RLT-SPRT are clustered together in the
lower left corner, but that of the 1-bit Q-SPRT is far away from
them (third point from the upper right corner). Similar results
are observed for the delay value pairs (33, 22) and (24, 15). Note
that no target error probabilities, and , are specified in this set
of simulations. Thresholds, and , are dictated by the given
average delays. Hence, we again observe that the 1-bit Q-SPRT
performs considerably worse than the 1-bit RLT-SPRT and the
other schemes. Its error probability pairs are far worse than those
of others. On the other hand, the error probability pairs of the
1-bit RLT-SPRT are close to those of the -bit schemes and
the optimum centralized scheme. Similar results are observed
for different SNR and values.

VI. CONCLUSION

We have proposed and rigorously analyzed a new spectrum
sensing scheme for cognitive radio networks. The proposed
scheme is based on level-triggered sampling, which is a
nonuniform sampling technique that naturally outputs 1 bit
information without performing any quantization, and allows
SUs to communicate to the FC asynchronously. Therefore,
it is truly decentralized, and it ideally suits the cooperative
spectrum sensing in cognitive radio networks. With con-
tinuous-time observations at the SUs our scheme achieves
order-2 asymptotic optimality by using only 1 bit. However,
its conventional uniform sampling counterpart Q-SPRT cannot
achieve any type of optimality by using any fixed number of
bits. With discrete-time observations at the SUs, our scheme
achieves order-2 asymptotic optimality by means of an ad-
ditional randomized quantization step (RLT-SPRT) when the

Fig. 5. False alarm probability versus misdetection probability for
optimum centralized and Q-SPRT, RLT-SPRT with number of bits.

number of bits tends to infinity at a considerable slow rate,
. In particular, RLT-SPRT needs significantly

less number of bits to achieve order-2 optimality than Q-SPRT.
With a fixed number of bits, unlike Q-SPRT, our scheme can
also attain order-1 asymptotic optimality when the average
communication period tends to infinity at a slower rate than

.
Simulation results showed that with a finite number of bits

only a discrete set of error probabilities are available due to up-
dating the approximate global running LLRwith a finite number
of possible values. RLT-SPRT, using 1 bit, performs signifi-
cantly better than 1-bit Q-SPRT, and even better than -bit
Q-SPRT at its achievable error rates. We also provided simu-
lation results for varying SNR conditions and increasing SU di-
versity. 1-bit RLT-SPRT performs remarkably better than 1-bit
Q-SPRT. It also attains the performance of -bit Q-SPRT at
low SNR values and even outperforms -bit Q-SPRT for SNR
greater than 3 dB or when the number of SUs exceeds 3.

APPENDIX A

In this Appendix, we are going to prove the validity of The-
orem 1. Let us first introduce a technical lemma.
Lemma 3: If are the thresholds of Q-SPRT with sam-

pling period and quantization levels, then for sufficiently
large , we have

(44)

where are the solutions of the equations
and , respectively. Furthermore, we have

where, we recall, and is
the maximum of the absolute LLR of a single observation
at any SU, as defined in (10).

Proof: We will only show the first inequality in (44) since
the second can be shown in exactly the same way. We recall
that the two thresholds are selected so that the two error
probabilities are satisfied with equality. In particular, we have

.
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From the definition of the stopping time in (8), we have
, that is, is an integer multiple of the period . Note now

that , where . Since we
have independence across time and SUs, we conclude that the
sequence is i.i.d. under both hypotheses.
Let be the solution to the equation

, with the second equality being true because
. It is easy to see that is a convex function of

; therefore, it is continuous. For it is equal to 1 and as
, it tends to as well. If we take its derivative with re-

spect to at we obtain . For sufficiently
large number of quantization levels, approximates ; con-
sequently , which is negative.
This implies that, at least close to 0 and for positive values of
, the function is decreasing and therefore strictly smaller
than 1. Since we have values of for which is smaller than
1 and other values for which it is larger than 1, due to continuity,
there exists for which . In fact, this is
also unique due to convexity.
For any integer , we have , and,

due to the definition of and the fact that is an i.i.d.
sequence, we conclude that is a positive martingale
which suggests that it is also a positive supermartingale. This
allows us to apply the optional sampling theorem for positive
submartingales, which yields for any stopping
time , which is adapted to , as, for instance, the one
in the definition of in (13). Because of this observation, we
can write

(45)

where, for the first inequality we used the Markov inequality.
Solving for yields (44).
Let us now attempt to find a lower bound for as a function

of the number of quantization levels. We recall that is the
solution of the equation . Note that

, where , consequently the positive solu-
tion of the equation constitutes
a lower bound for , that is, . The function is
convex and , which suggests . Because of this
observation, we can write

(46)

with the last equality being true because
with the being i.i.d. thus suggesting

since . From (46),
we can conclude

(47)

The second inequality comes from the convexity of the expo-
nential function namely

, for . If we call then the in-
equality in (47) is equivalent to

(48)

suggesting that is either larger than the largest root or smaller
than the smallest root of the corresponding equation. We are
interested in the first case namely

(49)

where for the last equality we used the approximations
and . Taking now the logarithm,

solving for and using the approximation
we end up with the lower bound . Finally,
recalling that proves the desired inequality.
Proof of Theorem 1: Again, we will focus on the first in-

equality, the second can be shown similarly. From the definition
of in (13), we have . From the definition of
in (13) and Wald’s identity, we can write

(50)

consequently

(51)

Next we upper bound the previous ratio. Let us start with the
denominator, for which we find the following lower bound:

(52)

where we recall .
For the numerator we have the following upper bound

(53)

The second term in the right hand side of the first equality is neg-
ative, therefore, eliminating it yields an upper bound. Note now
that since is the first time exceeds we necessarily
have . Also
since, as we have seen, . These two observations
combined with Lemma 3 and used in (53) suggest

(54)
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Applying in (51) the previous bound and the bound in (52),
yields

(55)

Finally using (37) from Lemma 2, we obtain

(56)

which is the desired inequality.

APPENDIX B
Before proving Theorem 2 we need to present a number of

technical lemmas.
Lemma 4: Consider the sequence defined in (29)

where is the increasing sequence of time instants at which
the FC receives information from some SU. We then have that

and are supermartingales in with respect to
the probability measures and respectively where the two
measures also account for the randomizations.

Proof: We will show the first claim namely
. It is sufficient to prove

that and, using (29), that
.

Let denote the messages received
by the fusion center until the th communication time . De-
note with the indices of the corresponding trans-
mitting SUs. Then, the messages given these indices are in-
dependent due to the independence of observations across time
and across SUs. Using the tower property of expectation, we can
then write

(57)

with the second equality being true due to the conditional in-
dependence of the messages; the last inequality due to (30) of
Lemma 1; and denoting expectation with respect to the
randomization. Now is a martingale with respect to ,
therefore it is also a supermartingale. For stopping times

we have from optional sampling for positive supermartin-
gales from which we con-
clude that . Our lemma is proven by se-
lecting and .
An immediate consequence of the previous lemma and the

application of optional sampling for positive supermartingales
is the following corollary.
Corollary 1: If is any stopping time which depends

on the process and since and , we conclude
that

(58)

In particular for the case and
recalling the definition of the RLT-SPRT stopping time
in (25), we have

(59)

Let us now find useful estimates for RLT-SPRT.
Lemma 5: If are selected in RLT-SPRT to assure error

probabilities then

(60)
(61)

Proof: According to our usual practice we will only show
the first inequality in both cases. For (60) note that

(62)

where we used the Markov inequality and (59).
For (61), we can write

(63)

The first inequality in (63) comes from the fact that the over-
shoot cannot exceed the last update performed by the FC on its
test statistic . The maximum value of this update is
since we can have, at most, all SUs transmitting information to
the FC and each message is upper bounded by . Of course, for
the last inequality, we used (60).
Lemma 6: Let be the sequence of sampling times at

the th SU and denote with the number of samples taken
up to time . Consider an i.i.d. sequence of random variables

, where each is a bounded function of the observations
such that . Let be a stopping

time which at every time instant depends on the global infor-
mation from all SUs up to time . Then, we have the following
version of Wald’s identity:

(64)

Proof: The proof can be found in [16, Lemma 3].
Next, we estimate the average sampling period of each SU.
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Lemma 7: Let be the sequence of sampling times at the
th SU, with the common parameter that defines the local
thresholds, then

(65)

(66)

Proof: As we mentioned before, the sampling process at
each SU is based on a repeated SPRT with thresholds ,
and every time this SPRT stops we sample the incremental LLR
process . Using the classical Wald identity and the
known lower bounds for the corresponding average delays, we
have under

(67)

where, we recall, and
.

From Wald’s classical estimate of the error probabilities we
have and . These two
inequalities generate the following two regions of points: 1) for

, we have and 2) for
, we have . Since we

cannot compute the exact values for the two error probabilities
, we will find the worst possible pair within the

two regions that minimizes the lower bound .
The function is decreasing in both its arguments,

provided that . Therefore when
we can replace with its maximal value and
strengthen the inequality in (67). The resulting lower bound

as a function of is decreasing and there-
fore exhibits its minimum for . Similarly, when

, we can replace again with its max-
imal value and strengthen the inequality. The corresponding
lower bound is now which, as a function
of is increasing; therefore, the minimum appears again for

. This suggests that the lower bound is minimized
when which, in both cases yields an equal value
for namely . Concluding, the final lower bound
is , which is equal to . Similarly, we
can show the bound under .
Proving (66) is straightforward since the difference

is simply the quantized version of and, by

design, the quantization error does not exceed .
Proof of Theorem 2: We need to find an upper bound for
. Note that using the classical Wald identity, we can write

(68)

Let us consider the term . For the
th SU we have the sequence of sampling times ; call

the number of samples taken up to (and including) time . Then,
we can write

(69)

with the equality being true because . The first term

in the right hand side is the incremental LLR at the th SU
before the next sampling. Since this quantity lies in the interval

it is upper bounded by . Consequently, we can write

(70)

where we recall that is the maximal quantization error.
Replacing with , taking expectation on both sides and sum-
ming over yields

(71)

where is the total number of messages received by the FC
up to the time of stopping.
Consider now the following expectation and use (64) from

Lemma 6 and (66) from Lemma 7:

(72)

Summing over and solving for yields

(73)

Replacing this in (71), we obtain

(74)

Finally using the previous inequality in (68) and (61) from
Lemma 5, yields

(75)
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Subtracting the lower bound (37) for the optimum we
obtain the desired estimate.
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